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Abstract

Background—Windowed Fourier decompositions (WFD) are widely used in measuring 

stationary and non-stationary spectral phenomena and in describing pairwise relationships among 

multiple signals. Although a variety of WFDs see frequent application in electrophysiological 

research, including the short-time Fourier transform, continuous wavelets, band-pass filtering and 

multitaper-based approaches, each carries certain drawbacks related to computational efficiency 

and spectral leakage. This work surveys the advantages of a WFD not previously applied in 

electrophysiological settings.

New Methods—A computationally efficient form of complex demodulation, the demodulated 

band transform (DBT), is described.

Results—DBT is shown to provide an efficient approach to spectral estimation with minimal 

susceptibility to spectral leakage. In addition, it lends itself well to adaptive filtering of non-

stationary narrowband noise.

Comparison with existing methods—A detailed comparison with alternative WFDs is 

offered, with an emphasis on the relationship between DBT and Thomson's multitaper. DBT is 

shown to perform favorably in combining computational efficiency with minimal introduction of 

spectral leakage.

Conclusion—DBT is ideally suited to efficient estimation of both stationary and non-stationary 

spectral and cross-spectral statistics with minimal susceptibility to spectral leakage. These 

qualities are broadly desirable in many settings.
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Introduction

Spectral analysis is a tool of fundamental importance for electrophysiological research, used 

to characterize both the frequency-dependent properties of physiological signals (Bruns, 
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2004; Hlaswatch and Boudreaux-Bartels, 1992; Mitra and Bokil, 2008; Schiff et al., 1994) 

and the pairwise interactions between multiple signals through cross spectra (Baccalá and 

Sameshima, 2001; Carter, 1987; Granger, 1969; Granger and Hatanaka, 1964; Lachaux et 

al., 1999; Le Van Quyen et al., 2001; Young and Eggermont, 2009). The most commonly 

used techniques for computing spectra rely in one way or another on the Fourier transform 

alongside windowing in the time or frequency domains, known as “windowed Fourier 

decompositions” (WFD). Alternative WFDs generally fall into two broad classes: those that 

begin with a bank of bandpass filters, effectively windowing the signal in the frequency 

domain, and those that estimate a local spectrum after windowing in the time domain. These 

two classes are, in fact, formally equivalent, a point often emphasized in signal processing 

literature (Allen and Rabiner, 1977; Bruns, 2004; Hlaswatch and Boudreaux-Bartels, 1992; 

Le Van Quyen et al., 2001), but practical details of implementation cause them to segregate 

in a number of important ways, with tradeoffs related to computational efficiency, the 

introduction of windowing-related artifacts, and invertibility of the underlying 

transformation (Bruns, 2004). The researcher should understand and consider such tradeoffs 

when choosing an appropriate WFD for a given problem.

The present work gives a brief tutorial review of these considerations in order to motivate 

and lead into the discussion of a simple and efficient approach to windowed Fourier 

analysis, herein called the “demodulated band transform” (DBT), which, to the authors' 

knowledge, has not previously been applied to electrophysiological recordings. To give a 

foretaste, the logic of the DBT can most easily be grasped by comparing it to the standard 

short-time Fourier transform (STFT), which is a common and efficient means to a time-

frequency decomposition. The STFT is normally computed by segmenting a signal into 

multiple overlapping time windows and then applying the fast Fourier transform (FFT) to 

each segment to obtain a local spectral decomposition (Figure 1B). DBT takes a very similar 

approach, except that it comes at the problem from the frequency domain: first the FFT is 

applied to the whole signal, then the result is segmented into overlapping finite frequency 

intervals, from which the final decomposition is obtained by applying the inverse FFT 

separately to each interval (Figure 1A). As with STFT, the result is a time-frequency 

decomposition whose coefficients describe the signal energy and shape within some local 

window. The essential difference between the two approaches has to do with the shape and 

duration of the respective windows. While time-segmented STFT explicitly applies a 

window in time, the time window used by DBT is an implicit consequence of the frequency 

window. In what follows, we consider what this means for the resulting spectral estimate and 

why one might prefer one approach to the other.

Although the essential details of this technique were described many years ago by Bingham, 

Godfrey and Tukey (Bingham et al., 1967), it appears to have been overlooked in 

electrophysiological literature. The method has two main selling points, which motivate the 

present work; first, its computational efficiency is very close to that of conventional STFT, 

which is at least as good and usually much better than alternative methods such as bandpass 

filtering with Hilbert transform (BPHT), continuous wavelet transforms (CWT) and methods 

that employ multitapering, and second, it has very low susceptibility to spectral leakage, 

which can be a significant drawback of standard time-segmented STFT. We describe how 

these advantages may be useful to researchers, concluding that (1) DBT provides an efficient 
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representation of band-limited data giving (2) a readily interpreted windowed Fourier time-

frequency decomposition which (3) can be used to efficiently compute spectral and cross-

spectral statistics on long-duration multi-channel recordings. DBT also brings secondary 

advantages, such as more flexible handling of bandwidths, which may vary with frequency 

making it, for example, an efficient means to a continuous wavelet decomposition. It also 

effectively compresses band-limited data by downsampling to a rate that matches the 

inherent resolution of a given bandwidth, while preserving basic spectral properties of the 

signal in a directly usable form.

The remainder of this work is organized along two parallel tracks; the first continues a 

schematic overview of the DBT for readers interested in the general rationale and flavor of 

the technique, while the second lays out the method in greater detail. Readers 

knowledgeable about signal processing theory may wish to skip through some of the 

introductory sections, while those interested in the more schematic overview may want to 

skip some of the technical discussion found in the methods section.

Windowed Fourier decompositions

Perhaps the most obvious reason to window a signal before applying a Fourier transform is 

to limit the spectral decomposition to a given time interval, thereby gaining information 

about spectral content at some specified moment in time. Repeated over multiple time 

intervals, this application of windowing results in a “time-frequency” decomposition (TFD), 

used for example to show how a signal's spectrum changes over time. Familiar techniques 

for obtaining time-varying spectra, such as continuous wavelet transforms (CWT), short-

time Fourier transforms (STFT), and bandpass filtering with Hilbert transform (BPHT) all 

belong to the larger family of WFDs. However, the relevance of WFDs does not stop at time-

frequency analysis, as windowing serves multiple purposes beyond localizing spectral 

energy in time; these include suppressing artifacts and improving the statistical properties of 

stationary (non-time-varying) spectral and cross-spectral estimates, as well as filtering. 

WFDs are therefore a basic element of stationary spectral estimators, such as Thomson's 

multitaper (TMT) and Welch's window-overlap segment averaging method (WOSA), which 

operate, in essence, by averaging together multiple separate windowed power spectral 

estimates. They are also important for measures of frequency-dependent correlations 

between two signals, such as coherence and phase locking, which require observing how two 

signals covary over multiple samples.

Broadly speaking, because data in the real world can only be observed over some finite 

period of time at finite resolution in time, all real-world applications of Fourier analysis 

subject a signal at least to an observation window and some manner of band-limiting filter, 

meaning that WFD is more-or-less synonymous with any practical application of Fourier 

analysis, encompassing essentially all Fourier-based techniques. In spite of their diversity, all 

of these techniques share fundamental considerations related to windowing; differences 

between them come down to the properties of windows and the manner in which the 

transform is computed. The choice of window function determines important statistical 

properties of the spectral estimate including bias - the degree to which the spectrum deviates 

systematically from the “true” spectrum - and error variance, the degree to which the 
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estimate is affected by random noise. For example, the smoothness of the spectral estimate, 

or “broadband bias,” is governed by the scale of the data window in time: the shorter the 

window duration the smoother the estimate and the lower its ability to resolve details in the 

signal spectrum (see Figure 2). On the other hand, a smoother estimate will often result in 

lower statistical noise, creating a tradeoff between smoothing bias and error variance.

Matched for smoothness, different techniques for computing spectra often (and ideally) yield 

similar results (Bruns, 2004; Le Van Quyen et al., 2001), but at times they may also diverge 

in ways that are not subtle, if not with respect to the estimate itself, then to the speed and 

efficiency with which it can be obtained. Three primary considerations therefore influence 

the choice of WFD: the nature of spectral artifacts introduced by windowing, statistical 

properties of the resulting spectral estimate, and the computational cost of obtaining it. We 

will show how the DBT performs favorably by each of these measures.

Bandwidth

The choice of window for a WFD determines the bandwidth of the decomposition and the 

smoothness (broadband bias) of any resulting spectral estimate. Because the goal of spectral 

analysis is usually to resolve particular frequency bands of interest, the choice of bandwidth 

is the first and most important consideration in choosing between WFDs. Common to all 

WFDs is a tradeoff between smoothing in time and frequency, according to which resolution 

in time must be inversely related to resolution in frequency. A narrow time window trades 

specificity in time for low frequency resolution, reflected in the smoothness of the spectral 

estimate. Similarly, a very narrowband filter gives high frequency resolution at the price of 

low time resolution (Figure 2).

Because the spectral analysis of noisy electrophysiological signals frequently involves some 

form of smoothing or averaging over time intervals to obtain a statistically consistent 

estimate (Welch, 1967), a corollary of this tradeoff is that greater frequency resolution 

entails fewer effective data points for such an average, meaning greater variance of the 

spectral estimate. Greater frequency resolution therefore comes at the cost of both time 

resolution and statistical power, another important consideration in choosing optimal 

bandwidths. The statistical tradeoff also holds true for WFDs, such as Thomson's multitaper, 

that don't explicitly window the signal in time. For these, wider bandwidths still involve a 

larger effective sample size, hence lower statistical noise (Walden, 2000).

In some cases, the goal is to separate the signal into several components occupying different 

bands, whose bandwidths may tend to vary as a function of frequency. For example, it is 

often natural for bandwidth and center frequency to scale with each other, as both scale 

directly with dilations or contractions in time. CWT and related wavelet methods conform 

naturally to this relationship by decomposing a signal into logarithmically spaced bands (Le 

Van Quyen et al., 2001). One advantage of windowing in the frequency domain is that 

bandwidths can be adjusted more flexibly as a function of frequency, whereas for time-

segmented STFT bandwidth is normally limited to a fixed value.
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Windowing bias

The tradeoff of resolution reflects the fact that windowing in time smears energy in the 

spectral domain and vice versa. This happens because the spectrum of the windowed signal 

is given by the convolution of the separate spectra of the signal and window function; in 

other words, the signal spectrum becomes “blurred” by the spectrum of window. In addition 

to broadband bias, this effect leads to “spectral leakage,” the spread of signal energy into 

frequency bands far removed from its original band. Figure 3 illustrates the reason for this 

effect. The degree of such blurring depends on the window: windows that contain very sharp 

boundaries, implying a broad spectrum, produce the worst distortion, and so it is common 

practice to reduce the extent of spectral leakage by applying windows with tapered edges 

whose spectra are concentrated within a narrower bandwidth. Tapering reduces the energy in 

broadly extended side lobes in exchange for lower frequency resolution of the main lobe, in 

other words, increased broadband bias, which reflects the loss of information at window 

edges (Harris, 1978). Broadband bias determines the frequency resolution of the analysis 

and so is tolerable so long is at allows the frequency components of interest to be resolved. 

Spectral leakage, in contrast, creates spectrally complex and extended artifacts (see Fig. 3), 

which may at times mask or mimic phenomena of interest. For this reason, it is common to 

sacrifice local resolution in order to suppress spectral leakage by using a window with 

smoothly tapered edges.

In considering artifacts introduced by spectral estimators, it is worth distinguishing two 

sources of windowing bias. Strictly speaking, Fourier analysis assumes a signal of infinite 

duration, yet signals in the real world are always observed over a finite duration. This global 
observation window imposes, in effect, a sharply bounded square window on the data, 

creating the first source of bias. On top of the global window, WFDs apply an analysis 
window, creating a second opportunity for spectral distortion. One strategy to mitigate the 

first source of bias is simply to obtain a longer recording: within a fixed bandwidth, the 

longer the observation window, the smaller the contribution of the artifactual broadband 

energy at window edges in proportion to the total energy. If the bandwidth of interest is wide 

relative to the duration of the signal, that is BW ≫ 1/T, then distortion caused by the global 

observation window will often be negligible. For electrophysiological recordings, this 

condition very often holds, as physiologically relevant bandwidths, which may be on the 

order of 1 Hz or greater, are broad compared to the typical duration of a recording, which 

may be upwards of several hundreds or thousands of seconds, easily satisfying BW ≫ 1/T.

The second source of bias depends only on the analysis window and is not affected by the 

duration of the recording. Bias of this type is built into the estimator itself and will manifest 

regardless of how the global signal is treated. In particular, any method, such as time-

segmented STFT, that applies an analysis window with duration less than the observation 

window necessarily introduces spectral leakage. Although segmenting a signal into shorter 

time windows gives a computationally efficient and intuitive approach to estimating time-

varying spectra, in many settings, the spectral leakage inherent in the estimator creates a 

significant drawback. This fact has curtailed the usefulness of time-segmented STFT as a 

generally reliable technique and accounts in part for the popularity of computationally more 

expensive alternatives such as BPHT, CWT. These methods may minimize spectral leakage 
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by applying analysis windows whose width is much larger than the region of time in which 

the energy of the filter function is most concentrated, often extending across the entire 

observation window.

Thomson's multitaper

One of the most effective techniques for suppressing spectral leakage, Thomson's multitaper 

(TMT), formulates the issue as an optimization problem solved by the singular value 

decomposition of a matrix (Thomson, 1982). The eigenvectors produced by this 

decomposition give a series of time windows that optimize the tradeoff between spectral 

leakage and loss of information, which are known as the discrete prolate spheroidal 

sequence (DPSS). The method's familiarity to electrophysiologists owes perhaps in large 

part to its implementation in the Chronux toolbox (Mitra and Bokil, 2008). To highlight 

some of the advantages of DBT we will compare it to TMT, pointing to similarities between 

the two methods in how they approach the problem of spectral leakage.

TMT and related multitapering techniques offer a principled framework for addressing 

spectral leakage (Walden, 2000), however, their effectiveness still depends on the 

relationship between the bandwidth resolution and window duration, so that the user must be 

judicious in choosing these parameters. For example, if one specifies a resolution of 1 Hz 

over a 1 s observation window, TMT employs a single sharply bounded taper, which, despite 

being optimal for the specified bandwidth and duration, does little to suppress spectral 

leakage. On the other hand, TMT estimates with a resolution of 1 Hz over a recording of 

several minutes duration may achieve excellent suppression of spectral leakage but at the 

expense of a computationally prohibitive number of tapers to retain a sufficient amount of 

information in the signal. As a consequence, it is not uncommon to find TMT applied to 

short time intervals, which constitutes a hybrid of STFT and TMT. In these cases, the 

analysis window duration and TMT bandwidth are two separate parameters that must be 

selected by the user, both of which affect susceptibility to spectral artifacts. It is therefore 

important for the user to recognize that multitapering, by itself, does not give a free pass to 

ignore spectral leakage, rather the choice of window duration and bandwidth setting requires 

some understanding of the relationship between the two.

The usefulness of multitapering also depends on the goal of the decomposition: while TMT 

provides only a stationary estimate of the power spectrum within a given window, other 

WFDs lend themselves directly to non-stationary estimates. A common strategy to obtain 

time-varying power-spectral estimates with TMT uses the hybrid TMT-approach STFT, 

applying TMT to shorter-duration windows to construct a spectrogram (Thomson, 1990). In 

this hybrid case, the drawbacks of time-segmentation may tend to act at cross-purpose to the 

benefits of TMT. Finally, because TMT returns a power-spectral estimate, it is not an 

invertible transform, whereas BPHT, STFT and CWT return coefficients from which it will 

often be possible to recover the original signal. This difference is important in applications 

to adaptive filtering.
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Computational efficiency

Different approaches to computing WFDs may differ greatly in computational expense, 

depending on context. While one approach may not be practical in one setting, another 

might require a comparatively trivial number of computations to yield essentially the same 

information. The computational cost of filter-bank methods such as BPHT and CWT, as 

commonly applied, scales with the number of bands, so that better frequency resolution 

comes at greater cost. For power spectral estimates provided by TMT, the tradeoff is 

opposite: computational cost decreases with increasing frequency resolution because an 

estimate over a wider bandwidth requires a greater number of tapers. For example, to 

compute the standard TMT power spectral estimate over a 10s window with a frequency 

resolution of 0.1 Hz requires a single taper, but 19 tapers for 1 Hz resolution, and 99 for 10 

Hz, and so on. On the other hand, for a signal sampled at 200 Hz, a stationary power-spectral 

estimate obtained by averaging BPHT over time requires 1000 filter bands for 0.1 Hz 

resolution, 100 bands for 1 Hz resolution and 10 bands for 10 Hz resolution and so on. In 

this example, it clearly makes little sense to use TMT for a spectral estimate with 10 Hz 

resolution when nearly equivalent information can be obtained much more efficiently with 

BPHT, and it makes as little sense to use BPHT in preference to TMT for an estimate with 1 

Hz resolution. Advantages in favor of one approach over the other therefore depend on 

signal duration and target bandwidth of the spectral estimate.

Fourier time-frequency decompositions typically encode the signal less efficiently than the 

time-domain representation, with more samples occupying more memory than the original 

signal. Such oversampling is the root cause of the inefficiencies described in the foregoing 

example, which depended in different ways on the bandwidth of the decomposition and 

signal duration. Moderate oversampling is often desirable in order to provide a more 

complete or visually appealing spectral representation, but as the example illustrates, TMT 

and filter-bank methods may at times drastically oversample to a degree that achieves little 

beyond poor computational performance. Inefficiency of this sort becomes especially 

troublesome when calculating pairwise statistics within large arrays of recordings, such as 

coherence or phase locking, as then the number of computations also scales with the square 

of the number of channels. It is amplified still more when measuring cross-frequency 

interactions between channels, such as phase-amplitude coupling, for which each pairing of 

channel and frequency adds to a combinatorial growth in pairwise interactions (Dvorak and 

Fenton, 2014). Levels of oversampling that are merely inconvenient when handling one 

channel may become prohibitive in these applications.

In contrast to TMT and BPHT, methods that segment the signal into shorter time windows, 

such as the time-segmented short-time Fourier transform (STFT) and windowed overlapping 

segment averaging (WOSA) (Welch, 1967), are computationally efficient and do not pose a 

similar tradeoff between bandwiddth and efficiency. But as already noted, spectral-leakage 

artifacts often make these methods inadmissible. This tradeoff is avoided with DBT, which 

combines minimal susceptibility to spectral leakage with computational efficiency.
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Complex and analytic signal representations

To further motivate the DBT we next review some basic properties of analytic signals, which 

are intimately related to WFDs. Fourier-based spectral estimation creates a representation of 

the signal as an array of complex coefficients, each of which is composed of a real and 

imaginary part, c = a + ib, where i is the imaginary number for which i2 = −1. The end result 

of Fourier analysis is often a real-valued power spectrum, and for many researchers the 

intermediate complex spectral representation may remain a mathematical detail, not given 

much thought. Yet this representation, its reasons and properties, are central to 

understanding any Fourier-based technique, making a brief review worthwhile. To begin, it 

is useful to think of complex values as vectors in a two-dimensional plane with one axis 

giving the real part and the other the imaginary part (Fig. 4A) The squared length of the 

vector, c2 = a2 + b2, is found by multiplying c with its complex conjugate, which refers to 

the value with reversed sign in the imaginary part:

Through some basic trigonometry, a complex number may be described by its magnitude 

and the angle it makes with the real axis, or “phase angle,” ϕ:

(1)

Taking the product of two complex numbers gives a third complex value whose magnitude is 

the product of the original magnitudes and, perhaps less obviously, whose phase is the sum 

of the starting phase angles. This can be seen by applying basic trigonometric identities as 

follows:

(2)

Simplifying the trigonometric expressions above with Euler's formula, eiϕ = cos ϕ + i sin ϕ, 

makes the relationship still more plain:

(3)

This additive property of phase accounts for why complex numbers figure so prominently in 

the analysis of oscillatory signals: the evolution of a periodic signal can be described 

naturally by the hand of a clock, which returns to its starting position after winding through 
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360 degrees of angle. This movement through angular space can be described very 

efficiently through the products of complex values. In particular, the evolution of phase over 

time can be understood as a series of multiplicative increments, which leads naturally to an 

exponential function of time, eiϕ(t). In the simplest case, a sinusoid with constant frequency 

and amplitude, corresponding to a clock hand moving at constant angular speed, ω, we have 

ϕ(t) = ωt. More generally, a band-limited complex signal can be considered as the product of 

a real-valued envelope, A(t) and an evolving unit-length phase vector whose angle advances 

over time at some rate, the “instantaneous frequency,” which varies around some central 

tendency, or “carrier frequency,” ωc:

(4)

Here, the time derivative  gives the deviation of the instantaneous frequency from 

the carrier frequency, ωc.

Real-valued signals can be decomposed rather trivially as the sum of two complex-valued 

signals whose imaginary parts have opposite sign, therefore canceling under summation. 

Fourier-based techniques apply this trick to decompose the signal into a sum of narrow-band 

components, whose real and imaginary parts are related by a 90 degree shift of phase (Fig. 

4). The bookkeeping needed to convert between a real signal and its complex Fourier 

representation is conveniently handled by allowing frequency to range over negative values: 

for real-valued signals, Fourier coefficients at negative frequencies are identical to those at 

positive frequencies, except for a sign reversal of the imaginary part, allowing the imaginary 

part to vanish in the summation that reconstitutes the original signal. The sign reversal 

comes about because the imaginary component at positive frequencies is -90 degrees out of 

phase from the real component while it is +90 degrees out of phase at negative frequencies, 

leading to a net 180 degree phase difference between the two.

By removing the contribution of negative frequencies, one obtains a complex-valued 

representation of the signal, the so-called analytic signal. One may therefore think of an 

analytic signal as the outcome of a filter applied to the original data, which removes the 

negative half of the spectrum. Because any filter that excludes negative frequencies produces 

an analytic signal, there is no single unique decomposition, and different WFDs lead to 

different analytic decompositions.

The analytic representation combines information about signal energy and shape; the 

squared envelope encodes signal energy around some point in time and frequency, while 

analytic phase encodes details of the signal shape. This combined encoding of shape and 

energy into a single complex value gives windowed Fourier decompositions tremendous 

versatility, as well as relevance that extends well beyond applications to periodic 

phenomena. For example, while the simple correlation in time between two signals shows 

how they are linearly related at the same instant, the correlation between two sets of WFD 

coefficients describes relationships that may be offset in time by an amount on the order of 
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the inverse bandwidth of the decomposition, covering a wider range of possible interactions, 

which include time delays. By observing such relationships across multiple frequency bands, 

one may construct an optimal filter that creates an approximation of one signal when applied 

to the other (Wiener, 1949). This principle is the basis for a variety of methods that seek to 

infer the causal relationship between signals based on their relationship in time (Baccalá and 

Sameshima, 2001; Granger, 1969). As this technique applies equally well to periodic and 

aperiodic signals, it gives one example of how Fourier analysis remains relevant outside the 

context of purely oscillatory signals.

Complex demodulation and DBT

The complex signal representation considered in the previous section reveals a simple way 

to translate a signal in the frequency domain, resulting in a second signal with a different 

carrier frequency. To see this, it can be directly observed that the analytic representation in 

(4) is composed of the product of two complex signals:

(5)

The first, A(t)eiΔϕ(t), has a spectrum centered at 0, and the second eiωct is a unit-amplitude 

complex sinusoid, which oscillates at the carrier frequency, ωc. Multiplication by the 

sinusoid has the effect of shifting the frequency range of the first component way from 0 so 

that the spectrum of the product is centered on the carrier frequency (Figure 4B-D). Because 

we might choose to shift the first component to some other carrier frequency through the 

same operation, it's immediately clear the center frequency can be shifted in any direction 

simply by multiplying with a complex sinusoid. This operation, shifting the frequency range 

of a signal, is known as “complex (de)modulation,” (CD), and its implementation through 

multiplication with sinusoids is called heterodyning.

In an important sense, the frequency-translated signal still contains the same information as 

the original signal, a point perhaps best illustrated by AM radio transmission. The sending 

side of an AM transmission shifts the output of a microphone from the audible frequency 

range to the higher range of radio frequency carrier waves with a modulating sinusoid; the 

receiving side translates the signal back down to the audible range, recovering its original 

form. The modulated signal retains essential properties of the original signal in two 

important respects: first, because the modulating term iωct vanishes in multiplication by the 

complex conjugate, a frequency-shifted representation of the signal preserves its original 

envelope, A(t), and second, for the same reason, two signals that have been modulated by the 

same amount maintain the same relative phase at each point in time. For this reason, the 

shape of the power spectrum and cross-spectra of signals are preserved under demodulation. 

CD therefore preserves the basic properties of power and cross spectra.

DBT belongs to a broader class of methods, which employ complex demodulation as part of 

spectral analysis. The most common versions of CD combine heterodyning with a lowpass 

filter to recover the real and imaginary components of an analytic signal (Granger and 

Hatanaka, 1964). For practical purposes the outcome of this operation is equivalent to 
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techniques that apply the Hilbert transform to bandpass filtered data (BPHT). CD has a long 

history of application to EEG (Childers, 1973; Dick and Vaughn, 1970; Hao et al., 1992; 

Hoechstetter et al., 2004; Ktonas and Papp, 1980; Levine et al., 1972; Lucas and Harper, 

1976; Papp and Ktonas, 1977; Walter, 1968), but the usual implementation through 

heterodyning is not, in itself, much more efficient than BPHT. The version of CD used by 

DBT, achieves computational efficiency on par with time-segmented STFT (Bingham et al., 

1967), yet appears to have been overlooked in this literature.

DBT accomplishes CD through the method of Bingham, Godfrey and Tukey (1967) by 

segmenting the signal directly in the frequency domain. It simultaneously demodulates and 

downsamples each band by reshaping the discrete Fourier transform of the entire signal into 

shorter segments, multiplying each segment with a suitable window function, then applying 

the inverse FFT separately to each segment to yield a series of demodulated, filtered and 

downsampled bands (Figure 1A). The resulting signals are demodulated by virtue of the fact 

that the inverse FFT is blind to the original spectral range of the segment, and therefore 

treats it as though it were the DFT of a signal with spectral range centered at 0 Hz, sampled 

at a rate equal to the bandwidth of the segment. The result is equivalent to CD through 

heterodyning, combined with downsampling to a rate appropriate for the new signal 

bandwidth. Because the effect of demodulation cancels under conjugate multiplication, the 

power envelope of the signal within the band and the relative phase among components of a 

multivariate signal are not affected, except for having been downsampled. This approach 

therefore lends itself directly to measurement of time-varying spectra and cross-spectra with 

sampling that adjusts naturally to the tradeoff between time and frequency resolution. In this 

way, it parallels ordinary time-segmented STFT, with similar computational advantages; 

importantly, though, it avoids analysis-window-related spectral leakage. Moreover, as will be 

shown, the method is comparable and closely related to multitapering techniques explicitly 

designed to meet the problem of spectral leakage (Thomson, 1982; Walden, 2000).

While the efficient method of Bingham, Godfrey and Tukey (1967) has not to the best of our 

knowledge been applied to electrophysiological signals, complex demodulation through 

heterodyning has a long, if not highly prolific, history of application to EEG. Its initial 

appeal came from advantages in analog signal processing at a time when bandpass filter 

design posed a significant technical hurdle (Walter, 1968). CD through heterodyning 

provides a straightforward means to an analytic representation of the signal within some 

isolated band of interest, requiring only a single lowpass or bandpass filter alongside a 

tunable sinusoidal signal generator. The result is formally equivalent to more technically 

demanding methods that apply the Hilbert transform to bandpass filtered data (Ktonas and 

Papp, 1980; Papp and Ktonas, 1977). Following a similar rationale, a number of authors 

have also applied CD in the digital setting to extract analytic representations within a small 

number of bands of interest. (Bruns and Eckhorn, 2004; Childers and Pao, 1972; Clochon et 

al., 1996; Hao et al., 1992; Hoechstetter et al., 2004) A few authors have also described 

frequency-domain implementations of CD; however, these differ from the method of 

Bingham, Godfrey and Tukey in being applied to isolated bands of interest without 

segmenting the DFT (Bruns and Eckhorn, 2004; Clochon et al., 1996; Hao et al., 1992). At 

present, CD is used relatively infrequently in the analysis of EEG, with the notable 
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exception of BESA, a commercial toolbox for EEG and MEG analysis and source 

localization (Hoechstetter et al., 2004).

The remainder of this work will describe the DBT algorithm in greater technical detail with 

an emphasis on a theoretical introduction and discussion and with particular attention to the 

relationship between DBT and Thomson's multitaper (Thomson, 1982; Walden, 2000). 

Examples with artificial test signals and real human ECoG data illustrate applications to 

adaptive filtering and time-varying spectral and cross-spectral estimation. We show that 

DBT can often achieve significant improvements of efficiency over widely used alternative 

techniques, particularly in the context of large array multi-channel recordings. In general, 

the number of computations required for pairwise spectral statistics, such as coherence over 

the full range of sampled frequencies, will be of the same order as calculating a simple 

correlation. Such a large boost in efficiency may open the door to applications that are 

impractical with alternative methods.

Although a number of applications are surveyed through examples, the emphasis will remain 

on an introductory and theoretical overview of the technique rather than a rigorous empirical 

evaluation and catalog of its applications, mainly because possible applications are too broad 

to be treated comprehensively. A software implementation of the method is provided for 

Matlab, so that the reader may run comparisons on applications of interest (available at 

https://github.com/ckovach/DBT).

A note on terminology

Broadly defined, STFT places no constraint on the type or duration of window used (Gabor, 

1946; Hlaswatch and Boudreaux-Bartels, 1992), encompassing most WFDs. However, in the 

context of digitally sampled signals, it is all but universally the case that STFT implies the 

application of a finite time window of duration much shorter than the total length of the 

signal, as is also true for WOSA (Welch, 1967). The efficiency of STFT as normally 

implemented stems from finite time windowing (Bingham et al., 1967); the term will 

therefore be used here in the narrower sense of time-segmented STFT, while “windowed 

Fourier decomposition” covers the broad sense.

Materials and methods

At the foundation of modern digital signal processing lies the Whittaker-Nyquist sampling 

theorem (Mallat, 2009a), which establishes that the information in a signal of finite 

bandwidth can be fully represented by a series of discrete samples, provided that the 

sampling rate is not less than the total bandwidth of the signal (counting negative and 

positive frequencies)1. The theorem is often taken to mean that a signal must be sampled at 

no less than twice its highest component frequency; in fact, arbitrarily high frequency ranges 

1For real-valued signals, it is conventional to include only the positive half of the frequency range in calculating bandwidth, so that 
minimum sampling rate is more often described as twice the bandwidth. Because this convention cannot be applied to analytic signals, 
which exclude negative frequencies, we take “bandwidth” to mean full signal bandwidth. A related observation is that the analytic 
representation of a signal can be sampled at half the rate of its real-valued counterpart without loss of information; this is so because 
the real and imaginary components of a complex-valued signal together carry twice as much information as a real-valued signal, and 
so can be sampled at half the rate.
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may be fully and uniquely represented, provided they occupy a bandwidth of the required 

total breadth. Despite its bad reputation, signal aliasing gives an example of how such a 

representation can be obtained. It follows that dividing a signal into components of finite 

bandwidth and preserving each in its demodulated and downsampled form preserves all 

information, allowing the signal to be fully and uniquely reconstructed. Moreover, because 

the effect of demodulation cancels under conjugate multiplication, the demodulated bands 

retain the power envelopes of the original bands, only downsampled, as well as relative 

phase among corresponding bands of a multivariate signal.

Time-frequency decomposition with complex demodulation

Let x(t) be a continuous real-valued square-integrable (L2) signal with Fourier transform 

x̃(ω), with the frequency-representation indicated by the tilde. Divide the signal into M 

overlapping bands of equal bandwidth, Δω, with each band windowed by the function h̃(ω − 

mΔω):

(6)

where α governs the degree of overlap among neighboring bands and m = 0, 1, …, M. 

Bands overlap in this instance so that transition regions can be tapered without loss of total 

signal energy.

For m > 0, the result is a complex-valued analytic signal because the integral does not cover 

negative frequencies. The squared modulus, , gives the power envelope of the 

filtered analytic signal. Phase angle is given by the argument, ϕ = arg(xm). For m = 0, the 

result is simply the signal lowpass filtered at .

The demodulated signal is obtained by shifting each band towards the origin by mΔω, which 

in the time domain equates to multiplying by a complex sinusoid:

(7)

From this it can be readily seen that am preserves the power envelope within the band:

(8)

Likewise, because the term e−imΔωt cancels out in conjugate multiplication, am preserves the 

relative phase among components of a multivariate signal, .
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The inverse transform is obtained by reversing the demodulation and summing

(9)

for which we require a second window, g̃ known as a synthesis window, which has the 

property

(10)

A convenient choice of h allows h = g so that h̃2 (ω) + h̃2 (ω + Δω) = 1, in which case the 

decomposition preserves total signal energy.

(11)

After demodulation, the energy of each filtered band is contained in the range 

. It follows directly from the sampling theorem that am(t) canbe 

represented by a discrete signal, am[t] sampled at Δω(1 + α). Adjustments of sampling rate 

after filtering might be done by decimating in the time domain or truncating in the Fourier 

domain. The latter approach is used by the DBT.

The DBT time-frequency frame

Windowed Fourier decompositions project a signal onto a set of complex-valued basis 

functions, most commonly chosen so that energy localizes in time and frequency. General 

conditions under which a signal may be uniquely represented by such a projection are 

addressed by frame theory (Duffin and Schaeffer, 1952; Mallat, 2009b; Vetterli and 

Kovačević, 1995). A frame is simply a linear transform on a signal that preserves energy 

(i.e., sum of squared coefficients) within some bound such that every signal with non-zero 

energy has a unique non-null representation under the frame with total energy bounded by a 

non-zero minimum and finite maximum. A signal can always be fully and uniquely 

reconstructed from its representation in the space of the frame, but the representation may 

not be unique, as frames are permitted to be overcomplete, and more than one frame 

representation may therefore correspond to the same signal. A transformation that preserves 

energy exactly, for example satisfying Eq. (11), corresponds to a so-called tight frame.

To better understand how the DBT frame carves up the time-frequency plane, we may turn 

to a formal equivalence between methods that employ complex demodulation with bandpass 

filtering to compute time-varying spectra and those that compute spectra on time-windowed 
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data (Allen and Rabiner, 1977). This equivalence can be appreciated by noting that Fourier 

coefficients of x windowed in time by h(t − tj)

(12)

might also be interpreted as the outcome of a low-pass filter with impulse response h applied 

to x after demodulating by e−iωmt. In the present case, the time envelope h(t) is obtained 

directly from the inverse Fourier transform of h̃(ω), the window that was applied in the 

frequency domain. In the following we will apply the same cosine window for all bands with 

50% overlap between neighboring windows:

(13)

which corresponds to the time envelope

(14)

Coefficients returned by the DBT with the cosine window therefore represent spectra 

localized in time according to the envelope h, with amplitude that decays over time in 

proportion to 1/t2 (Figure 5A). This window introduces time leakage in the form of side 

lobes that result from Δω ringing of the window.

A simple rectangular window might be a tempting alternative to the cosine window as it 

yields a non-redundant frame and an orthonormal basis. However, its corresponding time-

domain envelope is the sinc function, whose envelope decays on the order of 1/t, giving 

much poorer time localization while also introducing substantially larger ringing artifacts 

(Figure 5A). A result known as the Balian-Low theorem proves that no windowed Fourier 

frame can give a non-redundant orthonormal basis with decay greater than order 1/t in both 

frequency and time (Mallat, 2009b), so redundancy is the price for adequate localization 

(although other non-Fourier basis functions need not be so restricted).

Relationship to Thomson's multitaper

Thompson's multitaper and related multitapering techniques are motivated by the need to 

minimize spectral leakage while retaining as much information in the signal as possible. As 

we show next, DBT and multitaper estimates are related, and in many situations the 

performance of DBT may closely approximate that of the latter. Both methods derive their 

spectral estimates from approximations to ideal filters of finite bandwidth, which 

asymptotically converge to the ideal with increasing signal duration. While TMT explicitly 

optimizes the estimate through a singular-value decomposition, in many cases DBT can 
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achieve a practically similar result at lower computational cost by discarding samples near 

the observation window boundaries.

An elegant formulation of the multitapering framework relates the properties of a broad class 

of spectral estimators to the singular value decomposition of a quadratic matrix (Walden, 

2000), Q, where the cross-spectral estimate for signals p and q is

(15)

Here, τ is the sampling period of the signal. Any of a large family of quadratic estimators 

that may be written in this form, which includes all those considered here, has an equivalent 

multitaper estimator. In this formulation, the power spectral estimate can be understood as a 

weighted sum of Fourier power spectra of the entire signal, x, computed after windowing 

with non-zero eigenvectors of Q, which give the eponymous tapers. Adopting this 

framework will be useful for comparing DBT with other methods, in particular for 

comparisons of spectral leakage across estimators. As will be shown next, the matrix Q takes 

on a particularly simple form for DBT estimators.

Regarding the discrete Fourier transform as a matrix multiplication with the rows of Fp 

corresponding to the orthonormal discrete Fourier basis set for a signal of length P, the steps 

involved in computing the DBT can be represented succinctly by the matrix

(16)

where H is a diagonal matrix with Hjk = h[k]δ[k − j], with the frequency windowing 

function h on its diagonal. The asterisk (*) denotes the conjugate transpose (combined 

transpose and complex conjugate) of the matrix.  is a matrix that adds P – N rows of zero 

padding,  is a matrix that projects from P to K dimensions by eliminating P – K all-zero 

rows of H. The size, K, of the left-hand side determines the sampling rate after the 

transform, and should minimally equal the rank of H. The coefficient for band m and time t 
is given by a matrix multiplication with the demodulated signal:

(17)

The connection to Walden's formulation of multitapering is apparent when considering the 

estimate of the power-spectrum given by the sum of the squared coefficients in (17) over 

time:
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(18)

from which we pull out the matrix

(19)

Because H2 is diagonal and Fp is a unitary matrix, QDBT is already in diagonalized form 

when no additional padding is introduced, i.e. when P = N. In that case, it is clear that the 

equivalent multitaper estimator uses the discrete Fourier basis set, itself, as the tapers, 

weighting them according to h2 [k] in the power-spectral estimate. In contrast to the time 

window used in WOSA estimators and the bandwidth of DPSS tapers, equivalent tapers for 

the unpadded DBT estimator do not depend on the frequency window, h, which determines 

bandwidth only through the weighting of tapers in the estimate.

Because multiplying by the taper in the time domain entails a convolution between the 

spectra of the signal and the taper, the power spectrum of tapers reveals the nature of any 

spectral leakage artifact introduced by the estimator (Figure 6). The Fourier basis set 

trivially has the narrowest possible spectrum, supporting the claim that the DBT estimator 

does not introduce additional broadband smearing of the spectrum outside the specified 

bandwidth. On the other hand, the Fourier tapers do not suppress edge discontinuities within 

the global observation window, so that the method does not by itself address observation-

window-related spectral leakage. For this problem, other tapers have been specifically 

tailored, most importantly, the discrete prolate spheroidal sequence (DPSS), (Slepian, 1978; 

Thomson, 1982; Walden, 2000). DPSS tapers are eigenfunctions of the matrix

(20)

composed of sinc functions of bandwidth W, centered on the diagonal. Energy from window 

edges is most concentrated in the eigenvectors of QDPSS with the smallest non-zero 

eigenvalues, which may be discarded while preserving most of the energy in the rest of the 

signal.

Equation (20) shows a parallel between TMT with DPSS tapers and DBT, for QDBT takes a 

similar form when h is a square function, with one difference; in keeping with the periodic 

extension implicit in the DFT, the columns of QDBT will be wrapped sinc functions, DM, 

known as Dirichlet kernels.
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(21)

with M = ΔωPτ and t, s ≤ N.

The zero-padding matrix, , merely has the effect of truncating the Dirichlet kernel to the 

window of observation, and as M increases, DM converges with the sinc function within this 

window. For a fixed bandwidth, M can be made arbitrarily large simply by extending the 

zero padding, P, of the signal, in which case QDBT will converge with QDPSS. The TMT 

estimate with DPSS tapers may therefore be approximated by the DBT estimate with square 

frequency window to an arbitrary precision simply through an initial zero-padding of the 

signal.

To suppress observation-window-related spectral leakage, TMT adds the further step of 

discarding the handful of nonzero eigen-components of QDPSS in which energy from the 

observation-window edges is maximally concentrated. The singular value decomposition of 

Q involved in this step may add considerable computational cost, particularly if many tapers 

are required to achieve the target bandwidth; therefore observation-window-related spectral 

leakage must be of sufficient concern to justify this cost. Global edge effects become less 

concerning and more readily tolerated when the desired spectral resolution is low compared 

to the duration of the signal, or TΔω ≫ 2π. In the context of electrophysiological research, 

this condition very often holds, as the bandwidths of interest tend to be broad relative to the 

duration of recordings, meaning that global windowing artifacts are often of lesser concern 

than artifacts introduced by the analysis window or the cost of computing the estimate. For 

example, a spectral decomposition with 1 Hz resolution over a 5-minute recording gives 

TΔω = 471 ≫ 2π. Moreover, according to the time envelope resulting from the cosine 

window (Eq. 14), the contribution of any edge discontinuity diminishes by more than 30 dB 

after 2 such time-bandwidth intervals. It follows that any edge effects can be substantially 

suppressed by discarding the corresponding number of edge coefficients (4 in the case of 

50% window overlap with no additional upsampling). Discarding edge values gives yet 

another estimator, the trimmed DBT. Equivalent tapers for the trimmed DBT have spectral 

energy concentrated in the desired bandwidth, while they also suppress global edge effects 

by decaying at the edges (Fig. 6). In this respect they provide advantages similar to TMT but 

at lower computational cost.

Algorithm

As detailed in Table 1, for a discretely sampled real-valued signal, the DBT may be obtained 

by computing the fast Fourier transform of the entire signal with time padding adjusted to 

maintain the bandwidth of the final transform to within some desired tolerance, reshaping 

the result into a matrix, weighting the columns by a window function, and applying the 

inverse FFT to the columns. As implemented in the accompanying software (https://

github.com/ckovach/DBT), the algorithm first computes the FFT and circularly shifts 

samples forward by half a bandwidth to simplify subsequent windowing. The resulting 
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vector is reshaped into a [(1 + α)P/M] × M matrix, with each column shifted by one band 

interval relative to the next, recasting the FFT into M overlapping demodulated and 

decimated bands. Additional zero padding of columns may be used to bring the final 

sampling rate up to a desired value, then columns are circularly shifted back by half a band 

so that negative frequencies are properly reflected about the Nyquist value. Finally the 

inverse FFT is applied column-wise to obtain the matrix of DBT coefficients. Columns are 

scaled so that the correct signal energy is maintained after padding and resampling

The inverse DBT proceeds likewise in reverse: the FFT is applied to columns of the DBT 

matrix; the columns are then circularly shifted forward half a band interval. The synthesis 

window is applied to columns, which are then padded to 2P/M rows. The matrix is then 

reshaped into two vectors by concatenating even and odd columns, respectively. The first 

vector is circularly shifted back by half a band interval and the second forward by the 

amount needed to align overlapping regions, then the two are added and all elements above 

Nyquist frequency are set to 0. This operation reconstructs the positive half of the original 

signal FFT. Applying the inverse FFT gives an analytic signal whose real part contains the 

original signal to within some small and for most purposes negligible numerical error.

Remodulation and interpolation

In applications that compute power and cross-spectra the demodulating term can be ignored 

because it cancels from these quadratic measures, but it cannot be ignored in applications 

that must preserve information about the original shape of the waveform encoded in phase. 

For example, averaging the complex representation of a signal over multiple time windows, 

as when computing an averaged evoked response, will not produce the correct result if the 

signal has been demodulated. Avoiding this problem is simply a matter of remodulating the 

DBT coefficients so that each sample preserves the correct phase of the unshifted analytic 

signal; this can be done in the obvious way by multiplying each sample with the complex 

conjugate of the corresponding value of the demodulating sinusoid. If the decomposition 

also downsamples to a more optimal rate, a remaining complication in averaging over time 

windows will be the timing imprecision that results from coarse sampling. In such cases, one 

may either upsample the signal to a suitable rate or interpolate its value at more precise time 

points. Upsampling can be done with padding in the Fourier domain as previously described, 

while interpolation should be done on the demodulated signal before applying the 

remodulating sinusoid.

Frequency-dependent bandwidths and wavelets

So far we have considered decompositions that apply a fixed bandwidth across all 

frequencies. A natural extension of this scheme is to allow bandwidth to vary as a function 

of frequency, giving for example a wavelet decomposition whose bandwidth scales with 

center frequency. In such cases, the optimal sampling rate will differ across bands; the 

decomposition may therefore take the form of separate arrays sampled at different rates for 

each band, or else all bands can be upsampled to a common rate to create a single matrix, 

which can be accomplished by padding each column of the segmented FFT to a length not 

less than the support of the longest segment.
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An example that results in a continuous wavelet decomposition with a tight frame, the 

Meyer wavelet, is obtained by joining two halves of the cosine window shown in (13), with 

each half scaled to different bandwidths (Mallat, 2009c). The high-frequency half-window is 

scaled according to a bandwidth equal to the center frequency, ωm, while the low-frequency 

half is scaled to one-half the center frequency (Fig. 5C,D), that is

(22)

More flexible wavelet decompositions might also be obtained by applying windows in 

logarithmic frequency space, for example, giving the wavelet family

(23)

It can easily be verified that when h̃2 (ω) + h̃2 (ω + Δω) = 1, spacing windows so that ωm+1 

= 2Δωωm creates a tight frame, with the addition of a lowpass window [0, ω0], which 

corresponds to the wavelet scale function,

(24)

In this example the bandwidth parameter, Δω, is unitless and governs the ratio of window 

bandwidth to center frequency, with smaller values creating a more oscillatory wavelet 

function.

Adaptive line-noise removal with DBT

The following algorithm was used to remove narrow-band noise with time-varying modal 

frequency from human electrocorticographic (ECoG) data. Prior to DBT denoising, time-

transients were identified by iteratively applying the z-score transform to raw data, at each 

step discarding values exceeding 10 until no further values were discarded. A Hann window 

of 0.2s duration was used to smoothly window out transients centered at each of the 

discarded time points.

To suppress high-energy narrowband signal contamination, a threshold was applied to DBT 

coefficients computed with bandwidth 0.25 Hz, discarding those above the threshold before 

calculating the noise-filtered signal through the inverse DBT transform. To identify peaks in 

the spectrum related to narrowband noise, the average amplitude-spectrum of the signal was 

first computed within overlapping 0.25 Hz bands by averaging the modulus of the DBT 

coefficients over time. This average was log transformed and fitted with an 8th order 
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polynomial, giving a smoothed baseline power at each frequency. DBT coefficients 

normalized by the fitted baseline were scaled by iteratively applying a z-score 

transformation to their modulus and discarding values that exceeded 3 until none above this 

threshold remained. All frequency bands discarded in this procedure were flagged as 

potentially contaminated with line noise. As an additional criterion, frequency bands with 

kurtosis exceeding 10 were also flagged, as line noise that varies in amplitude or modal 

frequency was associated with characteristically high kurtosis.

In the next step, the modulus of the full time-frequency decomposition was baseline 

corrected, centered and normalized by standard deviation across all time-frequency 

coefficients, excluding bands discarded in the previous step in the normalization. Filter 

masks for TFD coefficients were computed by applying two thresholds. A threshold of 3 

was applied within bands flagged as contaminated in the previous step, and a threshold of 6 

applied at all remaining bands above 40 Hz. Bands below 40 Hz were excluded from any 

filtering as they fall below the frequency range of common sources of line noise, and 

because narrow-band physiological signals within this range may be more prone to 

misidentification as noise. Coefficients that exceeded respective thresholds were set to zero, 

and the inverse TFD computed to give the final denoised signal.

On occasion, in the initial flagging of contaminated bands, too many bands are discarded to 

allow for a stable or accurate polynomial fitting of the baseline power. In these instances, the 

algorithm may be run iteratively, lowering rejection thresholds each time from a sufficiently 

high starting threshold. In the present implementation, such thresholds were doubled until no 

more than 15% of bands were flagged; once this condition was met, the denoising algorithm 

was rerun iteratively at all intermediate thresholds (powers of two of the values originally 

specified).

Finally, for each data segment that underwent denoising, a plot was generated showing the 

percentage of coefficients rejected within each band and the DBT spectrogram for the entire 

recording after applying the coefficient filter mask. These plots were visually inspected to 

verify that noise components were appropriately rejected. If an excessive number of 

coefficients not clearly affected by noise were rejected or when the algorithm failed to reject 

noise, denoising was repeated with adjusted bandwidth or threshold parameters.

Cross-spectra and Coherence

A number of widely used measures of pairwise dependence between signals rely on 

estimating the cross-spectrum, the Fourier transform of the cross-covariance. Coherence 

normalizes the cross-spectral estimate at each frequency in a manner similar to correlation, 

by the product of root mean energies of each signal within the corresponding band, giving a 

measure of dependence whose magnitude is scaled between 0 and 1. Another closely related 

and commonly employed measure, phase locking value (PLV), computes the cross spectrum 

after normalizing by signal envelope within the band of interest (Lachaux et al., 1999). 

Measures such as these, derived from cross-spectra, have provided a rich source of 

information on the magnitude and directionality of information flow among components of 

multivariate signals (Baccalá and Sameshima, 2001; Geweke, 1982; Klein et al., 2006; 

Lachaux et al., 2002).
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Coherence and other cross-spectral measures are computed from the DBT transforms of two 

signals in a straightforward manner. Cross spectra are obtained by applying the summation 

in Eq. 18 over pairs of signals

(25)

Complex coherence is computed directly from cross-spectral estimates as

(26)

The magnitude of complex coherence describes both the degree of association while phase 

gives the characteristic phase offset between two signals within the given band.

Subjects

All example ECoG data were collected from patients with medically refractory epilepsy 

during clinical evaluation with invasive intracranial electrodes prior to surgical resection of 

epileptogenic brain tissue. In keeping with the requirements of the University of Iowa 

biomedical internal review board, which approved all studies, patients provided voluntary 

informed consent before participating in any research activity.

Recordings

Data were recorded from sub-dural ECoG grids composed of 4mm platinum-iridium 

electrodes embedded in a flexible plastic membrane. Depth electrodes were 2mm platinum-

iridium cylinders surrounding a 1.25 mm diameter tecoflexpolyurethane shaft. A contact 

located extracranially near the midline and below the galea was used as a common reference.

Procedures

Example ECoG data were recorded during 10 minutes of passive auditory stimulation. 

Subjects were presented with a series of acoustic transients, “click trains,” at a comfortable 

acoustic level through insert earphones (ER4B, Etymotic Research, Elk Grove Village, IL). 

Each train lasted 1 s and was presented at a rate that varied over 6 levels between 128 and 

500 Hz. Each rate level was repeated 50 times giving a total of 300 trials. The protocol 

closely followed a procedure described in previous work (Brugge et al., 2009; Nourski et al., 

2013), with modifications of stimulus rate to include more rapid click trains.

Analysis of click train data

Previous work has shown frequency-following responses in LFPs recorded from Heschl’s 

gyrus at driving frequencies up to 200 Hz (Brugge et al., 2009; Nourski et al., 2013), which 

should be reflected in coherence between the stimulus and LFP response. We used this 
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example of a physiologic frequency-following response to compare DBT and multitaper-

derived estimates of coherence. To make the number of tapers used in TMT calculation 

tractable, estimates were computed on 2 s. intervals and averaged over windows, giving a 

hybrid TMT-STFT estimate. The DBT estimator used a bandwidth of 2 Hz, while separate 

TMT estimates were computed with bandwidths of 1.25 Hz and 2.25 Hz (duration-

bandwidth products of 2.5, TMT(2.5), and 4.5, TMT(4.5)), using respectively 4 and 8 tapers 

per 2 s window.

Results

Adaptive noise removal

Narrowband noise is a pervasive contaminant of electrophysiological data, arising from a 

variety of environmental sources. Although 60 or 50 Hz line noise and harmonics are most 

familiar, it is not unusual to find contamination at other frequencies, notably in ranges that 

overlap with single- and multiunit responses. Such contamination is particularly common in 

data obtained in a clinical environment full of electronic sensing and monitoring equipment. 

Notch filtering is a standard strategy for removing line noise, but it comes with a number of 

possible drawbacks. Before any filter can be applied, one must address the problem of 

selecting the appropriate band(s) to filter. Line noise often tends to vary in amplitude and, to 

a lesser extent, modal frequency over time, variability that has the effect of smearing energy 

in the spectral domain, necessitating a broader filter than would otherwise be required for 

noise with constant amplitude and frequency. In this setting an overly narrow filter may fail 

to completely remove the noise, or worse, smear it into otherwise uncontaminated time 

regions, while an overly broad filter may discard or distort the signal of interest.

One common solution makes use of a filter that adapts to such fluctuations moment-by-

moment. Such an adaptive filter typically applies notch filtering within finite windows of 

time over which fluctuations are expected to be minimal (Mitra and Pesaran, 1999). A 

potentially serious disadvantage of this approach is spectral leakage introduced by the finite 

time window: unless the window length is adjusted to an integer of the period of the noise, 

energy will be smeared into neighboring frequencies, for the reason illustrated in Figure 3. 

This effect may spread contamination into frequencies where none had previously been. At 

best, it means that adaptive filtering should be applied separately to each non-harmonic line-

noise component with a suitably adjusted window width, a strategy that can work only when 

the modal frequency of each component does not vary substantially over time. By avoiding 

spectral leakage, DBT circumvents the need for any such complicated and computationally 

expensive footwork.

Figure 7 compares the effect of adaptive filtering with DBT and STFT on an artificial test 

signal. In both cases, filters were obtained by setting a threshold on the magnitude of 

respective time-frequency coefficients, removing all that exceeded the threshold and then 

reconstructing the signal with the inverse transform. While the DBT filter results in band-

limited smearing of energy within the band of the filtered coefficients, STFT smears across 

frequency within the corresponding time window. In the latter case, filtering results in 

amplitude-modulated contamination within neighboring frequency bands, as revealed by a 

high-pass filter after denoising (Fig. 7C).
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To observe what this may mean in practice, DBT-based adaptive line-noise removal was 

compared to time-windowing-based adaptive filtering in human ECoG data using 

approximately equivalent filtering parameters (Figure 8). The latter used a routine 

implemented in the Chronux toolbox, rmlinesmovingwinc.m (Mitra and Pesaran, 1999), 

which adjusted a notch filter based on peaks identified in power-spectral estimates within 

overlapping finite time windows. Time-segmentation smeared a substantial portion of the 

line noise energy into neighboring frequency bands, which both diminished the suppression 

of noise at the target frequency and introduced contamination at adjacent frequencies. 

Energy leaked to neighboring bands with the DBT filter was orders of magnitude smaller 

than that for the time windowed method (Fig. 5c), clearly showing a better result for the 

DBT approach. In addition to improved spectral leakage, DBT enjoyed a moderate 

computational advantage, requiring between one half and one third the computational time 

of the TMT-based approach.

Nonstationary noise

Narrowband noise radiated by non-powerline-related sources may be prone to variations of 

modal frequency such that a simple notch filter must cover an excessively large band to 

suppress noise from the entire duration of a recording. Variations in modal frequency also 

pose a particular problem for any method that applies the time-segmented strategy, in which 

case the effectiveness of filtering and the extent of resulting spectral leakage will vary along 

with the frequency of the noise. An example of such non-stationary narrowband noise in 

human ECoG data is shown in Figure 9a. Its presence was not noted at the time of the 

recording nor its origin identified, but the same noise signal was discovered to be a pervasive 

contaminant in most other channels. DBT adaptive filtering following suppression of high-

amplitude transients successfully isolated this time-varying contaminant as well as stationary 

line noise, Figure 9b, allowing data to be salvaged with minimal residual contamination, 

Figure 9c.

Coherence

To compare the performance of the DBT coherence estimator and a state-of-the-art 

alternative, Thomson's multitaper (TMT), we examined coherence between an auditory 

stimulus and local field potentials recorded in human primary auditory cortex on Heschl's 

gyrus. To make the number of tapers used in TMT calculation tractable, estimates were 

computed on 2 sec. intervals and averaged over windows, giving a hybrid TMT-STFT 

estimate. The DBT estimator used a bandwidth of 2 Hz, while separate TMT estimates were 

computed with bandwidths of 1.25 Hz and 2.25 Hz (duration-bandwidth products of 2.5, 

TMT(2.5), and 4.5, TMT(4.5)), using respectively 4 and 8 tapers per 2 s window. The 

stimulus was composed of 2 second trains of sharp transients, “clicks,” presented at varying 

rates over the course of a 10 minute recording block. Details have been described previously 

(Brugge et al., 2009). For all methods, sharp peaks in coherence appeared at stimulus rates 

up to 200 Hz, showing that responses in auditory cortex distinguished the timing of 

individual clicks at these rates, which agrees with what has been previously reported for the 

same data (Brugge et al., 2009). While all measures of coherence were in gross agreement 

(Figure 10), estimation error, obtained by boot-strapping over samples in the case of DBT 

and windows in the case of TMT-STFT, showed moderately more favorable performance of 
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DBT with respect to both error and distortion of the peaks. Measured as average 

interquartile range (IQR), the TMT(4.5) estimate showed a similar baseline error range, IQR 

0.0128, as the DBT estimate, 0.0125 (Fig. 10B); however, peaks in coherence were 

substantially broadened for TMT(4.5) and error increased to 0.0175 around peaks, with no 

similar change for the DBT estimate. (Fig. 10A). The TMT(2.5) estimate performed 

similarly to DBT in resolving the spectral peaks, but with greater error at baseline (IQR 

0.0244) as well as at peaks (IQR 0.0262). The DBT estimates were also computationally 

more efficient, requiring approximately one half the computing time of the TMT-STFT 

approach for the given parameter settings.

Discussion

We have put forward the argument that DBT combines several desirable attributes into a 

single package, including robustness to spectral leakage, computational efficiency and 

flexibility, making it appealing as an all-purpose tool for the gamut of spectral analysis 

applications. But, of course, there must be a catch. Because time and frequency domains are 

mirror images of each other, segmenting a signal in the frequency domain introduces the 

time-domain analog of spectral leakage, “time leakage,” which is the tendency for more 

prolonged smearing and ringing around time-transients. While, by definition, the smearing 

of energy in time by a finite time window drops sharply to zero within some brief interval, 

DBT equivalent time windows extend across the entire signal. In the case of the cosine 

frequency window defined in Eq. (13), the tail of this window decays on the order of 1/t2 

and also “rings” with a period of 2π/Δω (see Fig. 5A and Eq. 14). In the same way that 

spectral leakage can be mitigated with tapered time-windows, more gradually tapered 

frequency windows produce more rapid decay in time, but in general the decay will be of a 

polynomial order and exhibit some ringing.

Time leakage and spectral leakage may be close cousins mathematically, but their practical 

consequences are very different. Whether it is better to tolerate one for the sake of 

suppressing the other depends, of course, on the particulars of any application. We will argue 

that in most settings encountered in electrophysiological research, time-domain artifacts are 

less cause for worry than frequency domain artifacts. When computing stationary spectra, 

which average away time, there is no debate. We can think of no reason to use a method that 

introduces spectral leakage from the analysis window in such applications. The question 

only comes up when trying to resolve spectra in time. For this, one might opt for a time-

windowed approach when it is important to distinguish between sharply defined time epochs 

with no cross-contamination of energy.

It deserves pointing out, however, that time leakage is not the same as time resolution, and 

time-windowed methods need not give inherently better resolution than methods that 

introduce time leakage. Both time and spectral leakage refer instead to the widely extended 

spread of energy in the tails of the respective windows, whose effect in both cases will tend 

to be more subtle than the smoothing bias that determines resolution. To weigh the effects of 

time and spectral leakage, it is important to consider properties of the underlying signal. 

Biological signals very often exhibit polynomial–order decay in power as a function of 

frequency, for example resembling the fractal-like 1/fα pattern of “scale-free” systems (He et 
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al., 2010). Figure 2 shows an example of such a distribution in human local field potential 

(LFP) data. Finite windows in time create spectral leakage that also decays with polynomial 

order (Prandoni and Vetterli, 2008). It follows that spectral leakage may introduce non-

negligible energy far outside the original band, which might even increase with frequency, 

relative to signal power, depending on the ratio of respective polynomials. In contrast, power 

may fluctuate over time, but for most commonly encountered physiological signals, it 

remains within some stable range, meaning that any time-domain artifacts caused by 

frequency windowing can often be ignored after a time interval on the order of the inverse 

bandwidth. Moreover, such smearing and ringing artifacts fall within the bounds of expected 

behavior for filtered data, which perhaps makes them more familiar and easily grasped by 

most researchers than artifacts related to spectral leakage.

The cause for worry over spectral or time leakages become most acute when the signal 

contains high-energy transients in the respective domains, which most commonly are related 

to external contaminants, such as movement artifacts and line noise. In such cases, the high 

relative concentration of signal energy in the transients means that energy scattered into 

neighboring, otherwise uncontaminated regions of the signal in the tails of respective 

windows may not be negligible. DBT minimizes spectral leakage, but may risk broadening 

the extent of time-transients, while time-segmented STFT minimizes time leakage, but as 

pointed out already, at the cost of spectral leakage (see Fig. 7). In signals contaminated with 

both large time transients, which typically can be detected through simple thresholding of 

the unfiltered signal, and large narrowband artifacts, such as line noise, it makes sense to 

first suppress time-transients with a suitable time window before applying DBT.

Applying most any spectral analysis technique presupposes band-limited signal components 

of the type such techniques are designed to reveal in the first place, meaning that sharply 

defined frequency windows are often more clearly motivated than sharp time windows. This 

point is particularly relevant for measures that depend on the phase or envelope of analytic 

signals, such as coherence or phase-locking values, for which signal components must be 

sufficiently band limited to allow meaningful interpretation of phase and give a smoothly 

varying envelope. In the context of electrophysiology, different spectral ranges are 

associated with distinct physiological mechanisms and functions (Başar et al., 2001; Buzsaki 

and Draguhn, 2004; Lopes da Silva, 2013), and so expectations about the spectral structure 

of a signal are typically more clearly defined and generalizable than expectations about 

timing. In this context, frequency-segmented representations tend to map more naturally 

onto the intrinsic structure of the signal. In contrast, even when there are well-motivated 

expectations about how a signal should be segmented in time, as with event-related 

experimental designs, the appropriate windowing varies greatly from one context to the next, 

providing no similarly stable point of reference. Finally, most spectral analyses employ 

comparisons across time rather than frequency, which should tend to factor out energy 

shared across conditions as a result of time leakage.

Comparison to Thomson's multitaper

We have identified a number of parallels between DBT spectral estimators and Thomson's 

multitaper (Figure 6). An essential similarity between the methods is that they both strive to 
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approximate a finite frequency filter in the context of a finite observation window. As 

described in the Materials and Methods section, the DBT estimator may closely approximate 

the TMT estimate with DPSS tapers when a square frequency window is combined with 

zero padding of the signal. Like TMT tapers, DBT equivalent tapers have energy 

concentrated within the chosen frequency bandwidth. For this reason, the DBT analysis 

window does not introduce spectral leakage to the estimate. On the other hand, TMT 

optimally suppresses spectral leakage from the global observation window by discarding 

tapers in which edge energy is maximally concentrated. Although not optimal in the same 

sense, a similar practical result may be achieved with DBT simply by discarding edge 

samples. While TMT estimates are likely to be advantageous when maximum information 

about the spectrum needs to be extracted from signals of short duration relative to the 

desired frequency resolution, in the context of relatively prolonged observation periods, 

computational efficiency is likely to become a more pressing concern than global windowing 

artifacts. In applications to electrophysiology, short windows might at times be imposed by 

the desire to limit spectral analysis to strictly defined time epochs, but in general, long 

observation periods are the rule rather than the exception. Unless there are well-motivated 

reasons to limit the duration of the analysis window, the efficiency and flexibility of DBT 

may therefore often weigh favorably against the computational cost of TMT. In addition, 

because TMT provides only a stationary power spectral estimate within the defined window, 

its direct application to time-frequency analysis is limited and requires it to be hybridized 

with time-segmented STFT. Finally, the quadratic power-spectral estimates returned by TMT 

are not invertible and so cannot be applied directly to adaptive filtering.

Comparing the application of DBT and TMT to coherence in Fig. 10 highlights some 

additional similarities and differences. Both methods revealed a strong frequency following 

responses to click train stimuli in local field potentials recorded from Heschl's gyrus, which 

is reflected in coherence between the stimulus and the LFP at respective driving frequencies. 

Bootstrapped error values for the respective methods show a relatively larger error for TMT 

around spectral peaks compared to regions of the spectrum that were flat. This effect is 

related to the nature of TMT windowing bias, which optimally suppresses leakage outside 

the specified bandwidth interval, but at the price of maximally broad smearing within the 

bandwidth. The more tapered cosine window used in computing the DBT estimate gives a 

sharper local peak, which resulted in more error across the range of sampled frequencies. 

Although the methods are reassuringly in gross agreement, these more subtle differences 

illustrate how windowing bias from TMT involves tradeoffs between local and global 

accuracy that deserves consideration in some contexts.

Computational advantages

The computational efficiency of DBT has already been emphasized and is summarized in 

Table 2. These differences become especially noteworthy in the context of between-channel 

interactions based on cross spectra, as any inefficiency related to oversampling in this 

context is amplified by the square of the number of channels. Classical approaches to 

measuring cross-spectra are the same as those for power spectra, as the power spectrum is 

merely the cross-spectrum between a signal and itself; these include window-overlap 

segment averaging (WOSA), multi-tapering, BPHT and CWT. Though efficient, WOSA 
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shares the same deficiencies in estimating cross-spectra as it does in power spectra, 

including spectral leakage and relatively diminished sensitivity to frequency bands that do 

not evenly divide the analysis window. CWT, BPHT or Thomson's multitaper are commonly 

used in preference to WOSA for this reason, but they retain previously mentioned 

computational inefficiencies related to oversampling.

It is especially noteworthy that for cross-spectra within large multi-channel arrays, 

computational complexity for TMT and BPHT both have an upper bound that is quadratic in 

both the number of channels and number of samples, whereas for DBT, complexity is 

quadratic in the number of channels only and linear in the number of samples. For a 16 

minute recording from an array of 100 channels, sampled at 1 kHz, a relatively modest 

example, pairwise cross-spectral estimation with BPHT and TMT entails a worst-case 

computational complexity of 1016, 10 quadrillion operations, requiring on the order of 11 

days of computing time at 10 billion operations per second. A more plausible scenario, 

using, for example, BPHT with bands spaced at 1Hz, might improve upon this by a factor of 

1000, resulting in a computing time of several minutes. The DBT estimate, on the other 

hand, has complexity on the order of 1010, regardless of bandwidth, requiring on the order of 

1 second of computing time.

Such efficiency gains are likely to be still more useful in applications to cross-frequency 

interactions, a topic of much recent interest (Canolty and Knight, 2010; Maris et al., 2011; 

van der Meij et al., 2012). Measurements of cross-frequency coupling compound pairwise 

calculations among channels and frequency bands with comparisons across frequency bands 

(Dvorak and Fenton, 2014). In any cross-frequency analysis, avoiding cross-contamination 

of bands through spectral leakage is also of paramount importance, which provides a 

particularly compelling advantage of DBT in this setting. DBT may be applied to phase-

amplitude coupling in the same way as other generic spectral estimation techniques that 

yield analytic amplitude and phase (Cohen, 2008), with the same caveats (Aru et al., 2015; 

Kramer et al., 2008). Applications of DBT to cross-frequency coupling will be considered in 

future work.
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Highlights

• An approach to windowed-Fourier spectral decomposition, DBT, is 

described.

• DBT is easy to implement, computationally efficient and robust to 

spectral artifacts.

• DBT is well suited to adaptive filtering of non-stationary narrow-band 

noise.

• DBT is related to Thompson's multitaper and has similar advantages.
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Figure 1. 
Comparison of DBT and time-segmented STFT. A: Schematic overview of steps in 

computing the DBT. The FFT of the full signal x(t) is computed giving x̃(f) and reshaped 

into a matrix whose columns are overlapping windows of the full FFT, implementing a 

series of bandpass filters. The inverse FFT on the matrix columns gives the demodulated 

band representation. Because the filter window excludes negative frequencies, the procedure 

results in a complex-valued analytic signal, from which instantaneous amplitude and relative 

phase may be extracted. B: STFT applies the FFT after reshaping the signal into short time 

segments.
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Figure 2. 
Relationship between bandwidth, windowing bias and resolution in windowed Fourier 

decompositions. A,B: Two DBT time-frequency decompositions (TFD) were applied to 30 s 

of a local field potential recording. The first has a bandwidth of 1 Hz (A), giving better 

relative frequency resolution, and the second, a bandwidth of 10 Hz (B), giving better time 

resolution. C,D: For stationary spectral estimates obtained by averaging the TFD amplitude 

over time, the estimate from the decomposition with the 1 Hz bandwidth (C) reveals more 

detail in the spectrum than the estimate from the 10 Hz decomposition (D) due to lower 

broadband bias, which is especially noticeable in the width of the noise-related peak at 60 

Hz. However, the 1 Hz decomposition gives an estimate with lower variance, as shown by 

bootstrapped confidence intervals (shaded regions in C and D). E: Conversely, averaging the 

TFD over time shows the superior time resolution of 10 Hz decomposition (red) compared 

to 1 Hz (blue).
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Figure 3. 
Illustration of spectral leakage related to windowing in the time domain. A: To represent a 

continuous signal as a discrete set of points, the DFT implicitly assumes that the signal 

repeats infinitely outside the window of observation. Because of this, the DFT treats a 10.5 

Hz sinusoid (B, black line) as though it contains a transient at the edge of a 1 s window (B, 

red) giving rise to spurious energy at a wide range of other frequencies (C). The 10 Hz 

sinusoid (blue line) does not create a similar artifact because its period evenly divides the 

window. Although spectral leakage can be attenuated by tapering at window edges, it cannot 

be completely suppressed.
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Figure 4. 
Complex numbers, analytic signals and demodulation. A: Multiplying two complex 

numbers, represented as vectors in the complex plane, gives a magnitude that is the product 

of the original magnitudes and phase angle that is the sum of angles. B: An analytic signal is 

complex-valued with real (black) and imaginary (gray) parts that are 90 degrees out of 

phase. The magnitude of the complex value at each time point gives a smoothly varying 

envelope (red). When multiplied with a unit-amplitude sinusoid (C), the result is a complex-

valued signal whose real and imaginary parts are shifted in frequency (D), but whose 

envelope (red) retains the same shape as the original signal (B).
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Figure 5. 
A: Time-domain envelopes corresponding to the cosine frequency window (bold line) and 

the square window (thin line). B: An example of frequency-domain windowing with fixed 

bandwidths for cosine (bold line) and square (thin line) windows. C: A Meyer wavelet 

function obtained by (D) joining two cosine window halves (thick line) with the same center 

frequency, ωm, but scaled to different bandwidths, equal, respectively, to one-half and one 

times ωm.
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Figure 6. 
Comparison of tapers for the DBT, TMT, STFT and trimmed DBT power-spectral 

estimators. Each estimation method yields an equivalent multitaper estimator, with tapers 

given by the eigenvectors of the matrix Q (see discussion accompanying Eq. 15). In each 

case, window and bandwidth parameters were selected to yield 50 tapers over a 100 sec 

period sampled at 1kHz. The STFT estimator applied overlapping Hann windows and the 

TMT estimator used DPSS tapers. The trimmed DBT estimator is the DBT estimator that 

excludes the 4 samples nearest each edge. Bottom panels: Shown from bottom to top are 

tapers 1, 2, 5, 10, 25 and 45. Top panels: The power spectrum of tapers reveals any spectral 

leakage introduced to the estimate by each approach. Scale bars indicate 50 dB, and values 

more than 100 dB below peak are indicated with dashed lines.

Kovach and Gander Page 38

J Neurosci Methods. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Comparison of adaptive filtering with time-windowed STFT and frequency windowed DBT 

filters. A test signal composed of a sinusoidally frequency modulated sinusoid embedded in 

-33 dB white noise was filtered by thresholding coefficients of the STFT (500 mms cosine 

tapered time-domain window) and DBT (4 Hz cosine-tapered frequency-domain window). 

A: Spectral artifacts caused by filtering are revealed in the residual compared to the white-

noise background: log power in the residual normalized to the true signal is shown for the 

STFT filter (A, left panel) and for the DBT filter (A, right panel). Artifact manifests as 

speckles outside of the filtered (light blue) target region in the spectrogram. Smearing in the 

frequency domain (spectral leakage) is evident in the STFT residual while time-domain 

smearing is evident in the DBT residual. B: Average log power difference between the signal 

extracted by STFT and DBT filters reveals greater spectral leakage with the STFT filter 

relative to the DBT filter. C: High pass filtering of residuals at 250 Hz shows the 

windowing-related artifact for the STFT (blue), and the absence of artifact for the DBT filter 

(green). The STFT artifact is modulated with periodicity related to the window size (panel 

C, inset). D: Artifacts from frequency windowing (represented by arrows) are band-limited 

while those from time windowing are broadband. In the presence of a narrow-band signal 

such as line noise, time windowing may introduce artifacts across the entire time-frequency 

range.

Kovach and Gander Page 39

J Neurosci Methods. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Comparison of time-windowed and frequency-windowed adaptive filters applied to line 

noise in electrophysiological data. Filtering was applied to 60 Hz line-noise contaminated 

ECoG data, whose frequency and amplitude varied slightly over time. A: A denoising 

routine implemented in the Chronux toolbox (rmlinesmovingwinc.m) removed sinusoidal 

signal components within finite overlapping 12 s segments with 6 s overlap. Significant 

distortion of neighboring frequencies results from spectral leakage associated with finite 

windowing. Plots show log power difference for unfiltered and filtered data. B: DBT 

denoising (bandwidth = 1/6 Hz) avoids spectral leakage artifacts. C: A comparison of power 

in the noise signals isolated by respective filters reveals much greater energy outside the 

range of line-noise in the time-windowed method as compared with the DBT approach, a 

consequence of spectral leakage in the former.

Kovach and Gander Page 40

J Neurosci Methods. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Adaptive filtering of time-varying narrowband noise. 10 minutes of ECoG showed pervasive 

narrowband harmonic noise, whose modal frequency varied over time. A representative 

channel includes the time-varying noise in addition to 60 Hz line noise and epileptiform 

activity (A). Adaptive filtering with DBT successfully suppressed the large majority of both 

stationary and time-varying narrowband noise components (B) with minimal distorting of 

surrounding frequencies as shown by the difference between spectrograms before and after 

denoising (C). Vertical lines after 400 s correspond to epileptiform spikes removed by time-

domain windowing before applying the DBT. Thresholding of DBT coefficients also 

discarded some transient components related to a large burst of physiologic 100-300 Hz 

activity of probable ictal origin at 241s.

Kovach and Gander Page 41

J Neurosci Methods. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Comparison of coherence estimated with DBT and windowed multitaper in human ECoG 

data. Coherence was computed between an auditory stimulus and local field potentials 

recorded in Heschl's gyrus. The stimulus was a sequence of 1 s click-trains with 6 different 

rates varying between 128 Hz and 500 Hz, presented over a 10 min recording block. A: All 

methods revealed a strong frequency following response for the two lowest rates, 128 and 

200 Hz, reflected in large peaks of coherence. Coherence computed with DBT cross-spectra 

using a bandwidth of 2 Hz were compared with TMT-STFT coherence computed with time-

bandwidth parameters of 2.5 (TMT(NW=2.5)) and 4.5 (TMT(NW=4.5)), using respectively 

4 and 8 DPSS tapers, within 2s windows and averaged over windows. Shaded areas 

represent 99% confidence intervals obtained from 250 bootstrap samples, sampled over time 

windows for TMT and time samples for DBT. Lower resolution of TMT(NW=4.5) is 

reflected in relative flattening and broadening of the peaks. Resolutions for TMT(NW = 2.5) 

and DBT were comparable. B: Inter-quartile ranges (IQR) for the bootstrap sample reveal 

that overall error is comparable for DBT and TMT(NW = 4.5), with average IQR of 0.0128 

and 0.0125 respectively, while for TMT(NW=2.5) IQR is larger, averaging 0.0174. For both 

TMT estimates, IQR is substantially elevated within regions of peak coherence around 128 

and 200 Hz, respectively 0.0244 and 0.0262. This increase reflects the tradeoff between 

local resolution within the selected bandwidth and optimal suppression of broadband 

spectral leakage outside the bandwidth provided by DPSS tapers. DBT similarly minimizes 

spectral leakage but without sacrificing local resolution.
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