
Diabetic Neuropathy: Mechanisms, Emerging Treatments, and 
Subtypes

James W. Albers and
Neuromuscular Section, Department of Neurology, University of Michigan Health System, 1C325 
University Hospital, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0032, USA

Rodica Pop-Busui
Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 5329 Brehm Tower, 
1000 Wall Street, Ann Arbor, MI 48105, USA

James W. Albers: jwalbers@umich.edu; Rodica Pop-Busui: rpbusui@umich.edu

Abstract

Diabetic neuropathies (DNs) differ in clinical course, distribution, fiber involvement (type and 

size), and pathophysiology, the most typical type being a length-dependent distal symmetric 

polyneuropathy (DSP) with differing degrees of autonomic involvement. The pathogenesis of 

diabetic DSP is multifactorial, including increased mitochondrial production of free radicals due to 

hyperglycemia-induced oxidative stress. Mechanisms that impact neuronal activity, mitochondrial 

function, membrane permeability, and endothelial function include formation of advanced 

glycosylation end products, activation of polyol aldose reductase signaling, activation of 

poly(ADP ribose) polymerase, and altered function of the Na+/K+-ATPase pump. Hyperglycemia-

induced endoplasmic reticulum stress triggers several neuronal apoptotic processes. Additional 

mechanisms include impaired nerve perfusion, dyslipidemia, altered redox status, low-grade 

inflammation, and perturbation of calcium balance. Successful therapies require an integrated 

approach targeting these mechanisms. Intensive glycemic control is essential but is insufficient to 

prevent onset or progression of DSP, and disease-modifying treatments for DSP have been 

disappointing. Atypical forms of DN include subacute-onset sensory (symmetric) or motor 

(asymmetric) predominant conditions that are frequently painful but generally self-limited. DNs 

are a major cause of disability, associated with reduced quality of life and increased mortality.
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Introduction

Diabetes is the commonest cause of neuropathy worldwide, producing a wide spectrum of 

conditions involving different types of nerves and pathologic mechanisms (e.g., metabolic, 

ischemic, immunologic, and compressive) [1, 2••, 3]. The different forms of diabetic 

neuropathy (DN) can be classified in terms of their anatomical distribution (e.g., proximal or 

distal, symmetric or asymmetric, focal or multifocal or diffuse), clinical course (e.g., acute, 

subacute, or chronic), characteristic features (painful or nonpainful, sensory, motor, or 

autonomic), or pathophysiology. Classification into “typical” or “atypical” forms is based on 

their occurrence [2••], with the most typical form of DN being a chronic, distal (length-

dependent) symmetric polyneuropathy (DSP) that accounts for about 75% of DNs [4]. Any 

variation from this description suggests an “atypical” form [5].

Distal Symmetric Polyneuropathy

DSP is the commonest chronic complication of both type 1 and type 2 diabetes, with an 

estimated lifetime prevalence exceeding 50 % [5, 6]. Diabetic DSP develops in response to 

long-standing hyperglycemia [7••], but about 20 % of newly diagnosed diabetes patients 

show evidence of DSP [2••]. A DSP involving a patient with abnormal glucose metabolism 

that is nonetheless insufficient to diagnose diabetes is sometimes classified as “impaired 

glucose tolerance” or “prediabetic” neuropathy [4]. Sensory loss in diabetic DSP is generally 

restricted to a stocking distribution. Large-fiber involvement results in tingling paresthesias 

and a perception that the feet feel “numb or asleep” in the setting of distally impaired 

vibration, joint position, and touch-pressure sensations and abnormal (unequivocally 

diminished or absent) ankle reflexes [4]. The stocking distribution “asleep or numb” 

sensation is usually not particularly painful. In contrast, prickling, stabbing, and burning 

sensations likely reflect small-fiber involvement that ultimately results in persistent 

neuropathic pain affecting about 20 % of diabetic patients [8, 9]. Foot ulceration is a 

consequence of severe diabetic DSP that sometimes leads to amputation [9]. When the DSP 

is severe, distal weakness with foot drop may develop, as may variable amounts of 

autonomic dysfunction [1, 7••].

A diagnosis of diabetic DSP is based on the symptoms and signs of a length-dependent 

neuropathy in a patient with diabetes in whom other causes of neuropathy have been 

excluded [4]. Diabetic DSP is commonly accompanied by retinal and renal involvement, as 

part of the diabetic “triopathy” of neuropathy, retinopathy, and nephropathy. The 2009 

Toronto Consensus Panel on Diabetic Neuropathies updated the definitions and diagnostic 

criteria for DSP to include possible, probable, confirmed, and subclinical categories [5]. 

Possible DSP was defined to include appropriate sensory symptoms or signs (symmetric 

decrease in distal sensation or unequivocally abnormal ankle reflexes). Probable DSP was 

defined as at least two abnormalities among sensory symptoms, sensory signs, and ankle 

reflexes. Confirmed DSP required symptoms or signs (sensory or ankle reflexes) and 

abnormal nerve conduction study (NCS) findings, whereas subclinical DSP was defined as 

abnormal NCS findings, without signs or symptoms.
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It is generally assumed that physicians can accurately diagnose DSP. This assumption was 

challenged by a recent study in which 12 physicians (diabetologists and neurologists) 

experienced in the evaluation of DSP evaluated 24 diabetic subjects on two occasions [10]. 

These evaluators showed unsatisfactory diagnostic proficiency (based on accuracy and intra- 

or interevaluator variability), overestimating DSP compared with 75 % group diagnosis and 

a summated NCS score. In a second study, instructions to base clinical diagnoses on 

unequivocally abnormal symptoms and signs, while taking age, sex, and physical variables 

into account, greatly improved proficiency and avoided overreporting of signs [11••].

Abnormal NCS findings are considered one of the first quantitative indicators of diabetic 

DSP [5]. Early in the course of asymptomatic DSP, motor conduction velocity slowing near 

the lower limit of normal frequently leads to the diagnosis of diabetes [2••]. The 2009 

Toronto Consensus Panel concluded that composite sum scores based on normal deviates 

(from percentiles) using NCS attributes sensitive to DPS (e.g., fibular and tibial conduction 

velocity, sural amplitude) performed best in diagnosing DSP [7••]. This approach is not 

readily available in most medical practices, but more easily applied criteria (e.g., use of one 

or more abnormal attributes in two separate lower extremity nerves based on the first and the 

99th percentile values) also performed well [7••]. Requiring that the sural nerve be included 

among the nerves studied (American Academy of Neurology, American Association of 

Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical 

Medicine and Rehabilitation recommendations) produced similar results. To be reliable, 

however, NCSs must be done rigorously. This requires measuring and maintaining adequate 

limb temperature, proper electrode placement, “just supramaximal” stimulation levels, 

accurate measurement of distances, and determination of abnormality using reference values 

corrected for appropriate variables [5, 7••]. The quantitative nature of NCSs might suggest 

they are reliable indicators of abnormality. However, just as clinical proficiency was below 

expectations, an extension of the diabetic DSP study [10] to include an evaluation of NCS 

proficiency showed similarly disappointing results. Despite high intraobserver agreement on 

repeated testing, statistically significant interobserver differences were observed for most 

NCS attributes [12••]. Use of a uniform NCS technique, standard references, and broader 

categorization of abnormality reduced but did not eliminate small but statistically significant 

interobserver differences [13•]. Whereas the interexaminer differences were unlikely to be 

clinically meaningful for use in medical practice, they raised concern for use in therapeutic 

trials and supported the conclusion of Johns Hopkins University investigators [14] that the 

ideal results were obtained when the same clinical electrophysiologists performed serial 

NCSs for a given subject.

Diagnosing a DSP that preferentially involves small nerve fibers (small-fiber neuropathy, 

SFN) can be challenging [2••]. Emerging markers of SFN include nerve biopsy (invasive and 

highly specialized), skin biopsy measurement of intraepidermal nerve fiber density (IENFD) 

(minimally invasive and good sensitivity and specificity), corneal confocal microscopy 

(potential surrogate for SFN), and nerve axon reflex/flare response (requires further 

validation) [5]. The 2009 Toronto Consensus Panel defined SFN [5] to include three 

categories: possible (length-dependent symptoms and/or signs of small-fiber damage), 

probable (length-dependent symptoms, clinical signs, and normal sural NCS findings), and 
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definite (fulfilling definition of probable plus abnormal IENFD at the ankle or quantitative 

thermal threshold at the foot) [5].

Diabetic autonomic neuropathy frequently accompanies diabetic DSP [1], but rarely occurs 

in isolation. Autonomic symptoms and deficits are usually mild until late stages of the 

disease [15]. Diabetic autonomic neuropathy potentially involves all organs receiving 

autonomic innervation, resulting in a variety of cardiovascular (reduced heart rate variability, 

resting tachycardia, exercise intolerance, silent cardiac ischemia, orthostasis), 

gastrointestinal (esophageal dysfunction, gastroparesis, nausea, diarrhea/constipation), 

genitourinary (erectile dysfunction, retrograde ejaculation, reduced vaginal lubrication, 

neurogenic bladder), pupillary (Argyll Robertson pupil), cutaneous sudomotor (heat 

intolerance, sweating disturbance, gustatory sweating), and other (hypoglycemia 

unawareness, reduced hypoxia-induced ventilatory drive) disturbances [2••, 4]. 

Cardiovascular autonomic neuropathy, in particular, was shown to be an independent 

predictor of mortality [5].

Mechanisms of Diabetic DSP

The specific mechanisms contributing to diabetic DSP are not completely understood. It is 

generally accepted that the pathogenesis of diabetic DSP is multifactorial, involving 

complex interactions between the degree of glycemic control, diabetes duration, age-related 

neuronal attrition, and other factors such as blood pressure, lipid levels, and weight [16–20]. 

Experimental evidence shows that hyperglycemia, glucotoxicity, and impaired insulin 

signaling act in concert with other risk factors and activate several biochemical pathways 

that affect cellular metabolism (Fig. 1). These alterations promote structural changes such as 

segmental demyelination, Wallerian degeneration, and microangiopathy, and induce dorsal 

root ganglia neuronal apoptosis, resulting in subsequent damage to and loss of myelinated 

and unmyelinated fibers [21–23].

Hyperglycemia induces increased mitochondrial production of free radicals [24], which in 

concert with inadequate antioxidant defenses are responsible for activating additional 

damaging pathways [24–27]. These additional mechanisms include increased formation of 

advanced glycation end products [26, 27], downregulation of the soluble receptor for 

advanced glycation end products [28], activation of polyol aldose reductase signaling with 

accumulation of protein kinase C [24, 29], activation of poly(ADP ribose) polymerase [30], 

cyclooxygenase 2 activation [31], endothelial dysfunction [26], peroxynitrite and protein 

nitration [32], and altered function of the Na+/K+-ATPase pump [26, 33], all having direct 

impact on neuronal activity, mitochondrial function, membrane permeability, and endothelial 

function. Hyperglycemia also induces endoplasmic reticulum (ER) stress and results in 

accumulation of unfolded or misfolded proteins within the ER lumen, activating the 

unfolded protein response, a signaling cascade responsible for restoring normal ER function. 

During times of extreme or long-term stress, the unfolded protein response may become 

overwhelmed, triggering several apoptotic processes [22]. These include tumor-necrosis-

factor-receptor-associated factor 2 and apoptosis-signal-regulating kinase 1, with the 

resultant activation of c-Jun N-terminal kinase [34]; release of calcium stores into the 

cytosol, depolarization of the mitochondrial membrane, and cytochrome c release [35]; and 
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cleavage of procaspase 12 [22, 36]. Additional mechanisms include impaired nerve 

perfusion [33, 37, 38], impaired C-peptide-related signaling pathways [39], dyslipidemia 

with increases in the levels of unsaturated fatty acids and high levels of circulating fatty 

acids [27, 40, 41], decreased levels of glycolytic and tricarboxylic acid cycle intermediates 

[42], altered redox status, and perturbation of calcium balance [22, 27]. Additional evidence 

suggests that low-grade inflammation mediated by nuclear factor κB activation and its 

downstream effects [31, 43, 44], and altered mitochondrial bioenergetics in dorsal root 

ganglia neurons [45–47], which appears to be modulated by heat shock protein 70 [34] and 

ciliary neurotrophic factor [21], are also important to DSP.

In humans, observational studies have shown that hyperglycemia is critical for development 

of DSP in both type 1 and type 2 diabetes. Surprisingly, the importance of hyperglycemia as 

an independent risk factor for diabetic DSP was not confirmed in a randomized controlled 

trial until 1993, when the Diabetes Control and Complications Trial strongly demonstrated 

that intensive glycemic control is essential to preventing DSP in patients with type 1 diabetes 

[48••, 49, 50••, 51]. The evidence associating glycemic control and the risk of diabetic DSP 

is less conclusive for type 2 diabetes [52]. Emerging data suggest that DSP may occur before 

development of diabetic-range hyperglycemia in individuals with features of metabolic 

syndrome or in patients with impaired glucose tolerance [2••].

The pathogenesis of diabetic DSP is multifactorial and involves many interrelated 

mechanisms. Successful therapeutic interventions will require an integrated approach 

targeting these mechanisms.

Emerging Treatments for DSP

Glycemic control, lifestyle interventions, and disease-modifying treatments specific for DSP 

are discussed in the following sections. Treatments related to pain control or the atypical 

DNs are beyond the scope of this review.

Glycemic Control—Tight and stable glycemic control is, to date, the only proven-

effective pathogenic treatment for DSP. The Diabetes Control and Complications Trial and 

the Epidemiology of Diabetes Interventions and Complications (EDIC) follow-up study 

strongly demonstrated that intensive glycemic control designed to achieve near-normal 

blood glucose level, implemented early in the course of diabetes, delays development of 

DSP in patients with type 1 diabetes [48••, 49, 50••]. The beneficial effects of glycemic 

control on DSP are less conclusive in patients with type 2 diabetes. For example, some trials 

suggest that glycemic control in type 2 diabetes is most beneficial if implemented early in 

the disease, when patients have fewer microvascular complications [53], whereas other 

studies failed to confirm this finding [54–56]. The Action to Control Cardiovascular Risk in 

Diabetes (ACCORD) study of patients with type 2 diabetes reported significant reductions in 

the development of DSP after 5 years of intensive versus conventional glycemic control 

[57•]. The Bypass Angioplasty Revascularization Intervention 2 Diabetes (BARI 2D) trial 

reported that specific glucose-lowering strategies and medications used to reach glycemic 

goals also have different effects in preventing DSP in type 2 diabetes [58•].
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Lifestyle Interventions—Diet and exercise have been shown to improve neuropathic 

symptoms and IENFD among patients with DSP associated with impaired glucose tolerance 

[59•]. This observation was extended to patients with diabetic DSP, and improvements in 

IENFD measures in association with a 10-week exercise program consisting of moderately 

intense aerobic and resistance training were described [60•].

Disease-Modifying Treatments—Treatments that specifically target pathogenetic DSP 

mechanisms exist, including many that have proven to be efficacious in animal models of 

DSP but ineffective in randomized human trials using objective measures of DSP. These 

include aldose reductase inhibitors, other antioxidants, recombinant nerve growth factors, 

and acetylcarnitine [61, 62•, 63, 64••, 65]. Additional mechanistic treatments undergoing 

evaluation include the following:

– α-Lipoic acid (ALA). The antioxidant ALA has been proposed to slow 

development and reduce painful symptoms of DSP by reducing 

hyperglycemia-induced oxidative stress [61, 62•, 63]. Several trials have 

associated ALA with clinically meaningful symptomatic improvement relative 

to placebo, although no significant differences were identified for primary DSP 

composite end points, NCS results, or quantitative sensory testing [62•, 63, 66, 

67]. Most recently, a small randomized controlled comparison of a triple 

antioxidant combination (ALA, allopurinol, and nicotinamide) with placebo 

among patients with type 1 diabetes found no significant group differences on 

objective DSP measures that included NCSs and IENFD [68].

– C-peptide. Proinsulin C-peptide is a bioactive peptide having potential 

importance to peripheral nerve structure and other cellular functions. The 

observation that C-peptide is lacking in patients with type 1 diabetes has 

resulted in several small clinical studies and reports of beneficial effects of the 

C-peptide on measures of DSP [69, 70], effects likely mediated via Na+/K+-

ATPase and endothelial nitric oxide synthase pathways. A phase 3 clinical trial 

evaluating the effects of pegylated C-peptide in patients with type 1 diabetes 

and mild to moderately severe DSP is ongoing (ClinicalTrials.gov identifier 

NCT01681290).

– Actovegin. This deproteinized hemoderivative mixture of low molecular 

weight compounds produced from calf blood is thought to stimulate oxygen 

utilization, cellular energy metabolism, glucose transport, and glucose 

oxidation. In a multicenter, randomized controlled trial of patients with type 2 

diabetes and symptomatic DSP, Actovegin improved neuropathic symptoms, 

vibration perception threshold, and sensory function compared with placebo 

[71].

Maintaining near-normal blood glucose level and sustaining lifestyle interventions are 

important but difficult long-term DSP treatment options. Clinical studies of pharmaceutical 

disease-modifying DSP treatments have generally been disappointing. One possibility is that 

an integrated pharmacologic strategy, combining several agents targeting the various 
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mechanisms important to DSP, will be required to supplement glycemic control and lifestyle 

interventions before DSP can be prevented or effectively controlled in the long term.

Diabetic Neuropathy Subtypes

Several atypical DNs have subacute onset (days to weeks), a monophasic or relapsing 

course, and preferentially involve small sensory and autonomic or motor nerve fibers. Some 

are associated with chronic hyperglycemia or treatment onset, whereas others are not [7••]. 

Their characteristic features are contrasted with those of diabetic DSP in Table 1 and are 

further described in the following sections.

Diabetic Radiculoplexus Neuropathy

Diabetic radiculoplexus neuropathy (DRPN) includes cervical, thoracic, and/or lumbosacral 

presentations. The commonest is a lumbosacral DRPN (diabetic amyotrophy), affecting 

about 1 % of diabetic patients, who are typically middle aged or older and have type 2 

diabetes [1, 72••]. The risk of developing DRPN is unrelated to the level of glycemic 

control, the duration of diabetes, treatment, or the severity of a coexisting DSP [1, 2••, 4, 

73]. DRPN presents subacutely with unilateral or asymmetric proximal pain involving the 

back, hip, or anterior thigh [7••, 74]. The pain may be difficult to manage. The pain is 

followed by asymmetric proximal leg weakness and profound atrophy, with pain and 

weakness spreading in a progressive or stepwise manner over weeks to months to nearby and 

contralateral segments, with some patients becoming wheelchair-dependent or developing an 

asymmetric quadriparesis [75]. Despite an initial proximal predilection, distal limb segments 

become involved to some extent in most patients [2••]. Weight loss and dysautonomia are 

common, with about half of the patients experiencing combinations of orthostatic 

intolerance and change in sexual, bladder, and bowel function [1, 2••].

NCSs typically identify an underling DSP upon which the DPRN is superimposed, with 

asymmetric denervation that may be profound depending on the timing of the evaluation 

relative to the onset of weakness. Needle EMG abnormalities involve nerve roots, the plexus, 

and individual nerves, and autonomic testing confirms the presence of small-fiber 

involvement. Laboratory abnormalities include nonspecific indicators of an immune-

mediated response, such as an elevated erythrocyte sedimentation rate, reactive rheumatoid 

factor, or a positive antinuclear antibody test; CSF abnormalities include an elevated protein 

level indicating extension to the nerve root level [1, 2••].

DRPN has a monophasic course, with improvement beginning within 9–12 months [4], 

although recovery can be incomplete and protracted over years [72••]. DRPN reflects a 

multifocal ischemic injury thought to reflect an immunemediated microvasculitis involving 

motor, sensory, and autonomic fibers [76, 77•]. This presumed pathogenesis has resulted in 

use of immunotherapy treatments, and anecdotal reports suggest that intravenous 

immunoglobulin [78] or intravenously administered methylprednisolone [3] reduces pain 

and weakness. However, efficacy is unproven, and no evidence convincingly supports the 

use of any immunotherapy treatment [72••, 79]. A painless form of DRPN resembles painful 

DRPN in all other ways aside from greater symmetry [80].Whether this is a variant of 

DRPN, chronic inflammatory demyelinating polyneuropathy (CIDP), or another disorder is 
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uncertain [80]. A painful radiculoplexus neuropathy indistinguishable from DRPN exists in 

the absence of diabetes [81], but may be the presenting problem leading to a diagnosis of 

diabetes [72••].

Chronic Inflammatory Demyelinating Polyradiculoneuropathy

CIDP is an immune-mediated neuropathy. The purported association between CIDP and 

diabetes is controversial [2••], possibly representing the chance occurrence of two common 

disorders or unmasking of mild diabetes among some CIDP patients treated with 

corticosteroids. One study concluded that patients with diabetes were 11-fold more likely to 

fulfill EMG and clinical criteria for CIDP compared with those without diabetes [82], but 

more recent studies have failed to confirm an increased risk of CIDP in diabetic populations 

[83, 84]. Nevertheless, the coexistence of diabetes in a patient with prominent weakness, 

slow motor nerve conduction, and an elevated CSF protein level makes the distinction 

between a severe diabetic DSP and CIDP difficult. Even if the relationship between diabetes 

and CIDP is spurious, their coexistence poses a therapeutic challenge. As a general rule, 

marked weakness and pronounced slowing of motor conduction velocity with abnormal 

temporal dispersion and/or partial conduction block rarely occurs in diabetic DSP. Such 

findings should prompt additional testing for conditions associated with CIPD, such as an 

underlying monoclonal gammopathy. At times, a trial of therapeutic plasma exchange, 

corticosteroids, or intravenous immunoglobulin results in unequivocally improved strength 

and confirms the presence of an immune-mediated CIDP in a patient with diabetes.

Acute Painful SFNs

Several atypical DNs involve small nerve fibers. They are characterized by subacute onset of 

painful sensations in the legs, progressing over days to weeks to unremitting burning 

dysesthesias and allodynia [1, 9], with occasional spread to proximal sites involving the 

trunk or more diffusely [2••, 85]. Autonomic features may be prominent. Sensory loss is 

mild or absent, and there is no weakness [9]. Ankle reflexes are preserved unless there is an 

underlying DSP. The course is monophasic [2••, 86], usually resolving after 3–18 months [9, 

85]. These neuropathies involve small nerve fibers that are not evaluated by conventional 

neurophysiological studies [85, 86], and documentation of an SFN requires additional 

testing, including measures of thermal thresholds, R-R variation, sweat production, 

orthostatic blood pressure, and skin biopsy [87]. The monophasic course and lack of 

correlation with diabetes duration and symptom onset make it unlikely that acute SFNs 

represent one end of the spectrum of length-dependent neuropathy involving pain fibers [1]. 

Treatment is symptomatic [88]. Two closely-related subtypes of diabetic SFN differ in the 

degree of autonomic involvement; one is associated with weight loss and the other develops 

shortly after initiation of intensive glycemic treatment [9].

SFN with Weight Loss—Profound weight loss is a prominent feature of this painful SFN, 

referred to as diabetic cachexia. Weight loss usually precedes the onset of severe burning 

pain and allodynia, but sometimes develops at the onset of pain or even as the pain subsides 

[1, 2••]. It most often involves patients with type 2 diabetes. Autonomic features other than 

impotence are uncommon [3]. On occasion, the onset of pain and profound weight loss (e.g., 

exceeding 25 %) develop after starting intensive glycemic treatment [89], but most cases are 
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unrelated to initiation or change in treatment or degree of glycemic control. The mechanism 

by which weight loss produces a severe diabetic SFN is unknown. The prognosis is good, 

and pain resolves in the setting of adequate glycemic control and weight gain [2••].

Treatment-induced SFN—Treatment-induced SFN (“insulin neuritis”) develops 2–4 

weeks (occasionally up to 8 weeks) after rapid and sustained glycemic control with insulin, 

oral hypoglycemic agents, or diet [87, 90]. Aside from the temporal association with rapid 

glycemic control, no abnormal laboratory results suggest other causes. Weight loss is not a 

prominent feature, but some patients have a remote history of withholding insulin for weight 

loss (diabetic anorexia) [87], and some patients experience profound weight loss after 

initiating intensive treatment but before the onset of pain [89], blurring the distinction 

between diabetic cachexia and treatment-induced SFN. Dysautonomia is frequently 

prominent, and in a recent study all patients with treatment-induced SFN had autonomic 

symptoms, including orthostatic hypotension and parasympathetic dysfunction in two thirds 

of them [87]. Although treatment-induced SFN is generally self-limited with continued 

glycemic control [90], some patients experience residual pain and dysautonomia, especially 

those with type 2 diabetes [87]. The risk of developing treatment-induced diabetic SFN 

should not discourage patients from attaining hemoglobin A1c levels approaching normal 

[91]. The mechanism by which rapid normalization of high blood glucose level causes 

neuropathy is unknown. It does not appear to be explained by hypoglycemia, nor is it 

associated with symptoms of hypoglycemia [85], although it may recur if diabetic control 

lapses and is again rapidly initiated [2••]. Sural nerve biopsy showing arteriolar attenuation 

and epineural arteriovenous shunting with proliferating “new vessels” similar to those found 

in the retina suggest a “steal” effect rendering the endoneurium ischemic [90]. Worsening of 

retinal examination findings in parallel with treatment-induced DN supports a common 

pathophysiology [87].

Diabetic Focal Peripheral Neuropathies

A number of focal peripheral neuropathies involving cranial, thoracic, or extremity nerves 

are associated with diabetes. Oculomotor palsy is the commonest cranial neuropathy, 

presenting with acute onset of unilateral headache, ptosis, and impaired extraocular 

movements but with a pupil that responds normally to light (partial third nerve palsy with 

pupillary sparing) [1]. The association between diabetes and other cranial neuropathies, 

including trochlear and facial nerves, is less clear [2••]. A common complication of diabetes 

is a unilateral truncal (thoracic) radiculopathy, presenting with acute abdominal pain 

sometimes suggesting an intra-abdominal process, herpes zoster, or a structural (spinal) 

process [2••].

Nerves susceptible to compression or cumulative trauma, including the median, ulnar, radial, 

lateral femoral cutaneous, fibular, and plantar nerves, are frequently injured in patients with 

diabetes (“sick” nerves are prone to injury) [4]. The explanation for the predisposition to 

injury is undoubtedly multifactorial, involving metabolic and ischemic factors, impaired 

reinnervation, and even obesity, as body mass index is an independent risk factor for carpal 

tunnel syndrome (CTS). Although the frequency of “entrapment” mononeuropathies is 

undoubtedly increased in diabetes, this may reflect the interpretation of NCS results. A 
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diagnosis of median mononeuropathy does not indicate CTS, a clinical diagnosis requiring 

appropriate symptoms. When standard electrophysiological criteria for median 

mononeuropathy are applied to patients with mild diabetic DSP, over one fifth show 

“positive results” despite being asymptomatic for CTS [92], a frequency of false-positive 

results indicating that diabetic patients require special consideration when one is diagnosing 

entrapment neuropathy. A diabetic patient with a mononeuropathy should, of course, be 

investigated for entrapment [2••, 4], and patients with diabetes and CTS (but not necessarily 

diabetic DSP) are thought to have the same beneficial outcome after carpal tunnel release as 

nondiabetic patients [93]. However, robust agreement between clinical and 

electrophysiological findings, not blind reliance on mild NCS abnormalities, should guide 

treatment decisions.

Conclusion

The most typical neuropathy associated with diabetes mellitus is a length-dependent DSP 

with differing degrees of dysautonomia. The precise mechanisms producing DSP are 

unknown, but are undoubtedly multifactorial and include pathological alterations due to 

impaired glycemic control, the most prominent of which involves increased production of 

free radicals due to hyperglycemia-induced oxidative stress. The only proven treatment that 

effectively delays the onset or progression of DSP is intensive glycemic control. 

Nevertheless, DSP eventually develops and progresses in most patients despite intensive 

glycemic control. This observation, together with the ineffectiveness in human clinical trials 

of targeted therapies but effectiveness in animal models of DSP, supports the multifactorial 

pathogenesis of DSP. Atypical forms of DN reflect rare conditions, some of which present 

with subacute onset of pain and dysautonomia, associated either with a symmetric SFN (e.g., 

insulin neuritis or diabetic cachexia) or asymmetric proximal weakness (DRPN). Despite the 

frequent association of CIDP and diabetes mellitus, it is unclear if this represents a causal 

relationship or is coincidental. Diabetes predisposes individuals to focal peripheral 

neuropathies involving individual nerves and nerve roots. The oculomotor nerve is the most 

frequently involved cranial nerve, presenting as a partial third nerve palsy with pupillary 

sparing. Another common complication is a unilateral truncal (thoracic) radiculopathy, 

presenting with acute chest or abdominal pain. Extremity nerves susceptible to compression 

or cumulative trauma (e.g., the median, ulnar, radial, lateral femoral cutaneous, fibular, and 

plantar nerves) are frequently injured in patients with diabetes (“sick” nerves are prone to 

injury).
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Fig. 1. 
Proposed mechanisms of diabetic distal symmetric polyneuropathy (DSP). AGE advanced 

glycation end products, AR aldose reductase, CNF ciliary neurotrophic factor, COX-2 
cyclooxygenase 2, ER endoplasmic reticulum, Hsp70 heat shock protein 70, IKKβ inhibitor 

of nuclear factor κB kinase subunit β, NF-kB nuclear factor κB, PARP poly(ADP ribose) 

polymerase, PKC protein kinase C. The neuron displayed in the figure was drawn by the 

Juvenile Diabetes Research Foundation (JDRF) for the University of Michigan Center for 

Diabetes Complications, and it is reproduced here with permission from Helen Nickerson, 

PhD, Senior Scientific Program Manager JDRF
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