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Abstract

In typical functional connectivity studies, connections between voxels or regions in the brain are represented as
edges in a network. Networks for different subjects are constructed at a given graph density and are summarized
by some network measure such as path length. Examining these summary measures for many density values
yields samples of connectivity curves, one for each individual. This has led to the adoption of basic tools of func-
tional data analysis, most commonly to compare control and disease groups through the average curves in each
group. Such group differences, however, neglect the variability in the sample of connectivity curves. In this
article, the use of functional principal component analysis (FPCA) is demonstrated to enrich functional connec-
tivity studies by providing increased power and flexibility for statistical inference. Specifically, individual con-
nectivity curves are related to individual characteristics such as age and measures of cognitive function, thus
providing a tool to relate brain connectivity with these variables at the individual level. This individual level
analysis opens a new perspective that goes beyond previous group level comparisons. Using a large data set
of resting-state functional magnetic resonance imaging scans, relationships between connectivity and two mea-
sures of cognitive function—episodic memory and executive function—were investigated. The group-based ap-
proach was implemented by dichotomizing the continuous cognitive variable and testing for group differences,
resulting in no statistically significant findings. To demonstrate the new approach, FPCA was implemented, fol-
lowed by linear regression models with cognitive scores as responses, identifying significant associations of con-
nectivity in the right middle temporal region with both cognitive scores.

Keywords: connectivity curves; episodic memory; executive function; fMRI; functional data analysis; functional
principal component analysis; network; network density; resting state

Introduction

In recent years, spatial patterns of distributed neural ac-
tivity in the brain have been increasingly modeled in terms

of graphs or networks (Fallani et al., 2014). Data arrive in the
form of a time-varying signal collected at a spatial array of lo-
cations: either a regular 3D array as in blood oxygenation
level dependent (BOLD) functional magnetic resonance im-
aging (fMRI) or an irregular 2D array as in magnetoencepha-
lography and electroencephalography. Each signal represents
the time course of brain activity at one location in the brain. A
key scientific problem of interest is to characterize functional
connectivity: spatiotemporal patterns of time course similar-
ity across the spatial locations.

In network-based approaches to this problem, groupings of
spatial locations are represented as nodes in a graph, and

edges between nodes represent a high level of time series sim-
ilarity between the constituent nodes. We consider connectiv-
ity at the local level, where the nodes are individual voxels
within a specific brain region (Meskaldji et al., 2011; Kaiser,
2011), complementing previous quantifications of short-
range connectivity such as regional homogeneity (Zang
et al., 2004) and local functional connectivity density map-
ping (Tomasi and Volkow, 2010). Similarity is quantified
by the Pearson correlation, as is common in fMRI analyses
(Achard et al., 2006; Bassett and Bullmore, 2006; Buckner
et al., 2009; Tomasi and Volkow, 2011; van den Heuvel
et al., 2008; Worsley et al., 2005; Zalesky et al., 2012).
Once such a graph is constructed, functional connectivity
can be quantified in terms of a wide variety of summary mea-
sures of graph characteristics, which we refer to as network
connectivity measures (Sporns, 2011). These measures are
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useful for identifying common topological properties in
functional brain networks. In addition, it is of great interest
to study relationships between the connectivity measures
and age, cognitive functioning, genetics, and physical health
of the individuals receiving fMRI scans, thus investigating
the relationships between brain organization and other char-
acteristics of the individual.

Because the similarity between two nodes in a network is
measured on a continuous scale, network edges are often in-
stantiated by comparing these similarities with a threshold
(Buckner et al., 2009; Tomasi and Volkow, 2011; van den
Heuvel et al., 2008). When network connectivity measures
are used to compare the networks of different subjects, the
prevailing approach is to use subject-specific thresholds so
that the resulting networks have the same density, that is,
an equal number of edges (Bassett et al., 2012; Hosseini
et al., 2012a; Van Wijk et al., 2010). While some studies
have conducted network analyses by choosing a single den-
sity (Bassett et al., 2009), it is more common to construct
and compare networks over a range of density values (Bassett
et al., 2006; Ginestet et al., 2011; Hosseini and Kesler, 2013;
Hosseini et al., 2012a; Klimm et al., 2014; Lynall et al., 2010;
Siebenhühner et al., 2013; Singhet al., 2013; Yu et al., 2011).
In this case, the connectivity measure used to summarize the
network is a function of the density, so that methods of func-
tional data analysis (FDA) are applicable [for an introduction
to FDA, see, e.g., Ramsay and Silverman (2005)]. The useful-
ness of these methods in connectivity studies was first ob-
served in Bassett et al. (2012).

However, the full power of functional data analysis in con-
nectivity and other neuroimaging studies is yet to be utilized,
especially in the context of relating connectivity to other var-
iables. Specifically, the ubiquitous approach for comparing
two groups (e.g., healthy/diseased or young/elderly) is to
compare their mean connectivity curves through a permuta-
tion test (Bassett et al., 2012; Hosseini and Kesler, 2013;
Hosseini et al., 2012a; Klimm et al., 2014; Siebenhühner
et al., 2013; Singh et al., 2013). An alternative is the so-
called ‘‘area under the curve’’ or cost integration approach
(Ginestet et al., 2011), although there is a consensus that
the resulting inference is less powerful as it is less sensitive
to curve shape. While such tests of group mean differences
have yielded interesting scientific findings, they are insuffi-
cient for identifying differences in variance, for example,
or, more importantly, for inferring relationships with a con-
tinuous covariate such as age. For example, it is of great in-
terest to study the magnitude and direction of associations
between individual connectivity and various outcomes,
such as test scores of episodic memory, executive function,
and other cognitive measures.

Since permutation tests for group differences are inade-
quate to address these questions, we propose to use functional
principal component analysis (FPCA), which transforms the
connectivity of each subject into a subject-specific vector of
so-called functional principal component (FPC) scores. In
turn, this allows one to formulate regression models where
these scores that quantify subject-specific connectivity serve
as predictors or responses. Another advantage of these
subject-specific FPC scores is the enhanced ability to visual-
ize the variability in connectivity between subjects. For exam-
ple, examining the joint and marginal distributions of the FPC
scores can aid in detecting subgroups and identifying outliers,

among other applications, which are extremely difficult tasks
to perform with the raw sample of curves. In addition, the ef-
fects of the FPC scores on curve shape can be easily visual-
ized, lending interpretability to the regression models.

Due to the known effect of normal aging on connectivity
(Betzel et al., 2014; Cao et al., 2014; Ferreira and Busatto,
2013), differences in connectivity between disease and con-
trol groups are only meaningful if these groups are age
matched. For data that are not age matched, there is no conve-
nient method for incorporating age as a nuisance covariate
when testing for group differences in mean curves. However,
when implementing the proposed FPCA regression approach
to investigate the effects of network connectivity on cognitive
performance, one must consider that cognitive performance
also declines with age. In this setting, the confounding effect
of age can be adjusted for easily by including age as covariate
in the regression model. We describe the different aspects of
FPCA regression analysis in the Materials and Methods sec-
tion and demonstrate its various advantages, including the
convenience of the adjustment for age and other covariates,
in the Results section.

Materials and Methods

Participants

This study included 341 elderly participants in a longitudi-
nal study of cognitive impairment that has been described
previously (Hinton et al., 2010). All participants were evalu-
ated within the research program of the University of Califor-
nia, Davis Alzheimer’s Disease Center (UCD ADC). Clinical
evaluation of this cohort, including the neuropsychological
test battery, has been described previously (He et al., 2012).
Tables 1 and 2 contain statistical summaries of the groups
under comparison in the Group Differences section.

fMRI acquisition

Participants received one fMRI scan (He et al., 2012) at the
UC Davis Imaging Research Center on a 1.5T GE Signa Hori-
zon LX Echospeed system. Participants received an 8-min
axial echo-planar imaging BOLD fMRI scan and were pro-
vided with no specific instructions before the acquisition

Table 1. Statistical Summaries of Episodic

Memory Groups

Group Low High

Gender
Female 76 99
Male 85 45

Education, years
Mean (SD) 13.23 (4.56) 13.88 (4.14)

Age
Mean (SD) 78.47 (7.68) 76.51 (6.96)

Ethnicity
White 82 71
Hispanic 44 29
African American 25 34
Other 10 10

Episodic memory score
Mean (SD) �1.07 (0.52) 0.48 (0.64)
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other than to keep their eyes open. Scan parameters were as
follows: TR 2.0 sec, TE 40 msec, FOV 22 cm, Flip angle
90�, 24 5-mm thick contiguous slices with bandwidth
62.5 KHz, and 64 · 64 matrix with R-L frequency encode di-
rection. This sequence provided 240 time points of data at
each voxel.

fMRI preprocessing

The preprocessing steps for each scan include correction for
differences in slice timing, correction for head motion, and
coregistration to the subject’s 3DT1 MRI scan. Multiple linear
regression was applied to the signal at each voxel to remove the
global linear trend (to account for signal drift) along with two
other global signals corresponding to cerebral spinal fluid and
white matter. Finally, each signal was band-pass filtered to pre-
serve frequency components between 0.01 and 0.08 Hz. Tem-
poral and spatial processing of the fMRI data were performed
in Statistical Parametric Mapping (SPM8, www.fil.ion.ucl
.ac.uk/spm) and Resting-State fMRI Data Analysis Toolkit
V1.8 (REST1.8, http://restfmri.net/forum/?q=rest). The first
four time points were discarded to eliminate nonequilibrium
effects of magnetization. Time points with large head motion,
defined as translation greater than 1.5 mm and/or rotation
greater than 1.5�, were then identified, and participants with
any such time points were excluded, resulting in a total of 341
participants for this study.

Graph construction and connectivity measures

In our experiments, we considered connectivity within
local hubs corresponding to 10 anatomic regions previously
identified in Buckner et al. (2009) as functional connectivity
hubs. The identification of these hubs, or regions with an ab-
normally large number of functional connections, is impor-
tant to understand the integration of distinct processes and
networks in the brain, as well as their relationships with dis-
ease, for example. A natural follow-up question is how to
quantify the strength or integrity of a particular hub at the
subject or group level and how to relate it to external vari-
ables such as age or cognitive function. To address this in

the current study, for each of the 10 hubs mentioned, a
local network was constructed by isolating a 11 · 11 · 11
cube of voxels centered at the corresponding seed voxel
listed in Table 3 of Buckner et al., 2009; nongray matter vox-
els were then discarded using a template. This resulted in 10
networks for each subject, with the number of nodes ranging
between 610 and 1331 voxels. We remark that, while distinct
hub locations may differ in the number of network nodes, the
number of nodes in any particular hub is the same across all
subjects. This is an important consideration, since it is known
that networks with an unequal number of nodes cannot be
compared equitably (Van Wijk et al., 2010).

For each of these sets of voxels, we used the Pearson cor-
relation between the signals at two voxels as a similarity
measure. In previous work (Ginestet et al., 2011), it has
been noted that positive correlations imply different biolog-
ical processes than negative correlations. In our analyses, we
focused on positive correlations only and, accordingly, all
negative correlations were effectively set to 0, as has been
done in other studies (Bruno et al., 2012; Fan et al., 2011;
He et al., 2007; Hosseini et al., 2012b). Denoting by N the
total number of possible connections and by M the number
of positive correlations in the network, for a given graph den-
sity value t � [0, 1], the largest R correlations were identified,
where R is the largest integer such that R�min (M, tN). The
network at density t is then constructed by instantiating R
edges corresponding to these correlations. The global net-
work connectivity measures (Rubinov and Sporns, 2009) of
small-worldness, average characteristic path length, average
clustering coefficient, and average efficiency were then com-
puted using the graph-theoretical analysis toolbox (GAT) for
Matlab (Hosseini et al., 2012a).

For each of the 10 distinct networks, the range of network
densities considered was an interval [tl, th]. In this study, tl
was the smallest possible density so that every node had at
least one connection for all subjects. By considering the
total number of positive correlations, the maximum possible
density for each subject was calculated, and th was taken as
the smallest of these maximum densities. Thus, the range of
densities considered is the largest such that all networks are
fully connected (all nodes have a connection) and also unsat-
urated (not all edges are present). In addition, we remark that,
while the networks are discrete in nature, the large number of
nodes N renders the resulting network connectivity curves
approximately continuous and smooth.

Before carrying out the analyses, subjects with poor data
quality (e.g., presence of constant signals after preprocess-
ing) were identified and removed. For each subject, the
percentage of signals that were constant was computed sep-
arately for each of the 10 hubs. If any of these percentages
were greater than 1%, the individual was considered an out-
lier and removed. This resulted in the removal of 9 subjects,
leaving 332 subjects for the analysis.

Functional principal component analysis

For a fixed hub, let Xi(t) be the value of a particular network
connectivity measure for the network of the i th subject with
density t � [tl, th]. In order for these functions to be used in sub-
sequent analysis, these infinite-dimensional functional ob-
jects are reduced to a sequence of one or more scalar values.
In this study, Xi is a random function with pointwise mean

Table 2. Statistical Summaries of Executive

Function Groups

Group Low High

Gender
Female 80 98
Male 74 56

Education, years
Mean (SD) 12.63 (4.52) 14.37 (4.17)

Age
Mean (SD) 78.70 (7.83) 76.37 (6.69)

Ethnicity
White 64 90
Hispanic 46 29
African American 28 31
Other 16 4

Episodic memory score
Mean (SD) �0.86 (0.51) 0.31 (0.42)
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l(t) = E(Xi(t)) and covariance G(s; t) = Cov Xi(s), Xi(t)ð Þ.
According to the Karhunen–Loève expansion, Xi can be writ-
ten as

Xi(t) = l(t)þ+
1

k = 1

nik /k(t),

where the functions /k form an orthonormal basis
and are eigenfunctions of the integral operator (Af )(t) =R

G(s; t)f (s)ds, and nik are the FPC scores given by nik =R
(Xi(t)� l(t))/k(t)dt. The eigenvalues kk corresponding

to the eigenfunctions /k are positive and decreasing in
k. Hence, like standard principal component analysis, the
FPC scores are uncorrelated and give an optimal represen-
tation of the data in terms of accounting for the total vari-
ability in the function Xi. In fact, one way of viewing
FPCA is that it learns the linear representation for the
data that minimizes the amount of lost information when
truncated to a finite number of terms.

To reduce the function Xi to a finite sequence of scores
ni1, � � � , nik, the truncation point K can be chosen so as to ac-
count for a particular percentage of the total variability. In
our experiments, this was set at 95%. For all hubs and net-
work connectivity measures, this resulted in reducing the
sample of functions to just the first FPC score. For more in-
formation on FPCA, and the estimation of the FPC scores
from a sample, see Müller (2011).

Relationships between network connectivity and cognition

The goal of the experiments in the Results section is to re-
late the network connectivity measures to scientifically rele-
vant outcomes of interest: two continuous standardized
measures of cognitive functioning that assess episodic mem-
ory and executive function. We compare traditional group
difference methodology and the proposed FPCA technique
in their ability to capture and quantify these associations.

For each of the 10 hubs considered for network construc-
tion, we obtained samples of network connectivity measure
functions, as outlined in the Graph Construction and Connec-
tivity Measures section, using all n = 332 subjects. These
functions were reduced to a single number, the first FPC
score, as described in the Functional Principal Component
Analysis section. To assess the relationship between the con-
nectivity measures within the given hub and the two cogni-
tive measurements of interest, we considered the standard
multiple linear regression model with the first FPC score
and age as predictors. The models were fitted using ordinary
least squares, and the null hypothesis that the connectivity
measure has no effect was tested using the standard partial
F-test, after checking the assumptions of homoscedasticity
and Gaussianity of the errors. As some subjects had missing
values for the cognitive scores (27 for episodic memory and
24 for executive function), such subjects were removed from
the regression analyses. As a comparison, for each of the two
cognitive scores, the subjects were divided into low- and
high-performing groups by a median split. For statistical
summaries of these groups, see Tables 1 and 2.

Results

Group differences

For both episodic memory and executive function, the low-
and high-performing groups were compared for each combi-
nation of hub and network connectivity measure, for a total of
40 tests per cognitive score. After correcting these p-values
using false discovery rate (FDR) with q = 0:05 (this correction
was made separately for the two cognitive scores), there were
no significant findings. Notably, in the right middle temporal
(RMT) hub, which was found to be significant in the FPCA
regression analyses detailed below, the low- and high-
performing episodic memory groups had virtually identical
mean curves for all network measures (Fig. 1) and similarly
for the groups defined by executive function performance.

FIG. 1. Average network connectivity
curves in the RMT hub for low (solid line)
and high (dashed line) episodic memory
score groups. Permutation tests revealed no
significant difference, as the means are vir-
tually identical, while the FPCA analyses
were significant. Corresponding curve
comparisons for groups defined by execu-
tive function are indistinguishable, so they
are not shown in this study. FPCA, func-
tional principal component analysis; RMT,
right middle temporal.
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Functional principal component analysis

For each of the four network connectivity measures, the
distribution of connectivity functions in the sample for
the RMT hub is visualized in Figure 2 by a functional
version of the box plot (Hyndman and Shang, 2012). Fig-
ure 3 shows the mean network connectivity curves for
each measure for all subjects combined, as opposed to the
group means in Figure 1. Plots for the other hubs can be
done similarly; these are shown due to the significance of
this hub in the ensuing regression models. The minimum
and maximum densities for this hub were tl = 0:145 and
th = 0:504.

Unlike group differences, where the mean curve in each
group is most relevant (Fig. 1), the important objects in
FPCA are the eigenfunctions /k and the FPC scores nik. The
eigenfunctions for all network connectivity measures reflect
higher variability in connectivity for low densities, since
each eigenfunction gets closer to zero for high densities
(Fig. 4). In addition, since these functions represent variability
of the connectivity around the corresponding mean functions
(Fig. 3), the fact that the eigenfunctions are strictly positive
leads to the conclusion that high FPC scores for each network
measure are associated with connectivity curves that are
above average in the sample, that is, they lie above the
mean function. This is especially so for lower densities.

FIG. 2. Functional box plot of network
connectivity curves in the RMT hub as a
function of density. Similar to the box in a
standard box plot, the gray region marks the
area covered by the middle 50% of curves.
The dashed line corresponds to the ‘‘median’’
curve, while the ‘‘whiskers’’ correspond to
the dash-dotted lines.

FIG. 3. Average network connectivity
curves in the RMT hub using all subjects.
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Similar to group differences, 40 regression models were
fit for each cognitive score, with age included as one of the
predictors. For each cognitive score, the 40 p-values were
corrected using FDR with q = 0:05. Four significant relation-
ships were discovered, all within the RMT hub. After ac-
counting for age, the first FPC score for path length is
positively correlated with episodic memory (slope = 6.53,
FDR-corrected p-value = 0.0075) and also with executive func-
tion (slope = 4.64, FDR-corrected p-value = 0.0164), while the
first FPC score for efficiency is negatively correlated with
episodic memory (slope =�41.69, FDR-corrected p-value =
0.0075) and executive function (slope =�30.32, FDR-
corrected p-value = 0.0164). Given the interpretation of the
eigenfunctions, this shows that above average path length
and below average efficiency in this hub are associated
with superior episodic memory and executive function.

Discussion

We have broadened the application of functional data anal-
ysis tools in neuroimaging studies by utilizing FPCA to fit re-
gression models with cognitive scores as the dependent
variable, as opposed to simple two-sample tests for detecting
group differences. There are three main findings.

First, these models are an improvement in terms of their
power to detect significant relationships between connectivity
measures and continuous measures of cognitive function. Even
after controlling for age and multiple testing, the FPCA regres-
sions found four significant associations, whereas group com-
parisons did not reveal any significance.

Second, by interpreting the FPC scores using their corre-
sponding eigenfunction, it is possible to identify shape char-
acteristics in subject-specific network connectivity curves
that relate to the desired outcomes; this aspect is absent in test-
ing for group differences. In our experiments, we found that
above average path length and below average efficiency of
local connectivity within the RMT hub, particularly for

smaller network densities, are positively associated with epi-
sodic memory and executive function. The importance of this
hub with regard to episodic memory and executive function is
consistent with the existing cognitive neuroscience literature
(Banich et al., 2000; Milham et al., 2003a,b; Nyberg et al.,
1996; Ragland et al., 2004; Spaniol et al., 2009; van Veen
and Carter, 2005). To our knowledge, however, the specific
relationship to these network connectivity measures is
novel, as is the nature of the relationship. The associations be-
tween graph metrics (efficiency and path length) in this local
region and cognitive function (episodic memory and execu-
tive function) may appear counterintuitive at first sight. How-
ever, we remark that previous studies have identified regions
in which local connectivity increases with age [Ferreira and
Busatto (2013) and references therein], providing further ev-
idence that stronger local connectivity may be linked to cog-
nitive decline.

Finally, nuisance variables such as age can easily be con-
trolled in the FPCA regression models, whereas analysis
based on group differences does not readily allow to adjust
for such factors. While age is a prominent and ubiquitous ex-
ample of a nuisance covariate, there are many others that
matter in neuroscience studies, such as medication doses
and education levels.

As mentioned in the Introduction the utility of FPCA for
quantifying connectivity extends beyond regression. As an
example, scatterplots of FPC scores can provide interesting
visualizations of the distribution of network connectivity
curves, which could be useful for subgroup detection, classi-
fication, and differentiating groups by variability, among
other statistical techniques.

The key strength of this study is its thorough experimental
evaluation of samples of functional connectivity networks
through FPCA regression, as well as comparison with tradi-
tional group difference testing, on a large, real-world fMRI
data set that included state-of-the-art measurement of cog-
nitive functioning in two relevant domains. One potential

FIG. 4. First FPCA eigenfunction for
each network connectivity measure in the
RMT hub. The first eigenfunctions for path
length, efficiency, small worldness, and
clustering accounted for 98%, 97%, 96%,
and 99% of the total variability, respec-
tively.
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limitation of our approach is that there is no guarantee that
FPCA will provide eigenfunctions that are easy to interpret.
In our experiments, the eigenfunctions were relatively easy
to interpret in terms of what characteristics of connectivity
change the eigenfunction captures over the range of densi-
ties. This was mostly due to the smooth nature of the under-
lying samples of curves. However, FPCA may feature more
complex eigenfunctions that are harder to interpret.

Future work of interest will move beyond FPCA to more
advanced functional data analysis methods, especially meth-
ods of dimensionality reduction. One such promising method
is the ISOMAP (Tenenbaum et al., 2000), which has been ex-
tended to functional data and can often provide insightful in-
terpretations for samples of functions. In addition, there are
many other network connectivity measures besides the four
considered in our experiments that may be useful in character-
izing these networks for the purpose of relating connectivity
to other observed variables. Finally, while we have focused
on a small subset of local brain networks, the same approach
can be used for any network-based connectivity study.
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