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A novel multivalent tuberculosis vaccine confers protection in a
mouse model of tuberculosis
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ABSTRACT
Mycobacterium tuberculosis infects one third of the world’s population. Due to variable efficacy of the
Bacille Calmette Guerin (BCG) vaccine, development of novel TB vaccines remains a priority. Here, we
demonstrate the protective efficacy of a novel multivalent DNA vaccine, which contains 15 synthetic
antigens targeting the Mtb ESX secretion system. KEYWORDS

DNA vaccine; Tuberculosis;
vaccine

Tuberculosis (TB) is the leading cause of death from a single infec-
tious agent in the world today.1 The only currently-licensed vac-
cine against TB, M.bovis Bacille Calmette Guerin (BCG), protects
against TB meningitis in infants and children, but has variable effi-
cacy in protecting against adult pulmonary TB.2 Development of a
novel TB vaccine is therefore of paramount importance for the
status of global health. Although a clear correlate of vaccine-
induced protection has yet to be identified for TB, both interferon
(IFN)-g and interleukin-17A (IL-17) production by CD4C T cells
are targeted in vaccine-induced immunity to Mtb infection.3,4 In
addition, since mice lacking major histocompatibility complex
(MHC)-I processing machinery or CD8C T cells are more suscep-
tible to TB disease,5,6 CD8C T cells have been implicated as having
a role in control ofMtb infection. The novel multivalent DNA TB
vaccine, RSQ-15, is designed using the pVax1 vector. The vector
was used to express 15 synthetic consensus antigens of the Mtb
ESX gene family (esxO, esxR, esxF, esxB, esxC, esxU, esxH, esxA,
esxT, esxD, esxQ, esxE, esxV, esxS, and esxW). The antigens were
selected based on diversity and cross-reactivity,7 with the unique
goal of inducing an immune response across a broad range of
Mtb antigens, namely all 23 members of the ESX secretion system.
The ESX secretion system is a family of Mtb proteins associated
with mycobacterial virulence8 and contains several epitopes able
to induce T cell responses in both humans and in animal mod-
els.9,10 RSQ-15 is delivered intramuscularly (i.m.) followed by elec-
troporation at the site of immunization in order to improve the
immunogenicity of the DNA vector.7,11 This vector/electropora-
tion combination is approved for use in humans and is in clinical
trials for treatment of Human Papilloma Virus-induced cervical
disease, with good safety data thus far.12 Previous results using
RSQ-15 in mice have shown robust induction of multifunctional
peripheralMtb-specific CD4C and CD8C T cells.7 On the basis of
these preliminary immunogenicity results, here we investigate the

protective efficacy of RSQ-15 immunization in the mouse model
of TB. Our new results show that this novel multivalent TB vac-
cine confers protection to levels similar to BCG immunization.
Thus, our study highlights novel strategies that can be targeted to
design new vaccines against TB.

RSQ-15 immunization induces IFN-g and tumor necrosis
factor-a production by CD4C and CD8C T cells in the periph-
ery.7 Thus, we aimed to investigate whether RSQ-15 could also
induce mucosal cytokine responses in the lungs. Eight week old
C57BL/6 mice were immunized with 2 doses of 5mg RSQ-15,
prepared as described in,7 delivered intramuscularly (i.m.) fol-
lowed by electroporation at the site of immunization.7,11 One
week after the final immunization, lungs were harvested and
processed to a single cell suspension.13 IFN-g and IL-17 pro-
duction was measured by antigen-driven ELISpot,13 using
2.5mg/mL of a pool of all peptides represented in the RSQ-15
vaccine.7 We observed robust Mtb-specific IFN-g (Fig. 1A) but
not IL-17 production (data not shown) by lung cells, indicating
that RSQ-15 is a potent inducer of mucosal IFN-g responses in
the lungs, but that the antigens or DNA vaccine formulations
are not permissive for induction of mucosal Th17 responses.

Molecular adjuvants are small molecules, such as cytokines,
that can be co-administered with vaccines and can act as adju-
vants. DNA constructs expressing the molecular adjuvant IL-33
have previously been shown to enhance cytokine production by T
cells,11,14 including responses to the Mtb antigen 85B (Ag85B).11

Given the absence of IL-17 induction following RSQ-15 immuni-
zation alone, we also wanted to address whether inclusion of a
construct expressing IL-23, a critical mediator of vaccine-induced
IL-17 responses in Mtb infection models,4,15 in the RSQ-15 vac-
cine could induce IL-17 responses. Finally, to further expand the
antigen repertoire of RSQ-15, we also included a plasmid express-
ing Ag85B (pAg85B), a mycolyl transferase expressed in a system
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unrelated to the ESX secretion system.16 Mice were immunized as
described previously, with the inclusion of constructs expressing
mtrIL-33, IL-23 or Ag85B. Adjuvanting RSQ-15 with mtrIL-33 or
IL-23 alone did not have a significant effect on mucosal antigen-
specific IFN-g production (Fig. 1B). Furthermore, including IL-23
in the RSQ-15 immunization regimen did not induce any detect-
able antigen-specific IL-17 responses (data not shown). Including
pAg85B along with mtrIL-33 in the RSQ-15 vaccine, however, sig-
nificantly improved mucosal antigen-specific IFN-g production
(Fig. 1B).

Given the induction of high levels of Mtb-specific mucosal
IFN-g production in RSQ-15-immunized mice (Fig. 1A, B), we
next assessed the protective efficacy of the vaccine following
Mtb H37Rv aerosol challenge in B6 mice. Mice were immu-
nized with RSQ-15 as described previously. Control B6 mice
received 1£106 cfu BCG delivered subcutaneously.13 Four
weeks after the final immunization, mice were infected with
100 cfu aerosolised Mtb H37Rv using a Glas-Col aerosol expo-
sure system.13 Infectious dose was determined at 24 hours
post-infection by plating lung homogenates on 7H11 agar
plates. Lungs of infected mice were harvested 30 d post-infec-
tion and homogenized and plated in serial dilutions on 7H11
agar plates to quantify bacterial burden. Subcutaneous immuni-
zation with BCG conferred »1 log protection over unimmu-
nized control mice (Fig. 1C). The RSQ-15 vaccine alone also
conferred significant protection, with levels of protection not
significantly different to that conferred by BCG. Despite
improved induction of lung-resident antigen-specific IFN-g
responses (Fig. 1B), however, immunization with RSQ-15.
pAg85B.mtrIL-33 had no improved effect on vaccine efficacy
compared that conferred by RSQ-15 alone (Fig. 1C). The RSQ-
15 vaccine has previously been demonstrated to boost BCG-
induced immunogenicity.7 Due to this, as well as the ability of
pAg85B to enhance cytokine production in the lungs (Fig. 1B),

we aimed to determine whether boosting BCG with RSQ-15.
pAg85B.mtrIL-33 would enhance the protective efficacy of
BCG. We found, however, that mice immunized with BCG C
RSQ-15.pAg85B.mtrIL-33 did not improve protection when
compared to BCG alone (Fig. 1C).

In this study, we sought to investigate the protective efficacy
of RSQ-15, a novel synthetic vaccine expressing 15 consensus
antigens of the ESX secretion system, with the goal of inducing
T cell responses to all 23 Mtb ESX members. The antigens are
expressed in a plasmid vector, the immunogenicity of which is
enhanced by administering electroporation to the site of immu-
nization. With the exception of BCG-based vaccines, such a
broad antigen repertoire in a TB vaccine is unprecedented. A
striking feature of RSQ-15-mediated immunogenicity is the
induction of potent antigen-specific IFN-g-producing cells in
the lungs of immunized mice. Unless a vaccine is delivered
mucosally, pre-clinical vaccine studies rarely assess the immu-
nogenicity and induction of cytokine-producing cells in the
lungs. In a study using adenovirus 5 expressing Ag85A
(Ad5Ag85A) as a boost to intradermally (i.d.)-delivered BCG, i.
d.-delivered AdAg85A induced cytokine-producing cells in the
lungs, although not to levels induced by intranasal (i.n.) admin-
istration.17 In a similar study comparing BCG administered s.c.
followed by either i.m. or i.n.-administered AdAg85A, IFN-g
production in the bronchoalveolar lavage fluid was significantly
lower in mice receiving a parenteral boost compared to those
receiving a mucosal boost.18 Thus, the ability of parenterally-
delivered RSQ-15 to induce potent IFN-g production in the
lungs is, to our knowledge, unique.

The pVax1 expression system along with electroporation has
primarily been used for immunization against viruses, and as
such has been shown to be a potent inducer of CD8C T
cells.12,14,19 RSQ-15 is also a potent inducer of CD8C T cells,
although CD4C T cells are also induced, albeit to a lesser

Figure 1. RSQ-15 induces potent IFN-g responses in the lungs and confers protection against Mtb infection. (A) C57BL/6 mice were immunized with 2 doses at a 2 week
interval of RSQ-15 followed by immediate electroporation. One week after the final immunization, lungs were harvested and antigen-specific IFN-g production was deter-
mined by ELISpot measured as spot forming cells (SFC) per 106 cells. The pVax1 empty vector was used as a control. (B) C57BL/6 mice were immunized with 2 doses of
RSQ-15, RSQ-15.IL-23, RSQ-15.pAg85B, RSQ-15.mtrIL-33, RSQ-15.pAg85B.IL-23, or RSQ-15.pAg85B.mtrIL-33 followed immediately by electroporation, with a 2 week inter-
val between the doses. One week after the final immunization, lungs were harvested and antigen-specific cytokine production was determined by ELISpot. (C) C57BL/6
mice were immunized with either BCG, RSQ-15, RSQ-15.pAg85B.mtrIL-33, or BCG followed 4 weeks later by 2 boosts 2 weeks apart with RSQ-15.pAg85B.mtrIL-33 as
described previously. Four weeks following the final immunization, mice were challenged with low dose aerosolized Mtb H37Rv, and bacterial burden in the lungs was
assessed at 30 d post-infection. n D 5 § SD, data show a combination of 2 experiments, �p � 0.05, ��p � 0.01, ���p � 0.001, assessed by one way ANOVA followed by
Tukey’s post-hoc test.
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extent.7 Although we did not assess which T cell subset was
responsible for cytokine production in the lungs, it is likely,
based on T cell subsets induced in the periphery, that the major
cytokine-producing subset is CD8C T cells. RSQ-15 is therefore
unique in that it is the first multi-antigen TB vaccine to induce
predominantly CD8C T cells. Indeed, even protection conferred
by the recombinant BCG DureChlyC vaccine, initially designed
to induce CD8C T cells,20 was later thought to be mediated by
CD4C T cells.21,22 The molecular adjuvant IL-33 has previously
been shown to boost cytokine responses by both CD8C and
CD4C T cells in a pVax1-based immunization regimen using
Mtb, LCMV and HIV antigens.11,14 Although administering
RSQ-15 with mtrIL-33 alone had no significant effect on vac-
cine immunogenicity, co-administration of RSQ-15 C mtrIL-
33 along with a plasmid expressing Ag85B greatly enhanced
cytokine production in the lungs. Similar results were observed
following immunization with plasmids expressing Ag85B alone
adjuvanted with mtrIL-33,11 suggesting that some feature of
the Ag85B protein makes it a good candidate for being adju-
vanted by mtrIL-33, perhaps due to the signaling mechanism
of the protein through toll-like receptors or other pattern rec-
ognition receptors.23,24 ESAT-6, a member of the ESX secretion
system, and one of the proteins expressed in RSQ-15, has been
shown to inhibit cytokine production by T cells;25 it is therefore
possible that the presence of ESAT-6 or other ESX proteins
interferes with mtrIL-33 signaling through its receptor, ST2,
and that the presence of Ag85B is required to overcome this.

Although RSQ-15 induces potent IFN-g production, we
detected no IL-17 induction. Given the importance of IL-17 in
vaccine-induced protection against TB disease,4,15 we aimed to
induce the cytokine using a plasmid expressing IL-23, a cyto-
kine essential to the proliferation of Th17 cells. Previous studies
using DNA immunization and electroporation for the treat-
ment of tumors used a plasmid expressing IL-23 to enhance
Th17 responses.26 Here, however, our attempt to induce IL-17
following RSQ-15 immunization using a plasmid expressing
IL-23 failed. The reason for this is unclear, and could be due to
a number of factors. It is possible that the antigens used are not
conducive for the induction of Th17 cells, however this is
unlikely, as we have previously shown that both ESAT-6 and
Ag85B are able to induce IL-17 production.27 Alternatively, it
could be that the dose and length of electroporation either does
not target Th17-inducing antigen-presenting cells, or induces
non-responsiveness of antigen-presenting cell subsets responsi-
ble for Th17 induction. Finally, it is possible that RSQ-15 does
not induce cytokines such as IL-1b or IL-6, which are impor-
tant for the induction of Th17 cells,28 and that IL-23 therefore
needs to be administered along with other Th17-polarizing
cytokines required for induction of Th17 cells for successful
induction of IL-17-producing cells.

Electroporation as a method for adjuvanting DNA vaccine
responses is growing in use, with promising results. The princi-
ple of the approach is to a) increase the uptake of the adminis-
tered plasmid by cells at the site of injection, and b) possibly to
influence local inflammation and the infiltration of antigen-
presenting cells to the site of immunization.29 Previous results
using DNA vectors expressing TB antigens conferred limited
protection against Mtb 30,31 or BCG challenge,32 with the level
of DNA vaccine-induced protection not equalling that induced

by BCG. In contrast to these studies, following aerosol chal-
lenge with Mtb H37Rv, RSQ-15 conferred »1 log protection in
the lungs. In spite of the addition of Ag85B and IL-33 to
enhance the immunogenicity of the vaccine, however, protec-
tive efficacy was not improved. In an attempt to improve pro-
tection over BCG alone, RSQ-15.pAg85B.mtrIL-33 was
administered as a boost to BCG, but again did not improve pro-
tection over levels induced by BCG alone. Given previous data
showing the importance of IL-17 in control ofMtb infection,4,15

the lack of IL-17 induction by RSQ-15 could account for the
fact that even with the molecular adjuvant mtrIL-33 enhancing
IFN-g responses in this study, based on the immunization
scheme tested, RSQ-15 did not improve on the protection con-
ferred by BCG. It would therefore be worth exploring the use of
a mucosal boost in an attempt to induce IL-17-producing cells
in the lungs of RSQ-15-immunized mice, and hence improve
vaccine-induced protection.

The synthetic DNA vaccine studied here delivered with electro-
poration represents a promising avenue to pursue for develop-
ment of a novel multivalent TB vaccine, not least due to the fact
that the approach has already been shown to be safe and very
immune potent in humans.12,19 Furthermore, given that pVax1 is
a non-replicating vector, RSQ-15 could be safely administered to
immunocompromised individuals. This is in contrast to BCG,
which is contraindicated in infants exposed to HIV due to the risk
of developing ‘BCG-osis’. This, along with the novel approach for
inducing immunogenicity against a broad range of immunodomi-
nant and non-immunodominant antigens, suggests RSQ-15 is a
promising vaccine candidate for future TB vaccines.

Abbreviations

AdAg85A adenovirus expressing Ag85A
Ag85B antigen 85B
BCG Mycobacterium bovis Bacille Calmette Guerin
cfu colony forming units
ESAT-6 early secretory antigenic target 6
i.d. intradermal
i.m. intramuscular
i.n. intranasal
IFN-g interferon gamma
IL-1b interleukin 1b
IL-6 interleukin 6
IL-17 interleukin 17A
IL-23 interleukin 23
MHC major histocompatibility complex
mtrIL-33 interleukin 33
Mtb Mycobacterium tuberculosis
RSQ-15 pVax expressing 15Mtb ESX antigens
TB tuberculosis
Th17 T helper 17
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