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Abstract

Lipidomics is a newly emerged discipline that studies cellular lipids on a large scale based on
analytical chemistry principles and technological tools, particularly mass spectrometry. Recently,
techniques have greatly advanced and novel applications of lipidomics in the biomedical sciences
have emerged. This review provides a timely update on these aspects. After briefly introducing the
lipidomics discipline, we compare mass spectrometry-based techniques for analysis of lipids and
summarize very recent applications of lipidomics in health and disease. Finally, we discuss the
status of the field, future directions, and advantages and limitations of the field.
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Lipidomics, a Newly Emerged Discipline in Bioscience

Lipids are crucial components of cellular membranes and lipid particles such as lipoproteins.
Lipids play many essential roles in cellular functions, including cellular barriers, membrane
matrices, signaling, and energy depots. Cellular lipids are highly complex; that is, there are
tens to hundreds of thousands molecular species at concentrations ranging from amol to
nmol/mg protein [1-3]. Cellular lipids are also highly dynamic; that is, they are changing
constantly with physiological, pathological, and environmental conditions. Lipids are
classified into a small number of classes and subclasses. Lipidomics (see Glossary) emerged
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in 2003 and has greatly advanced in recent years, largely due to the development of mass
spectrometry (MS) [4, 5].

Although a variety of reviews on lipidomics have been published recently [6-22], these have
had different focuses. The rapid advances in techniques and their applications make the
timely reviewing of these aspects necessary. Here, we first review MS-based techniques for
the analysis of lipids. These techniques are different in the absence or presence of liquid
chromatography (LC) prior to mass spectrometric analysis. They can also be different in
their analytical coverage (e.g., “targeted” vs“global” analysis). After comparing
techniques, we discuss the applications of lipidomics for a variety of disease states, which
have appeared in the last couple of years. Finally, we address how the current studies lead us
to the accomplishments for tomorrow in the last section.

Lipidomics Workflow and Techniques

Workflow

A typical workflow for lipidomic analysis of biological samples includes sample
preparation, mass spectrometry-based analysis (7.e., MS data acquisition), and data
processing (Figure 1).

Prior to any lipidomic analysis, proper sampling and sample storage is mandatory. Factors
affecting sampling conditions, sample preprocessing and storage, and selection of study
subjects (particularly in clinical lipidomics studies), have been extensively reviewed recently
[13, 23]. The properly collected samples are then prepared in a way that is suitable for the
adapted techniques. Most lipidomics techniques utilize biological extracts [24, 25] while MS
imaging largely uses non-extracted samples (e.g., tissue slices) [26]. During lipid
extraction (see Box 1 for common extraction methods), the addition of appropriate internal
standards is critical to quantitative lipidomic analysis [11]. Internal standards are commonly
added by normalization to total protein, wet/dry tissue weight, or fluid volume for lipid
quantitation (how to select internal standards has recently been extensively discussed [11]).
Another critical factor is to achieve sufficient efficiency and unbiased recovery of individual
lipid species from the biological materials [25].

Box 1
Common extraction methods used in lipidomics

1. Modified Bligh & Dyer method: Chloroform/methanol/H,0O (1:1:0.9,
vIvIv) for extraction of a small amount of biological sample (e.g., < 50
mg of tissue). After phase separation, total lipids are present in the
chloroform phase. This is a well-established standard method and
broadly practiced. The disadvantages include the use of hazardous
chloroform and the collection of chloroform extract from the bottom
layer (which may cause the carry-over of water soluble impurities and
difficulty in automation).
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2. Modified Folch method: Chloroform/methanol (2:1, v/v) to extract
biological tissue (e.g., ~ 0.1 g), then add water or 0.9% NaCl (0.2
volume) to wash the solvent extract. It has similar advantages and
disadvantages to modified Bligh & Dyer method.

3. MTBE method: methyl fert-butyl ether (MTBE)/methanol/water
(5:1.5:1.45, viviv). This method resolves some of the difficulties in
chloroform-involved methods because MTBE is present in the top layer
after phase separation, and therefore is more feasible for high
throughput and automation. A drawback is that the MTBE phase
contains a significant amount of aqueous component that may carry
over water soluble contaminants.

4. BUME method: A volume of butanol/methanol (BUME, 3:1, v/v) to a
small volume of aqueous phase, add an equal volume of heptane/ethyl
acetate (3:1, v/v), and then add 1% acetic acid (equal volume to
BUME) to induce phase separation. This method may compensate the
above methods with less water soluble contaminants carried over in the
organic phase. Its drawback is the difficulty in evaporation of butanol
component in the organic phase.

After extraction, some optional steps may be applied prior to MS analysis. One option is to
simplify the complexity of the extract, which is particularly important for a direct infusion-
based shotgun approach because it applies no chromatography for separation or enrichment
prior to MS analysis. This can be done through either physical approaches (e.g., liquid/liquid
partitioning or solid phase extraction to separate polar vs. non-polar lipids) [27] or chemical
approaches (e.g., base hydrolysis to enrich low abundance sphingolipids from complex lipid
extracts containing high abundance phospholipids and/or glycerolipids) [28, 29]. The other
option is to derivatize the extracts by chemically tagging specific functional groups of lipids
[10]. This option is mostly useful when lipids of interest lack either inherent charged
moieties (which prevents their efficient ionization), or lack characteristic or sensitive
fragmentation patterns during tandem mass spectrometry (MS/MS) analysis (which limits
the analytical sensitivity and specificity by precursor ion scan (PIS) or neutral loss scan
(NLS) in shotgun approaches or by selected/multiple reaction monitoring (SRM/MRM) in
LC-based approaches).

During MS analysis, lipid solutions are analyzed either by shotgun lipidomics [4, 30] or by
chromatography-based lipidomics, particularly LC-based lipidomics [31-33]. Alternatively,
the tissue slice or cell samples are directly submitted to MS imaging [26] (Figure 1). The
most popular MS ionization techniques are listed in Box 2.

Box 2

Frequently used ionization techniques in modern mass spectrometry for
lipidomics

Electrospray ionization (ESI)
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A soft ionization technique used in mass spectrometry that uses an electrospray produced
by applying a strong electric field to a liquid passing through a capillary tube to create a
fine aerosol from which ions are formed by desolvation.

Matrix-assisted laser desorption/ionization (MALDI)

A soft ionization technique used in mass spectrometry that allows the analysis of large
and/or labile molecules (e.g., peptides, proteins, lipids, and polymers) and is particularly
useful for MS imaging of tissue or cell samples. This technique involves embedding
analytes in a matrix that absorbs energy at the wavelength of the laser. The pulsed laser
irradiates the analytes, triggering ablation and desorption of the analytes and matrix
material to facilitate the ionization of the analyte molecules in the hot plume of ablated
gases.

Atmospheric pressure chemical ionization (APCI)

A soft ionization technique that utilizes gas-phase ion-molecule reactions at atmospheric
pressure. lonization occurs along a corona discharge electrode where the relative proton
affinities of the reactant gas ions (e.g., evaporated mobile phase or solvent in most cases)
and the gaseous analyte molecules allow either proton transfer/abstraction or adduct
formation to produce the molecular ions.

Atmospheric pressure photoionization (APPI)

A useful alternative ionization technique for analysis of compounds that ionize poorly by
ESI and APCI. This technique uses a vacuum-ultraviolet lamp designed for
photoionization detection in gas chromatography as a source of 10-eV photons. The
mixture of samples and solvent, after fully evaporated, is introduced into the
photoionization region where the dopant photoions react to completion with solvent and
analyte molecules because the ion source is at atmospheric pressure and the collision rate
is high.

Secondary ion mass spectrometry (SIMS) employing silver or gold ions as primary
ions

The most sensitive surface analytical technique that is used to analyze the composition of
solid surfaces or thin films by bombarding the surface with a focused primary ion beam
(e.g., silver, or gold ions) and collecting the ejected secondary ions that are introduced to
a mass spectrometer for analysis.

Desorption ESI (DESI)

An ambient ionization technique that is a combination of ESI and desorption ionization
methods. lonization occurs by pneumatically directing a charged electrospray mist to the
sample surface where subsequent splashed droplets carry desorbed, ionized analytes that
then travel into the atmospheric pressure interface of the mass spectrometer.

Following the ionization of lipids, the ion mobility technique can be applied as an option for
an additional dimension of ion manipulation and separation prior to MS analysis [34]. Next,
either Full MS or MS/MS analysis (see Box 3 for MS/MS techniques) or both can be
performed depending on whether a targeted or global analysis is desired. The MS analysis
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can be done using either low/unit mass resolution or high mass accuracy/mass resolution
instruments [35]. It should be recognized that the mass resolution higher than 75,000 around
m/z 800 appears required to avoid potential overlaps between lipid species and other
complications [36]. Following MS analysis, data are displayed as MS spectra, MS/MS
spectra, ion chromatogram (including total ion chromatogram (TIC) or extracted ion
chromatogram (XIC); LC-based approaches only), or images (MS imaging only).

Box 3
Commonly used tandem mass spectrometric techniques in lipidomics
Product ion scan

A tandem mass spectrometric technique where the first mass analyzer selects a specific
precursor ion while the second mass analyzer detects all the resultant fragment ions from
fragmentation of the selected precursor.

Precursor ion scan (PIS)

A tandem mass spectrometric technique where the first mass analyzer scans all the
precursor ions while the second mass analyzer monitors only the selected fragment ion.
The selected fragment ion corresponds to a common fragment ion of the precursors;
therefore, all the precursors that produce the specified fragment ion during fragmentation
are monitored.

Neutral loss scan (NLS)

A tandem mass spectrometric technique where the first mass analyzer scans all the
precursor ions while the second mass analyzer scans the fragment ions set at an offset
from the first mass analyzer. This offset corresponds to a common neutral loss from the
precursor ions; therefore, all the precursors that undergo the loss of the specified neutral
fragment are monitored.

Selected/multiple reaction monitoring (SRM/MRM)

A non-scanning tandem mass spectrometric technique used in targeted analysis that
performs on triple quadrupole-like instruments and uses two mass analyzers as static
mass filters to monitor a particular fragment ion of a selected precursor ion. The specific
pair of m/zvalues associated with the precursor and fragment ions selected is referred to
as a “transition”. Multiple reaction monitoring (MRM) is used to indicate the parallel
acquisition of multiple SRM transitions.

After data acquisition, spectral data are processed for mandatory deisotoping (for correction
of the effects of the presence of isotopic clusters on monoisotopic peak intensities) unless
the presence of an internal standard and calibration curve for individual species in the case
of LC-based lipidomics, followed by identification and quantification of individual lipid
species based on the analytical approaches (7.¢., shotgun, LC-MS, or imaging). Those
qualitative and quantitative lipid data are further processed by bioinformatic data mining
[37] to explore underlying mechanisms of lipid metabolism and its (dys)regulation in health
vs. disease, leading to applications in the biomedical sciences (see below), including the
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discovery of biomarkers or drug targets for diseases as well as guidance in precision/
personalized medicine and dietary intervention.

As shown in Figure 1, lipids can be analyzed either directly from the biological materials
(7.e., MS imaging) or after being extracted with organic solvents. For the latter, there are two
categories of MS-based approaches: shotgun or LC-based lipidomics. These approaches are
summarized in Table 1. The following is a brief comparison of the distinct and common
features of shotgun and LC-based approaches.

Biological lipid extracts are typically complex, including the diversity in lipid classes/
subclasses/molecular species and the vast dynamic range in the endogenous contents of
individual species. Therefore, reduction of the complexity of lipid extracts is essential for
reliable and accurate identification and quantification of individual species in the complex
extract. LC-based lipidomics achieves this utilizing separation science in addition to
enriching the low abundance species [33, 38]. In contrast, shotgun lipidomics is a high-
throughput approach but at expense of preserving the complexity of a lipid extract because
of the absence of pre-chromatographic separation. In the practice of shotgun lipidomics, the
complexity has been strategically reduced either during sample preparation as
aforementioned or during MS analysis via intrasource separation/selective ionization or
both [4, 11]. In addition, monitoring head-group related fragments that are characteristic to a
specific lipid class by MS/MS (Box 3) selectively detects molecular species within the class
without interference from other coexisting classes.

In addition to the difference in reducing the complexity of lipid extract, shotgun and LC-
based lipidomics are also different in their data output and, subsequently, the requisite data
analysis. The data acquired in shotgun platforms are solely mass spectra including full MS
and MS/MS spectra. Shotgun lipidomics identifies lipid species using either product ion
spectra or building block-related NLS/PIS spectra. Since identification of a large number of
lipid species requires the acquisition of numerous product ion spectra but a significantly
smaller number of building block-related NLS/PIS spectra, the latter is much more efficient.
The data outputted from LC-MS platforms include both chromatograms (e.g., TIC or XIC)
and mass spectra (e.g., full MS and MS/MS spectra including product ion and SRM/MRM
data). LC-MS lipidomics identify lipid species from both chromatogram (/.e., retention time)
and mass spectral data (e.g., product ion spectra of selected precursor ions, or SRM/MRM
from pre-knowledge of targeted precursors). Retention time adds a valuable feature to the
species identification in LC-MS approaches. However, the time restriction originating from
the “on-the-fly” chromatographic analysis markedly limits the number of the selected
precursor ions that can be fragmented during a single LC run. In contrast, all precursor ions
of interest are subjected to numerous MS/MS scans, beneficial from the “unlimited” time in
shotgun lipidomics.

For quantification, LC-MS platforms largely use the chromatogram data (/.e., peak areas)
while shotgun platforms use ion peak intensities detected in either full MS or MS/MS
spectral data or both. The advantages and limitations of both approaches have been
extensively reviewed [39].
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Although shotgun and LC-MS lipidomics approaches are different in multiple aspects, they
share common features too. One of the common features is that ESI- and MALDI-MS are
both applicable to these approaches although LC-MALDI-MS is operated off-line and not as
commonly used as LC-ESI-MS. Another common feature is that shotgun and LC-MS
approaches are both compatible to ion mobility MS [34] which adds an additional dimension
of separation. The third feature is that after data acquisition and processing for species
identification and quantification, same bioinformatics tools can be applied to the data from
both platforms [37, 40].

Applications of Lipidomics for the Biomedical Sciences

Metabolic syndrome

Metabolic syndrome is a serious health condition because the risk factors together
significantly raise the chances for metabolically related diseases, such as cardiovascular
diseases, diabetes, stroke, and non-alcoholic fatty liver disease, compared to any one factor
alone. Moreover, metabolic syndrome is becoming more common due to a rise in obesity
rates. Lipidomics can play a key role in mechanistic studies, risk prediction, and therapeutic
monitoring for metabolic syndrome-related diseases given the tight association of lipids with
these diseases [41]. Lipidomics has long been used for diabetes and obesity research and
these applications have been extensively reviewed elsewhere (Table 2). Lipidomics of
plasma and lipoprotein fractions has provided insights into the complexities of the high-
density lipoprotein (HDL) lipidome, unraveled the controversies surrounding HDL-based
therapies to attenuate vascular disease [42, 43], and identified phospholipids as a major
bioactive component of HDL [42, 44]. The application of lipidomics in vascular health
research and ischemic heart disease has demonstrated utilities in population profiling,
pathogenesis studies, identification of biomarkers, and monitoring of therapeutic responses
through the comprehensive and systematic quantitative analysis of multiple lipid classes
including oxidized lipids [45].

Neurological disorders

Cancer

The brain contains the highest amount of lipids. Naturally, neurological disorders are
associated with lipid signaling, metabolism, trafficking, and homeostasis. Lipidomics can be
used to investigate these aspects and to develop biomarkers for early diagnosis and prognosis
of these disorders. In fact, lipidomics has been employed to study brain complications since
its development [46]. Some recent representative studies on neurological diseases are
summarized in Table 2. Previous studies on brain disorders by lipidomics can be found in
the cited review articles (Table 2).

Lipids play many key roles in all of the basic processes essential for tumor development
[47]. For example, lipids play roles in cell growth and metabolism, which are essential for
rapidly proliferating cancer cells: non-esterified fatty acids are the major building blocks for
lipid biosynthesis and remodeling; cholesterol, phospholipids, and sphingolipids represent
the major structural components of cellular membranes; and triglycerides serve as the energy
storage depot, which, along with acyl CoA and acylcarnitine, are involved in energy

Trends Biochem Sci. Author manuscript; available in PMC 2017 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Yang and Han

Page 8

metabolism and ATP production. In addition, bioactive lipids, such as lysophospholipids,
play important roles in signaling, functioning as second messengers and as hormones in
cancer cells to promote cell proliferation, survival, and migration [48]. Similarly, hydrolysis
products of phosphatidylinositol and its phosphorylated derivatives are second messengers to
activate the PIsK/AKT signaling pathway [49]. The significance of this pathway in
chemotherapy and radiotherapy for human cancers is well recognized [49]. It is not
surprising that cancer cells undergo profound changes in lipid metabolism and homeostasis,
thus offering new diagnostic and therapeutic opportunities that could be unraveled by
lipidomics. Body fluids serve as a source of biomarkers for early diagnosis of cancers, as
their lipid profiles reflect the general condition of the whole organism. In addition to
identifying biomarkers, qualitative and quantitative assessment of lipids in blood and other
body fluids may be also useful in monitoring the efficacy and toxicity of anticancer
treatment. Some representative lipidomics studies on cancer research from the past couple of
years are tabulated (Table 2).

Eye diseases

Nutrition

Lipidomics has enabled analysis of lipids in vision research and ophthalmology to
understand and diagnose eye disease (Table 2). Human meibomian lipids, after mixing with
aqueous tears, form the tear film to protect delicate ocular structures from desiccating.
Lipidomics has provided insights into the stability of tear film and biomarkers for diagnosis,
prognosis and treatment of ocular surface diseases [50, 51]. Lipidomics has also enabled
effective lipid-based therapy to replenish tear film lipids for modulating ocular surface
inflammation and disease [52]. In addition, mediator lipidomics that focuses on the analysis
of lipid-derived bioactive molecules such as lipid second messengers and lipid regulators has
targeted ophthalmological processes. Some recent applications of lipidomics on eye diseases
are summarized in Table 2.

Nutritional lipidomics provides a comprehensive view of lipids in nutrition, but its
translation to practice via nutritional interventions is still in its infancy [53]. Lipidomics can
be effectively used in nutrition research to understand diet-dependent changes in the
structure, composition, and function of cellular lipids. Lipidomics can also be used in
nutrition study to assign the functions of lipids as signaling molecules, nutrient sensors, and
intermediates of metabolic pathways, and to elucidate the interactions between nutrients and
human metabolism (Table 2). In addition, lipidomics can evaluate the dietary intake in a
more standardized and precise way for monitoring the acute, medium term, and chronic
effects of dietary components, and may provide nutritional advice to guarantee lifelong
optimized health [54, 55]. Lipidomics has provided insights into the molecular mechanism
underlying the health benefits of dietary w-3 polyunsaturated fatty acids (PUFA) and the
regulatory role of w-3 and -6 fatty acids in the inflammatory response [56, 57]. The wise use
of lipidomics should be an essential part of future -3 trials [57].

Drug discovery and screens

Lipidomics provides new insights into pharmaceutical research through implementing
lipidomics in drug target discovery, screening, toxicity evaluation, preclinical testing,
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prediction and monitoring of response, and personalized medicine (Table 2). For example, a
major interest in ge novo lipogenesis inhibitors is their proapoptotic effects on cancerous
cells. Lipidomics can be used to screen a large variety of candidate anticancer drugs for
those that inhibit de novo lipid synthesis [58] and to identify novel drug efficacy biomarkers
[59, 60].

Multi-omics and personalized medicine

A new direction for omics in the biomedical sciences is the reclassification of diseases from
a molecular perspective thus playing a key role in personalized medicine [60]. The
complexity in health and disease requires multi-omics with each complementing the
information provided by the others to understand the biology of the whole system [61]. The
elucidation of the crosstalk among different systems can contribute to the discovery of
accurate and robust biomarkers at various disease stages for the development of systems
medicine [62]. Novel biomarkers can improve risk stratification and patient selection for
better treatment response [15], allow the development of the next generation of therapeutics,
and help in the prediction and monitoring of treatment efficacy and response to therapeutic
measures [15, 60, 63, 64]. Among multi-omics (mainly represented by genomics,
proteomics and metabolomics), metabolomics (including lipidomics) is the latest addition to
the omics family. Distinct from the other omics, metabolomics measures the metabolites that
are closely related to the phenotypes and thereby are directly connected with biological
conditions and disease states [61, 65]. Integration of multiple omics techniques is moving
the biomedical field towards personalized medicine as the ultimate paradigm of responsible
clinical practice [66] (Table 2). Translational bioinformatics plays an essential role in this
transition by bridging the gap among different knowledge domains for the translation of the
enormous data set collected from multi-omics into the simulation of complex systems and
predictive models for achieving predictive, preventive and personalized medicine [60, 62].

Outcomes and Perspectives

Summary of the state of current knowledge: advantages and limitations

Since the emergence of the lipidomics discipline in 2003, the advancing analytical
technologies have greatly driven the field to essentially all biological and biomedical areas
(Table 2). These technologies include soft ionization methods and other techniques (e.g., ion
mobility) in mass spectrometry, separation science such as ultra-performance LC and
nanomaterials, analysis of direct infusion (e.g., shotgun lipidomics and MS imaging), and
novel bioinformatic strategies and libraries (Figure 1 and Table 1). Lipidomics has led us to
identify new signaling molecules, reveal the underlying mechanisms responsible for
patho(physio)logical conditions, discover potential biomarkers for early diagnosis and
prognosis of diseases, screen drug targets and/or test drug efficacy, guide nutritional
intervention, and achieve personalized medicine. These accomplishments are due to not only
technique development, but also to the nature of lipidomics in being able to comprehensively
analyze hundreds to thousands of lipid species at its current development [10, 32, 67, 68]
and to study lipid metabolism [69].
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Regardless of the tremendous advances made in recent years, a few areas of technological
progress are still desirable. First, whether individual lipid species can be accurately
quantified with current methods is still under debate [11]. Currently, the identification and
quantification of individual signaling lipid species, including chiral isomers for eicosanoids,
positional isomers of polyphosphoinositides, phospholipids carrying modified fatty acids, a
variety of sphingoids, and numerous intermediate metabolites, are still not fully achievable.
In addition, coverage of the entire cellular lipidome is still in dream. Moreover,
bioinformatics for interpreting large sets of lipidomics data is largely limited to the levels of
lipid classes for the construction of metabolic pathways and network. Currently, the access
to the levels of individual lipid species in pathway mapping remains problematic. Finally, a
definitive unraveling of the biochemical mechanisms responsible for a disease state is still
rare. Accordingly, great efforts are needed for all of these areas.

The most productive avenues for future research

Lipidomics, at its current stage, has been developed in two directions: either targeted or
global analysis. The former is mostly used for studying signal processing, while the latter is
very powerful for studying lipid metabolism, molecular mechanisms and biomarker
discovery. Derivatization appears to be very useful for the development of targeted
approaches for both shotgun and LC-based lipidomics [10]. In global analysis, an increase in
the coverage of lipid classes and molecular species is critical. The broader the coverage is,
the better the approach allows us to map the entire metabolic pathways of lipid classes/
subclasses and individual species of a system and to better understand the inter-relationship
between these classes and species within a metabolic pathway or between the metabolic
networks. Luckily, different approaches have already demonstrated their power for
“visualizing” and understanding the changes of hundreds to thousands of individual species
[3, 40, 67, 68]. However, further increases in the coverage of lipid classes and individual
species (particularly for those very low abundance species) using an automated, high
throughput manner in any platform remain demanding.

The usefulness and power of bioinformatics for interpreting lipidomics data based on mass
spectral simulation or dynamic modeling has already been demonstrated [70, 71]. However,
these successes are only in isolated studies on different clustered pathways. Similar
modeling or novel approaches for analysis of a more comprehensive network or ideally for
the entire cellular lipidome are still warranted. Furthermore, as the technologies for
lipidomics advance, interweaving of this discipline with other fields becomes demanding.
Integration of lipidomics with other omics strategies could maximize the power of
lipidomics for understanding the molecular mechanisms underpinning diseases [72, 73].
Thus, in addition to broadening the coverage of lipid analysis, one of the logical future
directions in the field should be to integrate lipidomics data with genetic, transcriptional, and
enzyme data to perform metabolic pathway reconstruction and flux analyses. The
reconstruction of lipid metabolism pathways require novel strategies for pathway mapping
of lipid data at the molecular species levels instead of at lipid class/subclass levels [40].
Given the structural diversity of lipid classes and species, these tasks are challenging and
require a combination of novel and existing bioinformatics resources.
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Studying the dynamic changes of a limited set of lipid classes and/or species via lipidomics,
through simple stable isotope labeling, has been well practiced [74, 75]. However, studies on
assessing enzymatic activities, lipid turnover kinetics, and the effects of individual enzyme
activation on lipid homeostasis in a metabolic pathway and/or network are missing. This
type of research apparently requires lipidomics techniques possessing sensitive, high
throughput, and broad coverage capabilities. Furthermore, more complex studies on the
fluxomics scale are needed to reveal the reaction rates in lipid metabolism. These kinds of
studies in lipidomics should enable the comprehensive determination of lipid metabolism at
the molecular level and provide a true understanding of the roles of lipids in the biomedical
sciences.

Finally, as advanced in the sensitivity of modern MS instrumentation, the lower limit of
detection at the concentration of amol/mg protein of tissue or cell, or amol/ml of body fluid
has been frequently reported in the literature. This concentration is within the range of that
in single cells. Therefore, the interest in single cell lipidomics has been greatly raised at the
recent related conferences and workshops. In fact, single cell lipidomics is held back more
from the obstacles of sample preparation than MS detection [76]. It can be foreseen that this
goal is achievable in the near future.
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Biomarker

a characteristic that is objectively measured and evaluated accurately and reproducibly as an
indicator of normal biological processes, pathogenic processes, or pharmacologic responses
to a therapeutic intervention.

Deisotoping
the removal of mass spectral complications due to the presence of isotopic clusters.

Fluxomics

metabolic flux analysis that integrates /n7 vivo measurements of metabolic fluxes with
stoichiometric network models to allow determining absolute flux through large metabolic
networks.

Global analysis of lipids
an untargeted analysis that comprehensively analyzes the entire or partial cellular lipidome
and aims at detecting every lipid species present in the sample.

Intrasource separation/selective ionization

separation of the distinct lipid classes that occur in the electrospray ion source through
electric field-induced selective ionization of molecular species possessing differential charge
propensities.
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lon mobility spectrometry (IMS)

an analytical technique that separates and identifies ionized molecules in the gas phase based
on their mobility in a carrier buffer gas. The methods include drift-time, aspiration,
differential, and traveling-wave IMS.

Lipid extraction

a procedure that separates cellular or fluid lipids from the other constituents but also
preserves these lipids for further analyses. Most procedures exploit the high solubility of
lipids in organic solvents.

Lipidomics

the large-scale study of pathways and networks of cellular lipids in biological systems.
Lipidomics research studies the structure and function of the complete set of lipids (the
lipidome) in a given cell or organism as well as their interactions with other cellular
components.

Liquid chromatography (LC)-based lipidomics
the lipidomics approaches that employ LC to separate the complex lipid classes and/or
individual lipid species prior to MS analysis.

Mass spectrometry imaging (MS imaging)
an /n situtechnique used in MS to visualize the spatial distribution of chemical compositions
by their molecular masses and/or characteristic fragment ions.

Metabolic syndrome

a complication due to a group of risk factors for metabolically related diseases. The factors
include a large waistline, a high triglyceride level, a low high-density lipoprotein (HDL)
cholesterol level, high blood pressure, and high fasting blood sugar.

Metabolic network

the complete set of metabolic processes that determine the biochemical properties of a cell.
Analysis of metabolic network identifies the relative activities of its individual branches
(metabolic pathways) and provides insights into the molecular mechanisms.

Precision/Personalized medicine

providing the right patient with the right drug at the right dose at the right time. More
broadly, it may be thought of as the tailoring of medical treatment to the individual
characteristics, needs and preferences of a patient during all stages of care, leading to better
individual treatment.

Shotgun lipidomics

direct-infusion based lipidomics approaches that analyze lipids without pre-chromatographic
separation of lipids prior to mass spectrometry. A unique feature of shotgun lipidomics is
analyzing lipids under constant concentration conditions.

Tandem mass spectrometry (tandem MS or MS/MS or MS?)
the MS technique that involves fragmentation of precursor ions and monitoring of both
precursor ions and resultant product (or fragment) ions (see Box 3 for details).

Trends Biochem Sci. Author manuscript; available in PMC 2017 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Yang and Han Page 13

Targeted analysis of lipids
the lipidomics approach that focuses on known lipids, and develops a specific method with a
high sensitivity for quantitative analysis of these lipids.
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Outstanding Questions

Can we broaden the analysis coverage of lipid classes and individual molecular
species to achieve full coverage of the cellular lipidome?

Although advances in mass spectrometry have dramatically increased analytical
sensitivity and specificity, and therefore greatly broadened coverage including of lower
abundance species, there is still a long way to go to uncover the entire lipidome of certain
organisms. Coverage improvements are needed for both known entities (that are difficult
to analyze largely because of their very low abundance, isomer differentiation, and
variety of acyl chain modifications) and unknown entities.

Can we construct the entire metabolic network at the level of lipid classes and
individual molecular species?

Bioinformatics has shown its use and power in interpreting lipidomics data through
simulation, modeling, pathway mapping, and network construction. However, the
establishment of the entire metabolic network at the lipid molecular species level is still
in its infancy and will require contributions from multidisciplinary scientific fields.

How do lipid dynamics and metabolism translate into in-depth insights into the
roles of lipids in the biomedical sciences?

Although the dynamics of lipid classes and molecular species have been studied (e.g.,
through metabolic flux analysis), an evaluation of lipid turnover kinetics and the effects
of enzyme (de)activation after perturbation of lipid homeostasis on metabolic pathways/
networks is still missing. This is largely due to the need for high sensitivity, high
throughput, and broad coverage lipidomics techniques, which are still under
development.

Can we integrate lipidomics with other omics strategies to maximize understanding
of the molecular mechanisms underlying diseases?

Metabolomics (including lipidomics) measures metabolites that are closely related to the
phenotypes of pathophysiological conditions. The complexity of human disease requires
multi-omics approaches where each omics dataset complements the information provided
by the others to elucidate systems-level biology. Given the structural diversity of lipid
classes and species, integration of lipidomics with other omics is challenging and
demands novel bioinformatics resources.
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Trends

‘Lipidomics’ applies to studying lipid metabolism on a broad scale.
Lipidomics may elucidate the biochemical mechanism(s) underlying
specific changes in lipid metabolism.

Advances in mass spectrometry have greatly accelerated the lipidomics
field. Chemical derivatization has shown its broad use in improving
analytical sensitivity and specificity in lipidomics.

Multi-omic data integration is challenging but necessary to uncover the
mechanism(s) responsible for the lipid metabolism changes of a biological
system after perturbation.

Dynamic lipidomics for assessing lipid turnover kinetics and the effects of
individual enzyme (de)activation on lipid homeostasis remains challenging.

Single cell lipidomics characterizes the unique chemical composition of
individual cells, and is on the agenda of advancing lipidomics.
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A typical workflow of lipidomic analysis of biological samples. Lipidomic analysis of
biological samples includes sample preparation, mass spectrometry-based analysis (7.e., MS
data acquisition), and data processing. MS: mass spectrometry; MS/MS: tandem mass
spectrometry; LC: liquid chromatography; 1.S.: internal standard; ESI: electrospray
ionization; MALDI: Matrix assisted laser desorption/ionization; APCI: Atmospheric
pressure chemical ionization; APPI: Atmospheric pressure photoionization; SIMS:
Secondary ion mass spectrometry; TIC: total ion chromatogram; XIC: extracted ion

chromatogram.
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