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SUMMARY

The log-rank test is widely used to compare two survival distributions in a randomized clinical 

trial, while partial likelihood (Cox, 1975) is the method of choice for making inference about the 

hazard ratio under the Cox (1972) proportional hazards model. The Wald 95% confidence interval 

of the hazard ratio may include the null value of 1 when the p-value of the log-rank test is less than 

0.05. Peto et al. (1977) provided an estimator for the hazard ratio based on the log-rank statistic; 

the corresponding 95% confidence interval excludes the null value of 1 if and only if the p-value 

of the log-rank test is less than 0.05. However, Peto’s estimator is not consistent, and the 

corresponding confidence interval does not have correct coverage probability. In this paper, we 

construct the confidence interval by inverting the score test under the (possibly stratified) Cox 

model, and we modify the variance estimator such that the resulting score test for the null 

hypothesis of no treatment difference is identical to the log-rank test in the possible presence of 

ties. Like Peto’s method, the proposed confidence interval excludes the null value if and only if the 

log-rank test is significant. Unlike Peto’s method, however, this interval has correct coverage 

probability. An added benefit of the proposed confidence interval is that it tends to be more 

accurate and narrower than the Wald confidence interval. We demonstrate the advantages of the 

proposed method through extensive simulation studies and a colon cancer study.
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1. Introduction

For analysis of potentially censored survival time or other event time data in a randomized 

clinical trial, investigators typically use the log-rank test, which is a nonparametric method 

for testing the equality of two survival distributions. To reflect the magnitude of the 

treatment difference, investigators often supplement the log-rank test with estimation of the 

hazard ratio under the Cox model. In general, one can use the confidence interval to perform 

hypothesis testing in that exclusion of the null parameter value from the (1 − α) confidence 

interval implies rejection of the null hypothesis at the α nominal significance level. 

However, the Wald confidence interval for the hazard ratio, which is based on the maximum 

partial likelihood estimator (MPLE) and the corresponding Fisher information matrix, may 

not reject the null hypothesis of no treatment difference when the log-rank test does. 

Although the log-rank test and the Wald confidence interval are based on different statistics 

and thus need not yield the same conclusion, conflicting results can be disconcerting to 

investigators and regulatory agencies. In particular, if the log-rank p-value is less than 0.05 

but the Wald 95% confidence interval includes the hazard ratio of 1, should one conclude 

that the trial is positive or negative?

Peto et al. (1977) provided a closed-form estimator of the hazard ratio and the corresponding 

variance estimator by using the log-rank statistic and its variance estimator. Although the 

original intent was to avoid iterative calculations, this method has the nice property that the 

(1 − α) confidence interval excludes the null value of 1 if and only if the log-rank test is 

significant at the α level. However, Peto’s estimator is not a consistent estimator of the 

hazard ratio, and the corresponding confidence interval does not have correct coverage 

probability. Furthermore, the use of Peto’s method deviates from the convention of adopting 

the partial likelihood methodology for estimation of the hazard ratio.

To resolve the aforementioned difficulties, we construct the confidence interval by inverting 

the partial-likelihood score test under the Cox model. That is, the (1 − α) confidence interval 

for the hazard ratio consists of the parameter values that are not rejected by the score tests at 

the α level. Although the score statistic for testing the null hypothesis of no treatment 

difference is the same as the log-rank statistic, the variance estimators for the two statistics 

are different when there are ties (i.e., multiple patients with the same observed survival 

times). Thus, we propose a simple modification to the partial-likelihood information matrix 

such that the resulting score test for the null hypothesis of no treatment difference is 

numerically identical to the log-rank test, with or without ties. The proposed method enjoys 

the nice feature of Peto’s method that the confidence interval excludes the null value of 1 if 

and only if the log-rank test is significant. Unlike Peto’s method, however, the proposed 

confidence interval has correct coverage probability (at least for large sample sizes) and is in 

line with the partial likelihood methodology. Another benefit of the proposed confidence 

interval is that it tends to be more accurate and narrower than the Wald confidence interval. 

We demonstrate these advantages through extensive simulation studies and provide a 

detailed illustration with data from a colon cancer clinical trial.
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2. Methods

We consider a randomized clinical trial with two treatment arms and allow the possibility of 

stratified randomization. Suppose that there are K strata with nk patients in the kth stratum. 

(Unstratified randomization is a special case with K = 1.) For k = 1, …, K and i = 1, …, nk, 

let Tki denote the survival time for the ith patient of the kth stratum, and let Xki denote the 

corresponding indicator of the new treatment versus control. We specify the stratified Cox 

model

(1)

where β is the log hazard ratio, and λk0(·) (k = 1, …, K) are arbitrary baseline hazard 

functions (Kalbfleisch and Prentice, 2002, p. 118).

Let Cki denote the censoring time for Tki such that the observation consists of T̃
ki ≡ min(Tki, 

Cki) and Δki ≡ I(Tki ≤ Cki), where I(·) is the indicator function. We obtain an efficient 

estimator of β by maximizing the partial likelihood function

The corresponding score function is

(2)

and the corresponding information matrix is

(3)

where .

Denote the maximizer of L(β) by β̂, which is obtained by the Newton-Raphson algorithm. 

For large samples, the score statistic U(β) is approximately normal with mean 0 and variance 

ℐ(β), and the MPLE β̂ is approximately normal with mean β and variance ℐ−1(β̂) (Andersen 

and Gill, 1982). Thus, the Wald confidence interval for β with coverage probability of (1 − 

α) is

(4)
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where z1−α/2 is the (1 − α/2)100th percentile of the standard normal distribution. The 

confidence interval for the hazard ratio eβ is obtained by exponentiating the lower and upper 

limits.

To test the null hypothesis H0 : β = 0, we use the score test statistic U2(0)/ℐ(0), which is 

referred to the  distribution. This test statistic is the same as the log-rank test statistic when 

there are no ties. In the presence of ties, U(0) is still the numerator of the log-rank test, but 

ℐ(0) is no longer the denominator of the log-rank test. To resolve this discrepancy, we 

propose to modify ℐ(β) in (3) as follows:

(5)

where , and . Then U2(0)/ℐ̃(0) is 

numerically identical to the log-rank test statistic whether there are ties or not (Kalbfleisch 

and Prentice, 2002, pp. 107–108).

Remark 1

In ℐ̃(β), Rki is the number of patients in the kth stratum who are under observation at time 

T̃
ki, and Dki is the number of patients in the kth stratum who are observed to die at time T̃

ki. 

Clearly, ℐ̃(0) is smaller than ℐ(0) when there are ties.

With the modified variance estimator, the score test statistic for testing the hypothesis β = β0 

is U2(β0)/ℐ̃(β0), which is (asymptotically) -distributed if the hypothesis holds. Thus, the 

following confidence interval has (1 − α) coverage probability:

(6)

where  is the (1 − α)100th percentile of the  distribution. As shown in Figure 1, the 

U-shaped function U2(β)/ℐ̃(β) intersects the horizontal line  at two values of β, the 

smaller of which is the lower limit of the interval and the larger of which the upper limit. 

The lower and upper limits, denoted by L1−α and U1−α, respectively, can be determined by 

the bisection method. The confidence interval for the hazard ratio is obtained by 

exponentiating the two limits. Since 0 is contained in (6) if and only if , 

this confidence interval excludes the log hazard ratio of 0 (or hazard ratio of 1) if and only if 

, i.e., the log-rank test is significant at the α level.

The Wald confidence interval given in (4) excludes the value 0 if and only if 

. Because β̂2ℐ(β̂) is generally different from U2(0)/ℐ̃(0), it is possible for 

the Wald confidence interval to include the null value of 0 when the log-rank test is 

significant. This discrepancy may occur even if ℐ(β̂) is replaced by ℐ̃(β̂).
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With 0 as the initial value for β, the first step in the Newton-Raphson algorithm for 

calculating the MPLE is

which is Peto’s estimator for β (Peto et al., 1977; Yusuf et al., 1985). The variance estimator 

for β̃ is 1/ℐ̃(0). The corresponding (1 − α) confidence interval is

Because β2̃ℐ̃(0) = U2(0)/ℐ̃(0), this confidence interval excludes the null value of 0 if and 

only if the log-rank test is significant at the α level. However, we show in the Appendix that 

β̃ is not a consistent estimator of β (unless the true value is 0), such that this confidence 

interval generally does not have correct coverage probability.

Remark 2

The Wald confidence interval is symmetric at β̂, whereas Peto’s confidence interval is 

symmetric at β̃. The score confidence interval is not symmetric at either estimator. If the log-

rank p-value is exactly 0.05 and U(0) < 0, then the upper limits of the 95% confidence 

intervals for the score and Peto’s methods are both 0, but the lower limits are unlikely to be 

the same. In general, both the lower and upper limits are different among the three methods.

3. Simulation Studies

We conducted extensive simulation studies to compare the methods described in the 

previous section. We considered unstratified randomization with an equal allocation of 

patients to the two treatments. We generated survival times from model (1) with K = 1, n = 

100, 200 or 500, λ(t) = 1 (i.e., standard exponential distribution), and β ranging from 0 to 1. 

In addition, we generated censoring times from the Uniform(0, τ) distribution, where τ was 

chosen to yield 50% or 80% censored observations. To create ties, we partitioned the time 

axis into equal intervals and replaced all of the survival times within the same interval by the 

midpoint of the interval. For each scenario, we used 100,000 replicates to calculate the 

summary statistics, such as bias and power. We present the results for the setting of no ties in 

Figures S1–S4 in the Supplementary Materials.

Figure S1 shows the results on the MPLE and Peto’s estimator for β. The MPLE is biased 

when n is small and censoring is heavy, but the bias diminishes rapidly as n increases. Peto’s 

estimator tends to be positively biased under 50% censoring and negatively biased under 

80% censoring. The bias tends to get larger as the value of β increases and does not change 

appreciably with n.

Figure S2 displays the coverage probabilities of the Wald, score, and Peto’s methods. The 

Wald confidence interval tends to be conservative, especially for small n and heavy 

censoring. The score confidence interval has accurate coverage probability. Peto’s method 
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does not have correct coverage probability unless β is close to 0, and its coverage probability 

tends to worsen as the value of β increases.

Figure S3 compares the width of the score and Wald confidence intervals, while Figure S4 

compares the power of the log-rank and Wald tests. The score confidence interval tends to be 

narrower than the Wald confidence interval. In addition, the log-rank test is always more 

powerful than the Wald test. The differences diminish as n increases.

We present the results for the setting of 20% ties in Figures S5–S8 of the Supplementary 

Materials. The basic conclusions remain the same.

4. Colon Cancer Study

In a clinical trial of adjuvant therapy for patients with resected colon cancer, 315, 310, and 

304 patients with Stage C disease were randomly assigned to observation, levamisole alone, 

and levamisole combined with fluorouracil, respectively (Moertel et al., 1990). Enrollment 

of patients began in March 1984 and was completed in October 1987. Overall survival was 

the primary endpoint of interest. At the second planned interim analysis in September 1989, 

the results met the protocol criteria for early termination and early reporting. Over the study 

period, 114, 109, and 78 patients died in the observation, levamisole alone, and levamisole

+fluorouracil groups, respectively.

As an example, we compared the observation and combination therapy groups. The MPLE 

of the log hazard ratio is −0.398 with a standard error estimate of 0.147, and the 

corresponding Wald p-value is 0.0068. By contrast, the log-rank p-value is 0.0064. We then 

selected the first n patients that entered the trial, varying n from 5 to 619. For all 615 choices 

of n, the log-rank p-values are smaller than the Wald p-values. There are four values of n at 

which the Wald p-value is greater than 0.05 whereas the log-rank p-value is less than 0.05. 

Specifically, for n =62, 69, 89, and 154, the Wald p-values are 0.051, 0.055, 0.051, and 

0.051, respectively, whereas the log-rank p-values are 0.045, 0.049, 0.047, and 0.048, 

respectively.

We focused on the first 154 patients. There are 1 and 4 (two-way) ties in the observation and 

combination therapy groups, respectively. The Peto estimate of the log hazard ratio is −0.515 

with a standard error estimate of 0.261, such that the 95% confidence interval is (−1.027, 

−0.0034), which excludes the null value 0. The MPLE is −0.522 with a standard error 

estimate of 0.267, and the Wald 95% confidence interval is (−1.046, 0.0024), which covers 

the null value and thus contradicts with the log-rank p-value. The score-based 95% 

confidence interval is (−1.040, −0.0034), which excludes the null value and thus agrees with 

the log-rank test. Figure 1, which was originally presented in Section 2, pertains to the 

construction of this confidence interval.

For further illustration, we analyzed the data by stratifying on the number of lymph nodes. 

The log-rank and Wald p-values are 0.019 and 0.021, respectively; these significant results 

support the finding of the unstratified log-rank test. The MPLE is −0.640 with a standard 

error estimate of 0.277, and Peto’s estimate is −0.628 with a standard error estimate of 

0.267, such that the Wald and Peto’s 95% confidence intervals are (−1.182, −0.097) and 
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(−1.151, −0.104), respectively. The score-based 95% confidence interval is (−1.176, 

−0.103). All three confidence intervals exclude the null value and are thus in agreement with 

the score-based confidence interval in the unstratifed analysis.

5. Discussion

We have provided a simple solution to the disconcerting dilemma of conflicting results 

between the log-rank test and the Wald confidence interval for the hazard ratio. The 

(modified) score test statistic under the (possibly stratified) Cox model provides a unified 

framework for making inference about the hazard ratio and is in line with the current 

practice of using the log-rank test for hypothesis testing and the partial-likelihood 

methodology for parameter estimation. First, the minimizer of the score test statistic is the 

MPLE. Second, the score test for the null hypothesis of no treatment difference is the same 

as the log-rank test. Finally, the proposed confidence interval excludes the null value if and 

only if the log-rank test is significant. We have posted the relevant software on our website: 

http://dlin.web.unc.edu/software/

We have handled ties by the commonly used Breslow (1974) method, which is the default in 

SAS. The corresponding score statistic U(β) evaluated at β = 0 is exactly the log-rank 

statistic. The use of the information matrix ℐ(β) to estimate the variance of U(β) was 

justified by the counting-process martingale theory (Andersen and Gill, 1982). By contrast, 

the variance of the log-rank statistic was derived from the hypergeometric arguments 

(Mantel, 1966). By convention, we use ℐ−1(β̂) to estimate the variance of β̂ and ℐ̃(0) to 

estimate the variance of the log-rank statistic. We use ℐ̃(β) in the score test statistic, such 

that it will reduce to the log-rank test statistic under β = 0. Cox (1972) handled ties by 

applying a likelihood argument to a discrete logistic model. The resulting score function and 

information matrix evaluated at β = 0 are exactly the log-rank statistic and its variance 

estimator, respectively (Cox and Oakes, 1984, p. 104). However, the discrete-model 

likelihood does not yield a consistent estimator of β in model (1) if ties arise from the 

grouping of continuous survival times (Kalbfleisch and Prentice, 2002, p. 107).

Peto’s method was originally proposed to simplify computation. For small data sets, one can 

calculate the log-rank statistic by hand and then obtain the point estimate of the hazard ratio 

by Peto’s closed-form formula. With modern computing power, however, it takes very little 

time to calculate the MPLE by the Newton-Raphson algorithm, which usually converges in a 

few iterations. For large data sets, one has to resort to computer to perform the log-rank test 

anyway. Indeed, no one calculates the log-rank statistic by hand nowadays, even for small 

data sets.

Pike (1972) also provided a closed-form estimator for the hazard ratio based on the log-rank 

statistic. Simulation studies showed that Pike’s estimator tends to be less biased than Peto’s 

estimator (Berry et al., 1991). However, Pike’s estimator is not consistent either, and the 

corresponding confidence interval may not yield the same conclusion as the log-rank test. In 

general, it is not a good statistical practice to use inconsistent estimators. Indeed, closed-

form estimators, such as Peto’s and Pike’s, have become obsolete and are not mentioned in 

Lin et al. Page 7

Biometrics. Author manuscript; available in PMC 2016 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dlin.web.unc.edu/software/


major survival analysis texts, such as Cox and Oakes (1984), Fleming and Harrington 

(1991), Kalbfleisch and Prentice (2002), and Collett (2003).

Andersen et al. (1993, §V.3.1) provided an estimator for the hazard ratio θ based on the 

Nelson-Aalen estimators for the two cumulative hazard functions. They suggested the 

following test statistic for the hypothesis θ = θ0,

where θ̂ is the hazard ratio estimator, and σ̂2(θ0) is the variance estimator. The 

corresponding (1 − α) confidence interval is

This confidence interval is consistent with the log-rank p-value because (θ̂ − 1)2/σ̂2(1) turns 

out to be the same as the log-rank test statistic. However, θ̂ is not fully efficient, such that 

the above confidence interval tends to be wider than that of the MPLE, at least in large 

samples. As in the case of Peto’s estimator, the use of θ̂ deviates from the common practice 

of using the partial-likelihood methodology for estimation.

We have focused on superiority trials. For non-inferiority trials, we reject the null hypothesis 

of inferiority H0 : β ≥ δ and conclude non-inferiority with the margin of δ and type I error of 

α if the upper limit of the proposed (two-sided) confidence interval with the (1 − 2α) 

coverage probability, i.e., U1−2α, is less than δ. Likewise, we claim equivalence with the 

margins of ±δ and type I error of α if U1−2α < δ and L1−2α > −δ. Thus, the pro-posed 

confidence interval provides a unified framework for superiority, non-inferiority, and 

equivalence trials.

The dilemma discussed in this paper arises only when one wishes to use the log-rank 

statistic for testing the null hypothesis of no treatment difference. One can avoid this 

dilemma by using the Wald method to test hypotheses and construct confidence intervals. 

However, the Wald test tends to be less powerful than the log-rank test, as shown in the 

simulation studies and the colon cancer example, and the Wald confidence interval is wider 

and less accurate than the score confidence interval. For large sample sizes, the score and 

Wald methods yield very similar results. If there are sparse strata or continuous prognostic 

variables (to be adjusted for), then it is easier to use Wald statistics than score statistics.

We can also construct the confidence interval for β by inverting the partial-likelihood ratio 

test. Write l(β) = log L(β). The partial-likelihood ratio statistic for testing H0 : β = β0 is 

2[l(β̂) − l(β0)], and the corresponding (1 − α) confidence interval is
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This confidence interval may not be in agreement with the log-rank p-value since 2[l(β̂) − 

l(β0)] is generally different from U2(0)/ℐ̃(0). For randomized clinical trials, the log-rank test 

is much more popular than the likelihood ratio test, although the two tests yield similar 

results in large samples.

For simplicity of description, we have focused on two treatment arms. Both the log-rank test 

and the proposed confidence interval can be extended to multiple, say (J + 1), treatment 

arms. Specifically, let Xki be a J-vector of treatment indicators. We replace βXki in model (1) 

by βTXki, where β now pertains to a J-vector of log hazard ratios. The score function still 

takes the form of (2), but with 

. The modified information 

matrix in (5) becomes

The confidence region for β is given by , where  is 

the (1 − α)100th percentile of the  distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Inconsistency of Peto’s Estimator

By the Taylor series expansion,

where β* lies between 0 and β̂. By the definition β̂, we have U(β̂) = 0. Thus,

Dividing both sides of the above equation by ℐ̃(0) and using the definition of β̃, we obtain

(A.1)

Because β̂ converges in probability to β as n → ∞ (Andersen and Gill, 1982), equation (A.

1) implies that β̃ converges in probability to β{Σ(β*)/Σ(0)} as n → ∞, where Σ(β) is the 

limit of ℐ(β)/n, and β* lies between 0 and β. (Here, n denotes the total number of patients in 

the study.) Therefore, β̃ is consistent for β if and only if β = 0.
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Figure 1. 
Plot of the score test statistic U2(β)/ℐ̃(β) against the Parameter Value a β for particular data 

set. The values of β at which the function U2(β)/ℐ̃(β) intersects the horizontal line of 

are the limits of the 95% confidence interval.
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