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Abstract

Convolutional Neural Networks (CNN) are state-of-the-art models for many image classification 

tasks. However, to recognize cancer subtypes automatically, training a CNN on gigapixel 

resolution Whole Slide Tissue Images (WSI) is currently computationally impossible. The 

differentiation of cancer subtypes is based on cellular-level visual features observed on image 

patch scale. Therefore, we argue that in this situation, training a patch-level classifier on image 

patches will perform better than or similar to an image-level classifier. The challenge becomes 

how to intelligently combine patch-level classification results and model the fact that not all 

patches will be discriminative. We propose to train a decision fusion model to aggregate patch-

level predictions given by patch-level CNNs, which to the best of our knowledge has not been 

shown before. Furthermore, we formulate a novel Expectation-Maximization (EM) based method 

that automatically locates discriminative patches robustly by utilizing the spatial relationships of 

patches. We apply our method to the classification of glioma and non-small-cell lung carcinoma 

cases into subtypes. The classification accuracy of our method is similar to the inter-observer 

agreement between pathologists. Although it is impossible to train CNNs on WSIs, we 

experimentally demonstrate using a comparable non-cancer dataset of smaller images that a patch-

based CNN can outperform an image-based CNN.

1. Introduction

Convolutional Neural Networks (CNNs) are currently the state-of-the-art image classifiers 

[30, 29, 7, 23]. However, due to high computational cost, CNNs cannot be applied to very 

high resolution images, such as gigapixel Whole Slide Tissue Images (WSI). Classification 

of cancer WSIs into grades and subtypes is critical to the study of disease onset and 

progression and the development of targeted therapies, because the effects of cancer can be 
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observed in WSIs at the cellular and sub-cellular levels (Fig. 1). Applying CNN directly for 

WSI classification has several drawbacks. First, extensive image downsampling is required 

by which most of the discriminative details could be lost. Second, it is possible that a CNN 

might only learn from one of the multiple discriminative patterns in an image, resulting in 

data inefficiency. Discriminative information is encoded in high resolution image patches. 

Therefore, one solution is to train a CNN on high resolution image patches and predict the 

label of a WSI based on patch-level predictions.

The ground truth labels of individual patches are unknown, as only the image-level ground 

truth label is given. This complicates the classification problem. Because tumors may have a 

mixture of structures and texture properties, patch-level labels are not necessarily consistent 

with the image-level label. More importantly, when aggregating patch-level labels to an 

image-level label, simple decision fusion methods such as voting and max-pooling are not 

robust and do not match the decision process followed by pathologists. For example, a 

mixed subtype of cancer such as oligoastrocytoma, might have distinct regions of other 

cancer subtypes. Therefore, neither voting nor max-pooling could predict the correct WSI-

level label since the patch-level predictions do not match the WSI-level label.

We propose using a patch-level CNN and training a decision fusion model as a two-level 

model, shown in Fig. 2. The first-level (patch-level) model is an Expectation Maximization 

(EM) based method combined with CNN that outputs patch-level predictions. In particular, 

we assume that there is a hidden variable associated with each patch extracted from an 

image that indicates whether the patch is discriminative (i.e. the true hidden label of the 

patch is the same as the true label of the image). Initially, we consider all patches to be 

discriminative. We train a CNN model that outputs the cancer type probability of each input 

patch. We apply spatial smoothing to the resulting probability map and select only patches 

with higher probability values as discriminative patches. We iterate this process using the 

new set of discriminative patches in an EM fashion. In the second-level (image-level), 

histograms of patch-level predictions are input into an image-level multiclass logistic 

regression or Support Vector Machine (SVM) [10] model that predicts the image-level 

labels.

Pathology image classification and segmentation is an active research field. Most WSI 

classification methods focus on classifying or extracting features on patches [17, 35, 50, 56, 

11, 4, 48, 14, 50]. In [50] a pretrained CNN model extracts features on patches which are 

then aggregated for WSI classification. As we show here, the heterogeneity of some cancer 

subtypes cannot be captured by those generic CNN features. Patch-level supervised 

classifiers can learn the heterogeneity of cancer subtypes, if a lot of patch labels are provided 

[17, 35]. However, acquiring such labels in large scale is prohibitive, due to the need for 

specialized annotators. As digitization of tissue samples becomes commonplace, one can 

envision large scale datasets, that could not be annotated at patch scale. Utilizing unlabeled 

patches has led to Multiple Instance Learning (MIL) based WSI classification [16, 51, 52].

In the MIL paradigm [18, 33, 5], unlabeled instances belong to labeled bags of instances. 

The goal is to predict the label of a new bag and/or the label of each instance. The Standard 
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Multi-Instance (SMI) assumption [18] states that for a binary classification problem, a bag is 

positive iff there exists at least one positive instance in the bag. The probability of a bag 

being positive equals to the maximum positive prediction over all of its instances [6, 54, 27]. 

Combining MIL with Neural Networks (NN) [43, 57, 31, 13], the SMI assumption is 

modeled by max-pooling. Following this formulation, the Back Propagation for Multi-

Instance Problems (BP-MIP) [43, 57] performs back propagation along the instance with the 

maximum response if the bag is positive. This is inefficient because only one instance per 

bag is trained in one training iteration on the whole bag.

MIL-based CNNs have been applied to object recognition [38] and semantic segmentation 

[40] in image analysis – the image is the bag and image-windows are the instances [36]. 

These methods also follow the SMI assumption. The training error is only propagated 

through the object-containing window which is also assumed to be the window that has the 

maximum prediction confidence. This is not robust because one significantly misclassified 

window might be considered as the object-containing window. Additionally, in WSIs, there 

might be multiple windows that contain discriminative information. Hence, recent semantic 

image segmentation approaches [12, 41, 39] smooth the output probability (feature) maps of 

the CNNs.

To predict the image-level label, max-pooling (SMI) and voting (average-pooling) were 

applied in [36, 30, 17]. However, it has been shown that in many applications, learning 

decision fusion models can significantly improve performance compared to voting [42, 45, 

24, 47, 26, 46]. Furthermore, such a learned decision fusion model is based on the Count-

based Multiple Instance (CMI) assumption which is the most general MIL assumption [49].

Our main contributions in this paper are: (1) To the best of our knowledge, we are the first to 

combine patch-level CNNs with supervised decision fusion. Aggregating patch-level CNN 

predictions for WSI classification significantly outperforms patch-level CNNs with max-

pooling or voting. (2) We propose a new EM-based model that identifies discriminative 

patches in high resolution images automatically for patch-level CNN training, utilizing the 

spatial relationship between patches. (3) Our model achieves multiple state-of-the-art results 

classifying WSIs to cancer subtypes on the TCGA dataset. Our results are similar or close to 

inter-observer agreement between pathologists. Larger classification improvements are 

observed in the harder-to-classify cases. (4) We provide experimental evidence that 

combining multiple patch-level classifiers might actually be advantageous compared to 

whole image classification.

The rest of this paper is organized as follows. Sec. 2 describes the framework of the EM-

based MIL algorithm. Sec. 3 discusses the identification of discriminative patches. Sec. 4 

explains the image-level model that predicts the image-level label by aggregating patch-level 

predictions. Sec. 5 shows experimental results. The paper concludes in Sec. 6. App. A lists 

the cancer subtypes in our experiments.
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2. EM-based method with CNN

An overview of our EM-based method can be found in Fig. 2. We model a high resolution 

image as a bag and patches extracted from it as instances. We have a ground truth label for 

the whole image but not for the individual patches. We model whether an instance is 

discriminative or not as a hidden binary variable.

We denote X = {X1, X2, …, XN} as the dataset containing N bags. Each bag Xi = {Xi, 1, 

Xi, 2, …, Xi,Ni} consists of Ni instances, where Xi,j = 〈xi,j, yi〉 is the j-th instance and its 

associated label in the i-th bag. Assuming the bags are independent and identically 

distributed (i.i.d.), the X and the hidden variables H are generated by the following 

generative model:

(1)

where the hidden variable H = {H1, H2, …, HN}, Hi = {Hi, 1, Hi, 2, …, Hi,Ni} and Hi,j is the 

hidden variable that indicates whether instance xi,j is discriminative for label yi of bag Xi. 

We further assume that all Xi,j depends on Hi,j only and are independent with each other 

given Hi,j. Thus

(2)

We maximize the data likelihood P(X) using EM.

1. At the initial E step, we set Hi,j = 1 for all i, j. This means that all instances 

are considered discriminative.

2. M step: We update the model parameter θ to maximize the data likelihood

(3)

where D is the discriminative patches set. Assuming a uniform generative 

model for all non-discriminative instances, the optimization in Eq. 3 

simplifies to:

(4)
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Additionally we assume an uniform distribution over xi,j. Thus Eq. 4 

describes a discriminative model (in this paper we use a CNN).

3. E step: We estimate the hidden variables H. In particular, Hi,j = 1 if and 

only if P(Hi,j | X) is above a certain threshold. In the case of image 

classification, given the i-th image, P(Hi,j | X) is obtained by applying 

Gaussian smoothing on P(yi | xi,j; θ) (Detailed in Sec 3). This smoothing 

step utilizes the spatial relationship of P(yi | xi,j; θ) in the image. We then 

iterate back to the M step till convergence.

Many MIL algorithms can be interpreted through this formulation. Based on the SMI 

assumption, the instance with the maximum P(Hi,j | X) is the discriminative instance for the 

positive bag, as in the EM Diverse Density (EM-DD) [55] and the BP-MIP [43, 57] 

algorithms.

3. Discriminative patch selection

Patches xi,j that have P(Hi,j | X) larger than a threshold Ti,j are considered discriminative and 

are selected to continue training the CNN. We present in this section the estimation of P(H | 

X) and the choice of the threshold.

It is reasonable to assume that P(Hi,j | X) is correlated with P(yi | xi,j; θ), i.e. patches with 

lower P(yi | xi,j; θ) tend to have lower probability xi,j to be discriminative. However, a hard-

to-classify patch, or a patch close to the decision boundary may have low P(yi | xi,j; θ) as 

well. These patches are informative and should not be rejected. Therefore, to obtain a more 

robust P(Hi,j | X), we apply the following two steps: First, we train two CNNs on two 

different scales in parallel. P(yi | xi,j; θ) is the averaged prediction of the two CNNs. Second, 

we simply denoise the probability map P(yi | xi,j; θ) of each image with a Gaussian kernel to 

compute P(Hi,j | X). This use of spatial relationships yields more robust discriminative patch 

identification as shown in the experiments in Sec. 5.

Choosing a thresholding scheme carefully yields significantly better performance than a 

simpler thresholding scheme [39]. We obtain the threshold Ti,j for P(Hi,j | X) as follows: We 

note Si as the set of P(Hi,j | X) values for all xi,j of the i-th image and Ec as the set of P(Hi,j | 

X) values for all xi,j of the c-th class. We introduce the image-level threshold Hi as the P1-th 

percentile of Si and the class-level threshold Ri as the P2-th percentile of Ec, where P1 and P2 

are predefined. The threshold Ti,j is defined as the minimum value between Hi and Ri. There 

are two advantages of our method. First, by using the image-level threshold, there are at least 

1 − P1 percent of patches that are considered discriminative for each image. Second, by 

using the class-level threshold, the thresholds can be easily adapted to classes with different 

prior probabilities.

4. Image-level decision fusion model

We combine the patch-level classifiers of Sec. 3 to predict the image-level label. We input all 

patch-level predictions into a multi-class logistic regression or SVM that outputs the image-

level label. This decision level fusion method [28] is more robust than max-pooling [45]. 
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Moreover, this method can be thought of as a Count-based Multiple Instance (CMI) learning 

method with two-level learning [49] which is a more general MIL assumption [20] than the 

Standard Multiple Instance (SMI) assumption.

There are three reasons for combining multiple instances: First, on difficult datasets, we do 

not want to assign an image-level prediction simply based on a single patch-level prediction 

(as is the case of the SMI assumption [18]). Second, even though certain patches are not 

discriminative individually, their joint appearance might be discriminative. For example, a 

WSI of the “mixed” glioma, Oligoastrocytoma (see App. A) should be recognized when two 

single glioma subtypes (Oligodendroglioma and Astrocytoma) are jointly present on the 

slide possibly on non-overlapping regions. Third, because the patch-level model is never 

perfect and probably biased, an image-level decision fusion model may learn to correct the 

bias of patch-level decisions.

Because it is unclear at this time whether strongly discriminative features for cancer 

subtypes exist at whole slide scale [34], we fuse patch-level predictions without the spatial 

relationship between patches. In particular, the class histogram of the patch-level predictions 

is the input to a linear multi-class logistic regression model [8] or an SVM with Radial Basis 

Function (RBF) kernel [10]. Because a WSI contains at least hundreds of patches, the class 

histogram is very robust to miss-classified patches. To generate the histogram, we sum up all 

of the class probabilities given by the patch-level CNN. Moreover, we concatenate 

histograms from four CNNs models: CNNs trained at two patch scales for two different 

numbers of iterations. We found in practice that using multiple histograms is robust.

5. Experiments

We evaluate our method on two Whole Slide Tissue Images (WSI) classification problems: 

classification of glioma and Non-Small-Cell Lung Carcinoma (NSCLC) cases into glioma 

and NSCLC subtypes. Glioma is a type of brain cancer that rises from glial cells. It is the 

most common malignant brain tumor and the leading cause of cancer-related deaths in 

people under age 20 [1]. NSCLC is the most common lung cancer, which is the leading 

cause of cancer-related deaths overall [3]. Classifying glioma and NSCLC into their 

respective subtypes and grades is crucial to the study of disease onset and progression in 

order to provide targeted therapies. The dataset of WSIs used in the experiments part of the 

public Cancer Genome Atlas (TCGA) dataset [2]. It contains detailed clinical information 

and the Hematoxylin and Eosin (H&E) stained images of various cancers. The typical 

resolution of a WSI in this dataset is 100K by 50K pixels. In the rest of this section, we first 

describe the algorithm we tested then show the evaluation results on the glioma and NSCLC 

classification tasks.

5.1. Patch extraction and segmentation

To train the CNN model, we extract patches of size 500×500 from WSIs (examples in Fig. 

3). To capture structures at multiple scales, we extract patches from 20× (0.5 microns per 

pixel) and 5× (2.0 microns per pixel) objective magnifications. We discard patches with less 
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than 30% tissue sections or have too much blood. We extract around 1000 valid patches per 

image per scale. In most cases the patches are non-overlapping given WSI resolution.

To prevent the CNN from overfitting, we perform three kinds of data augmentation in every 

iteration. We select a random 400×400 sub-patch from each 500×500 patch. We randomly 

rotate and mirror the sub-patch. We randomly adjust the amount of Hematoxylin and eosin 

stained on the tissue. This is done by decomposing the RGB color of the tissue into the H&E 

color space [44], followed by multiplying the magnitude of H and E of every pixel by two 

i.i.d. Gaussian random variables with expectation equal to one.

5.2. CNN architecture

The architecture of our CNN is shown in Tab. 1. We used the CAFFE tool box [25] for the 

CNN implementation. The network was trained on a single NVidia Tesla K40 GPU.

5.3. Experiment setup

The WSIs of 80% of the patients are randomly selected to train the model and the remaining 

20% to test. Depending on method, training patches are further divided into i) CNN and ii) 

decision fusion model training sets. We separate the data twice and average the results. 

Tested algorithms are:

1. CNN-Vote: CNN followed by voting (average-pooling). We use all patches 

extracted from a WSI to train the patch-level CNN. There is no second-

level model. Instead, the predictions of all patches vote for the final 

predicted label of a WSI.

2. CNN-SMI: CNN followed by max-pooling. Same as CNN-Vote except the 

final predicted label of a WSI equals to the predicted label of the patch 

with maximum probability over all other patches and classes.

3. CNN-Fea-SVM: We apply feature fusion instead of decision level fusion. 

In particular, we aggregate the outputs of the second fully connected layer 

of the CNN on all patches by 3-norm pooling [50]. Then an SVM with 

RBF kernel predicts the image-level label.

4. EM-CNN-Vote/SMI, EM-CNN-Fea-SVM: EM-based method with CNN-

Vote, CNN-SMI, CNN-Fea-SVM respectively. We train the patch-level 

EM-CNN on discriminative patches identified by the E-step. Depending 

on the dataset, the discriminative threshold P1 for each image ranges from 

0.18 to 0.25; the discriminative threshold P2 for each class ranges from 

0.05 to 0.28 (details in Sec. 3). In each M-step, we train the CNN on all 

the discriminative patches for 2 epochs.

5. EM-Finetune-CNN-Vote/SMI: Similar to EM-CNN-Vote/SMI except that 

instead of training a CNN from scratch, we fine-tune a pretrained 16-layer 

CNN model [46] by training it on discriminative patches.

6. CNN-LR: CNN followed by logistic regression. Same as CNN-Vote 

except that we train a second-level multiclass logistic regression to predict 
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the image-level label. One tenth of the patches in each image is held out 

from the CNN to train the second-level multi-class logistic regression.

7. CNN-SVM: CNN followed by SVM with RBF kernel instead of logistic 

regression.

8. EM-CNN-LR/SVM: EM-based method with CNN-LR and CNN-SVM 

respectively.

9. EM-CNN-LR w/o spatial smoothing: We do not apply Gaussian 

smoothing to estimate P(H | X). Otherwise similar to EM-CNN-LR.

10. EM-Finetune-CNN-LR/SVM: Similar to EM-CNN-LR/SVM except that 

instead of training a CNN from scratch, we fine-tune a pretrained 16-layer 

CNN model [46] by training it on discriminative patches.

11. SMI-CNN-SMI: CNN with max-pooling at both discriminative patch 

identification and image-level prediction steps. For the patch-level CNN 

training, in each WSI only one patch with the highest confidence is 

considered discriminative.

12. NM-LBP: We extract Nuclear Morphological features [15] and rotation 

invariant Local Binary Patterns [37] from all patches. We build a Bag-of-

Words (BoW) [19, 53] feature using k-means followed by SVM with RBF 

kernel [10], as a non-CNN baseline.

13. Pretrained-CNN-Fea-SVM: Similar to CNN-Fea-SVM. But instead of 

training a CNN, we use a pretrained 16-layer CNN model [46] to extract 

features from patches. Then we select the top 500 features according to 

accuracy on the training set [50].

14. Pretrained-CNN-Bow-SVM: We build a BoW model using k-means on 

features extracted by the pretrained CNN, followed by SVM [50].

5.4. WSI of glioma classification

There are WSIs of six subtypes of glioma in the TCGA dataset [2]. The numbers of WSIs 

and patients in each class are shown in Tab. 2. All classes are described in App. A.

The results of our experiments are shown in Tab. 3. The confusion matrix is given in Tab. 4. 

An experiment showed that the inter-observer agreement of two experienced pathologists on 

a similar dataset was approximately 70% and that even after reviewing the cases together, 

they agreed only around 80% of the time [22]. Therefore, our accuracy of 77% is similar to 

inter-observer agreement.

In the confusion matrix, we note that the classification accuracy between GBM and Low-

Grade Glioma (LGG) is 97% (chance was 51.3%). A fully supervised method achieved 85% 

accuracy using a domain specific algorithm trained on ten manually labeled patches per 

class [35]. Our method is the first to classify five LGG subtypes automatically, a much more 

challenging classification task than the benchmark GBM vs. LGG classification. We achieve 
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57.1% LGG-subtype classification accuracy with chance at 36.7%. Most of the confusions 

are related to oligoastrocytoma (OA) since it is a mixed glioma that is challenging for 

pathologists to agree on, according to a neuropathology study: “Oligoastrocytomas contain 

distinct regions of oligodendroglial and astrocytic differentiation… The minimal percentage 

of each component required for the diagnosis of a mixed glioma has been debated, resulting 

in poor interobserver reproducibility for this group of neoplasms.” [9].

We compare recognition rates for the OA subtype. The F-score of OA recognition is 0.426, 

0.482, and 0.544 using PreCNN-Fea-SVM, CNN-LR, and EM-CNN-LR respectively. We 

thus see that the improvement over other methods becomes increasingly more significant 

using our proposed method on the harder-to-classify classes.

The discriminative patch (region) segmentation results in Fig. 4 demonstrate the quality of 

our EM-based method.

5.5. WSI of NSCLC classification

We use three major subtypes of Non-Small-Cell Lung Carcinoma (NSCLC). Numbers of 

WSIs and patients in each class are in Tab. 5. All classes are listed in App. A.

Experimental results are shown in Tab. 6; the confusion matrix is in Tab. 7. When classifying 

SCC vs. non-SCC, inter-observer agreement between pulmonary pathology experts and 

between community pathologists measured by Cohen’s kappa is κ = 0.64 and κ = 0.41 

respectively [21]. We achieved κ = 0.75. When classifying ADC vs. non-ADC, the inter-

observer agreement between experts and between community pathologists are κ = 0.69 and 

κ = 0.46 respectively [21]. We achieved κ = 0.60. Therefore, our results appear close to 

inter-observer agreement.

The ADC-mix subtype is hard to classify because it contains visual features of multiple 

NSCLC subtypes. The Pretrained CNN-Fea-SVM method achieves an F-score of 0.412 
recognizing ADC-mix cases, whereas our proposed method EM-Finetune-CNN-SVM 

achieves 0.472. Consistent with the glioma results, our method’s performance advantages 

are more pronounced in the hardest cases.

5.6. Rail surface defect severity grade classification

We evaluate our approach beyond classification of pathology images. A CNN cannot be 

applied to gigapixel images directly because of computational limitations. Even when the 

images are small enough for CNNs, our patch-based method compares favorably to an 

image-based CNN if discriminative information is encoded in image patch scale and 

dispersed throughout the images.

We classify the severity grade of rail surface defects. Automatic defect grading can obviate 

the need for laborious examination and grading of rail surface defects on a regular basis. We 

used a dataset [32] of 939 rail surface images with defect severity grades from 0 to 7. 

Typical image resolution is 1200×500, as in Fig. 5.
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To support our claim, we tested two additional methods:

1. CNN-Image: We apply the CNN on image scale directly. In particular, we 

train the CNN on 400×400 regions randomly extracted from images in 

each iteration. At test time, we apply the CNN on five regions (top left, top 

right, bottom left, bottom right, center) and average the predictions.

2. Pretrained CNN-ImageFea-SVM: We apply a pretrained 16-layer network 

[46] to rail surface images to extract features, and train an SVM on these 

features.

The CNN used in this experiment has a similar achitecture to the one described in Tab. 1 

with smaller and fewer filters. The size of patches in our patch-based methods is 64 by 64. 

We apply 4-fold cross-validation and show the averaged results in Tab. 8. Our patch-based 

methods EM-CNN-SVM and EM-CNN-Fea-SVM outperform the conventional image-based 

method CNN-Image. Moreover, results using CNN features extracted on patches (Pretrained 

CNN-Fea-SVM) are better than results with CNN features extracted on images (Pretrained-

CNN-ImageFea-SVM).

6. Conclusions

We presented a patch-based Convolutional Neural Network (CNN) model with a supervised 

decision fusion model that is successful in Whole Slide Tissue Image (WSI) classification. 

We proposed an Expectation-Maximization (EM) based method that identifies 

discriminative patches automatically for CNN training. With our algorithm, we can classify 

subtypes of cancers given WSIs of patients with accuracy similar or close to inter-observer 

agreements between pathologists. Furthermore, we experimentally demonstrate using a 

comparable non-cancer dataset of smaller images, that the performance of our patch-based 

CNN compare favorably to that of an image-based CNN. In the future we will leverage the 

non-discriminative patches as part of the data likelihood in the EM formulation. We will 

optimize CNN-training so that it scales up to larger scale pathology datasets.
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Appendix A. Description of cancer subtypes

GBM Glioblastoma, ICD-O 9440/3, WHO grade IV. A Whole Slide Image (WSI) is 

classified as GBM iff one patch can be classified as GBM with high confidence.

OD Oligodendroglioma, ICD-O 9450/3, WHO grade II.

OA Oligoastrocytoma, ICD-O 9382/3, WHO grade II; Anaplastic oligoastrocytoma, ICD-O 

9382/3, WHO grade III. This mixed glioma subtype is hard to classify even by pathologists 

[22].
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DA Diffuse astrocytoma, ICD-O 9400/3, WHO grade II.

AA Anaplastic astrocytoma, ICD-O 9401/3, WHO grade III.

AO Anaplastic oligodendroglioma, ICD-O 9451/3, WHO grade III.

LGG Low-Grade-Glioma. Include OD, OA, DA, AA, AO.

SCC Squamous cell carcinoma, ICD-O 8070/3.

ADC Adenocarcinoma, ICD-O 8140/3.

ADC-mix ADC with mixed subtypes, ICD-O 8255/3.
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Figure 1. 
A gigapixel Whole Slide Tissue Image of a grade IV tumor. Visual features that determine 

the subtype and grade of a WSI are visible in high resolution. In this case, patches framed in 

red are discriminative since they show typical visual features of grade IV tumor. Patches 

framed in blue are non-discriminative since they only contain visual features from lower 

grade tumors. Discriminative patches are dispersed throughout the image at multiple 

locations.

Hou et al. Page 14

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2016 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
An overview of our workflow. Top: A CNN is trained on patches. An EM-based method 

iteratively eliminates non-discriminative patches. Bottom: An image-level decision fusion 

model is trained on histograms of patch-level predictions, to predict the image-level label.
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Figure 3. 
Some 20× sample patches of gliomas and Non-Small-Cell Lung Carcinoma (NSCLC) from 

the TCGA dataset. Two patches in each column belong to the same subtype of cancer. 

Notice the large intra-class heterogeneity.
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Figure 4. 
Examples of discriminative patch (region) segmentation (best viewed in color). 

Discriminative regions are indicated in red. Diagnostic or highly discriminative regions are 

yellow. Non-discriminative regions are in black. Pathologist: ground truth by a pathologist. 

Max-pooling: results by CNN with the SMI assumption (SMI-CNN-SMI). The 

discriminative patches are indicated by red arrows. EM: results by our EM-based patch-level 

CNN (EM-CNN-Vote/SMI/LR). Notice that max-pooling does not segment enough 

discriminative regions.
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Figure 5. 
Sample images of rail surfaces. The grade indicates defect severity. Notice that the defects 

are in image patch scale and dispersed throughout the image.
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Table 1

The architecture of our CNN used in glioma and NSCLC classification. ReLU+LRN is a sequence of Rectified 

Linear Units (ReLU) followed by Local Response Normalization (LRN). Similarily, ReLU+Drop is a 

sequence of ReLU followed by dropout. The dropout probability is 0.5.

Layer Filter size, stride Output W×H×N

Input - 400 × 400 × 3

Conv 10 × 10, 2 196 × 196 × 80

ReLU+LRN - 196 × 196 × 80

Max-pool 6 × 6, 4 49 × 49 × 80

Conv 5 × 5, 1 45 × 45 × 120

ReLU+LRN - 45 × 45 × 120

Max-pool 3 × 3, 2 22 × 22 × 120

Conv 3 × 3, 1 20 × 20 × 160

ReLU - 20 × 20 × 160

Conv 3 × 3, 1 18 × 18 × 200

ReLU - 18 × 18 × 200

Max-pool 3 × 3, 2 9 × 9 × 200

FC - 320

ReLu+Drop - 320

FC - 320

ReLu+Drop - 320

FC - Dataset dependent

Softmax - Dataset dependent
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Table 3

Glioma classification results. The proposed EM-CNN-LR method achieved the best result, close to 

interobserver agreement between pathologists. (Sec. 5.4).

Methods Acc mAP

CNN-Vote 0.710 0.812

CNN-SMI 0.710 0.822

CNN-Fea-SVM 0.688 0.790

EM-CNN-Vote 0.733 0.837

EM-CNN-SMI 0.719 0.823

EM-CNN-Fea-SVM 0.686 0.790

EM-Finetune-CNN-Vote 0.719 0.817

EM-Finetune-CNN-SMI 0.638 0.758

CNN-LR 0.752 0.847

CNN-SVM 0.697 0.791

EM-CNN-LR 0.771 0.845

EM-CNN-LR w/o spatial smoothing 0.745 0.832

EM-CNN-SVM 0.730 0.818

EM-Finetune-CNN-LR 0.721 0.822

EM-Finetune-CNN-SVM 0.738 0.828

SMI-CNN-SMI 0.683 0.765

NM-LBP 0.629 0.734

Pretrained CNN-Fea-SVM 0.733 0.837

Pretrained-CNN-Bow-SVM 0.667 0.756

Chance 0.513 0.689
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Table 5

The numbers of WSIs and patients in each class from the TCGA dataset. Class descriptions are in App. A.

NSCLCs SCC ADC ADC-mix

# patients 316 250 75

# WSIs 347 291 80
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Table 6

NSCLC classification results. The proposed EM-CNN-SVM and EM-Finetune-CNN-SVM achieved best 

results, close to the inter-observer agreement between pathologists. See Sec. 5.5 for details.

Methods Acc mAP

CNN-Vote 0.702 0.838

CNN-SMI 0.731 0.852

CNN-Fea-SVM 0.637 0.793

EM-CNN-Vote 0.714 0.842

EM-CNN-SMI 0.731 0.850

EM-CNN-Fea-SVM 0.637 0.791

EM-Finetune-CNN-Vote 0.773 0.877

EM-Finetune-CNN-SMI 0.729 0.853

CNN-LR 0.727 0.845

CNN-SVM 0.738 0.856

EM-CNN-LR 0.743 0.856

EM-CNN-SVM 0.759 0.869

EM-Finetune-CNN-LR 0.784 0.883

EM-Finetune-CNN-SVM 0.798 0.889

SMI-CNN-SMI 0.531 0.749

Pretrained CNN-Fea-SVM 0.778 0.879

Pretrained-CNN-Bow-SVM 0.759 0.871

Chance 0.484 0.715
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Table 7

The confusion matrix of NSCLC classification.

Predictions

Ground Truth SCC ADC ADC-mix

SCC 199 26 0

ADC 30 155 11

ADC-mix 2 25 17
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Table 8

Rail surface defect severity grade classification results. Our patch-based method EM-CNN-SVM and EM-

CNN-Fea-SVM outperform image-based methods CNN-Image and Pretrained CNN-ImageFea-SVM 

significantly.

Methods Acc mAP

CNN-Vote 0.695 0.823

CNN-SMI 0.700 0.801

CNN-Fea-SVM 0.822 0.903

EM-CNN-Vote 0.683 0.817

EM-CNN-SMI 0.684 0.799

EM-CNN-Fea-SVM 0.830 0.908

CNN-LR 0.764 0.867

CNN-SVM 0.803 0.886

EM-CNN-LR 0.772 0.871

EM-CNN-SVM 0.813 0.895

SMI-CNN-SMI 0.258 0.461

Pretrained CNN-Fea-SVM 0.808 0.894

CNN-Image 0.770 0.876

Pretrained CNN-ImageFea-SVM 0.778 0.878

Chance 0.228 0.438
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