Skip to main content
. 2016 May 3;7(23):34558–34570. doi: 10.18632/oncotarget.9148

Table 1. A comparison of the proposed predictor with the existing methods based on the 10-fold cross-validation on the same 250 carbonylated proteins.

Predictor Metrics and graph Type of carbonylation
K P R T
PTMPreda Acc (%)d 88.59 82.93 86.64 88.39
CarSpredb 87.22 82.93 86.22 86.61
iCar-PseCpc 84.43 86.79 84.23 86.17
PTMPreda MCCd 0.1892 0.2573 0.1878 0.2186
CarSpredb 0.2268 0.2331 0.2245 0.2040
iCar-PseCpc 0.5906 0.6006 0.6076 0.6185
PTMPreda Sn (%)d 23.45 21.43 20.02 22.38
CarSpredb 23.17 25.34 25.47 21.39
iCar-PseCpc 45.18 48.20 46.67 50.68
PTMPreda Sp (%)d 92.99 93.20 90.99 91.36
CarSpredb 92.43 93.28 93.39 93.42
iCar-PseCpc 99.25 98.54 99.57 98.58
PTMPreda AUCe 0.6858 0.6903 0.5981 0.6563
CarSpredb 0.6849 0.7163 0.7158 0.7134
iCar-PseCpc 0.8728 0.8484 0.8668 0.8603
a

The predictor developed in [33], where ξ = 13; i.e. the sample length is 27.

b

The predictor developed in [32], where the sample length was not fixed.

c

The predictor proposed in this paper.

d

See Eq.9 for the definition of metrics.

e

The area under the curve of Figure.2; the greater the AUC value is, the better the corresponding predictor will be [52, 53].