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Many cutting edge force fields include polarization, to enhance their accuracy and range of appli-
cability. In this work, we develop efficient strategies for the induced dipole polarization method.
By fitting various orders of perturbation theory (PT) dipoles to a diverse training set, we arrive
at a family of fully analytic methods — whose nth order is referred to OPTn — that span the
full spectrum of polarization methods from the fast zeroth-order approach that neglects mutual
dipole coupling, approaching the fully variational approach at high order. Our training set contains
many difficult cases where the PT series diverges, and we demonstrate that our OPTn methods
still deliver excellent results in these cases. Our tests show that the OPTn methods exhibit rapid
convergence towards the exact answer with each increasing PT order. The fourth order OPT4 method,
whose costs are commensurate with three iterations of the leading conjugate gradient method, is a
particularly promising candidate to be used as a drop-in replacement for existing solvers without
further parameterization. [http://dx.doi.org/10.1063/1.4964866]

I. INTRODUCTION

Modern classical simulation methods use increasingly
elaborate physics, such as multipole moments1–11 and
polarization,12–20 to describe molecular interactions. The
extra flexibility of these next-generation models affords
accurate descriptions of interactions over a range of chemical
environments, but introduces a computational penalty; it is
important to devise algorithms that minimize this penalty in
order to effectively sample configurational space. Polarization
allows modeling of electron cloud distortions in response to
the local electric field and is commonly effected by Drude
oscillators12–18,21,22 or induced dipoles.3,23–40

A Drude oscillator is simply a pair of particles with equal
and opposite charges, connected by a harmonic spring. One
of the particles is tethered to the atom whose polarizability
is to be simulated, while the other moves in response to the
field; thus providing the desired redistribution of the charge
density. Because the Drude particles experience the field due
to both the nuclei and the other Drude particles, minimization
of the energy with respect to the Drude particle positions is
formally an iterative self-consistent field (SCF) procedure. The
simple charge-on-a-spring nature of Drude oscillators means
that their treatment closely mirrors the classical treatment of
nuclei, which makes the adaptation of existing codebases to
include Drude polarization quite a straightforward, popular
approach.

Induced dipoles are very closely related to Drude
oscillators; instead of forming a “finite difference” dipole
at each polarizable center using point charges, an analytic
dipole is created. The ensuing need to evaluate dipole-
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dipole interactions leads to more complicated mathematical
expressions than are required for the Drude model, which
makes implementation into existing codes difficult. However,
with fewer pairwise interactions to evaluate than for the
Drude model, and with multipole evaluation algorithms being
actively developed, the induced dipole strategy is widely
used. The induced dipoles are defined as a response to the
field resulting from the fixed charge distributions as well
as the induced dipoles on other centers, so obtaining them
is formally a self-consistent procedure, as for the Drude
oscillators.

To avoid the computationally expensive process of self-
consistently evaluating polarization, extended Lagrangian
(EL) techniques have been developed for Drude oscilla-
tors,14,15,21 induced dipoles,3,41 and fluctuating charges.42

The EL approach propagates the electronic and nuclear
degrees of freedom simultaneously and is therefore a classical
analog to the Car-Parinello ab initio dynamics method. The
choice of mass of the Drude particle can be important in
the EL scheme; too light a mass will necessitate short
timesteps, while too heavy a mass will cause difficulty in
maintaining separation of nuclear and electronic degrees of
freedom. Introducing dual thermostats for the nuclear and
electronic degrees of freedom helps to maintain adiabatic
separation and permits the use of timesteps commensurate
with conventional dynamics simulations.14 Moreover, a
potentially promising hybrid (EL/SCF) method has recently
been developed that permits loose SCF convergence to be used,
starting from a propagated EL guess; the resulting method
offers very good energy conservation with conventional MD
timesteps.43

While the EL and hybrid EL methods offer much promise
for efficient, scalable simulations when run under suitable
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conditions, we will focus on the problem of obtaining
induced dipoles using methodology that is compatible with
conventional integration techniques. Many numerical solvers
exist for self-consistently obtaining induced dipoles but,
for reasons that will be outlined in Section II, care must
be exercised when using them as instabilities may result
from overly permissive convergence criteria. To address
this instability, while maintaining efficiency, we recently
developed a strategy19 to obtain an analytic representation
of induced dipoles; the analytic nature of this polarization
method makes it a close relative of conventional, fixed point
charge methods even though it encompasses the many-body
character of induced dipoles. Based on perturbation theory
(PT), our approach is equivalent to the variational, self-
consistent approach at infinite order, when in the convergent
regime. By analyzing the properties of the PT series, we
developed an extrapolation procedure to approximate the
infinite-order solution using only low order solutions. In this
work, we identify deficiencies in the previous extrapolation
procedure and consider a more pragmatic fitting approach
to combine the lowest orders of the PT series, resulting in
a series of accurate, efficient, and analytic expressions for
induced dipoles.

II. THEORY

The polarization energy for a system of N induced dipoles
µ can be obtained from a 3N × 3N coupling tensor T and the
electric field due to permanent multipole moments, E, at the
polarizable centers

U =
1
2
µTTµ − ETµ. (1)

The tensor T comprises two components,

T = α−1 − T , (2)

whose diagonal blocks are the 3 × 3 inverse atomic
polarizabilities, and the off-diagonal terms T are the 3 × 3
coupling terms that describe the damped44 interactions
between induced dipoles on different centers, whose exact
formulation is not important for the present discussion. For
brevity, we will focus on the case where α is isotropic; the
extension to anisotropic tensors is straightforward and has
been discussed in Ref. 34 as have the details of the coupling
terms T .

Stationarity of Eq. (1) defines the variational condition
for the induced dipoles

R ≡
(
∂U
∂µ

)T
= Tµ − E = 0 (3)

and the polarization energy gradient, with respect to nuclear
positions r, is

dU
dr
=

∂U
∂r
+
∂U
∂µ

∂µ

∂r
. (4)

The final term in Eq. (4) which is due to dipole response,
contains derivatives of the induced dipoles ∂µ

∂r . As noted in
Sec. III, the µ derivatives are problematic to evaluate because
µ itself is obtained as a numerical solution to Eq. (3). Because

the residualR appears as a factor of the dipole response terms,
they are usually neglected. The extent to which the residual
R can be assumed to be zero depends on how tightly the
numerical solution for µ is obtained; if loose convergence
criteria are employed, the dipole response terms could be too
large to safely neglect, leading to unstable trajectories.

The PT approach can be derived by introducing an
ordering parameter, λ, into the T coupling tensor

T = α−1 − λT (5)

and expressing the resulting dipoles using a power series in λ,

µn = µ(0) + λµ(1) + λ2µ(2) + · · · + λnµ(n). (6)

The nth order dipole comprises n + 1 components, which
are labeled with their order in parentheses. Substituting
the expanded quantities, Eqs. (5) and (6), into Eq. (3) and
collecting by powers of λ yields analytic expressions for the
induced dipoles at each order

µ(0) = αE,
µ(1) = αT αE,
µ(2) = αT αT αE,

...
...

µ(n) = α(T α)nE.

(7)

The nth order energy is simply

Un = −
1
2

ETµn. (8)

The spectrum of PT methods represents a family of methods
that each offer a different level of compromise between
accuracy and efficiency. One crucial difference between a
loosely converged variational solution and a PT approach
is that the former requires additional linear equations to be
solved to properly obtain the nuclear energy gradient, while
the latter is analytically differentiable.

In our original development of PT,19 we focused on
the odd terms of the Un series, which we denoted UPTn.
Because each dipole component in the UPTn series converges
exponentially, a three-point exponential fit UPT∞ = UPTn
− b exp(−cn) is an effective way to reach the infinite order
limit, under the assumption that all components converge at the
same rate. To obtain the three unknowns, UPT∞, b, and c, would
require {UPT0,UPT1,UPT2} or, equivalently, {U1,U3,U5}. Our
extrapolated PT (ExPT) method reduced these requirements
by additionally assuming that the exponent c is fixed for all
systems, reducing the fit to just two points

µExPT = c0µ1 + c1µ3, (9)

which has a single empirical parameter due to the constraint
c0 + c1 = 1.

Inspection of Eq. (7) reveals that generation of µ3 also
yields µ0, µ1, and µ2 of which only µ1 is utilized in the ExPT
approach. In this work, we adopt a more empirical approach to
determine the coefficients of the PT dipoles, which remedies
the wasted information in ExPT by using a more general
ansatz

µOPTn = M0µ0 + M1µ1 + M2µ2 + · · · + Mnµn, (10)
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where the coefficients {M0,M1, . . . ,Mn} are to be determined
by a fitting procedure. The resulting nth-order optimized PT
method is denoted OPTn. With this notation, ExPT is a special
case of OPT3, with coefficients {0,c0,0,c1}. To parameterize
the functional form, we will consider a diverse collection of
50 systems, described in Section III and the supplementary
material.

For each system, we minimize the objective function

S =
3N
α

(µα − µOPTn,α)6 (11)

using standard minimization techniques,45 where the summa-
tion runs over all 3N dipole components for each system. The
residual is normally raised to the second power in conventional
least squares fitting, but we use a power of 6 here to favor
reduction of outliers, thus creating a more uniform distribution
of errors; we deem this uniformity of errors more important
than obtaining a lower RMS error.

Analogous to Eq. (8), the OPTn energy is

UOPTn = −
1
2

ETµOPTn

= −1
2

ET (M0µ0 + M1µ1 + · · · + Mnµn)

= −1
2

ET
�
m0µ(0) + m1µ(1) + · · · + mnµ(n)

�
, (12)

where, for convenience, we have expressed the induced dipoles
in terms of their components using the relationship

mi =

n
j=i

Mj . (13)

Because the components of µOPTn have an analytic
form, computing polarization energy derivatives are very
straightforward

∂UOPTn

∂r
= −µT

OPTn
∂E
∂r

+
1
2

n
l

ml

n−1
m=0

µ(m)
∂T

∂r
µ(l−m−1). (14)

The leading term of Eq. (14) is present in both the variational
and “direct” (where T is neglected) polarization algorithms.
The additional n(n + 1) terms arising from dipole response
can be efficiently evaluated by caching the field and field
gradient due to {µ(0),µ(1), . . . ,µ(n−1)} during the formation of
the induced dipoles, Eq. (7).

The terms required to implement the energies and
forces for OPT are similar to those needed in the
variational algorithm, and we have implemented the
OPT method in development versions of CHARMM,46,47

TINKER,48 and OpenMM.49 All computations described
hereafter were performed using the TINKER48 simulation
package.

Constructing a dataset that spans the complete chemical
and configurational space is not possible, so our choice was
motivated by the following considerations. Inspection of the
AMOEBA parameters reveals that there is little variety in the
polarization parameters for many main group atoms, with the
exception of some highly polarizable species such as sulfur

and chloride ions. By including some archetypal protein,
RNA, and DNA systems, we have many representatives of
the “typical” polarizabilities and we must be sure to include
systems with sulfur and chlorine atoms to also consider
the outliers. We also include some liquids with a range of
dipole moments to probe homogeneous systems and solvated
ions to represent the more problematic inhomogeneous liquid
systems.

The resulting set of 50 training systems is detailed in the
supplementary material and, for the following discussion, are
loosely categorized into three groups: homogeneous liquids,
solvated ions, and biological systems. The homogeneous
liquids are 13 small, organic molecules including benzene,
acetonitrile, dimethyl sulfoxide, ammonia, and methanol.
These systems were chosen to represent a range of polarities.
Because doubly charged cations are known to be tough
to describe, our seven solvated ion systems comprise a
34.14 Å cubic box containing 1331 water molecules, as well
as the same water box containing 1, 2, 3, 4, 5, and 6 MgCl2
molecules. The biological systems include a range of proteins,
RNA and DNA systems, harvested from the protein databank
(PDB). The liquid and ion systems were equilibrated at 300 K,
while the biological systems were subjected to a crude energy
minimization, followed by 100 steps of dynamics to eliminate
any bad contacts.

III. RESULTS

We parameterized the OPTn (n = 0–4) family of methods
for each of the 50 test molecules using Equation (11) with
tightly converged variational dipoles as the reference. To
test the sensitivity of the optimization solutions to the initial
guess coefficients, a number of starting conditions were tried.
First, we used the guess coefficients {0,0, . . . ,0,1}, which
correspond to the nth order perturbation theory method Un.
Second, we tried the uniform guess { 1

n
, 1
n
, . . . , 1

n
}, which

weights all PT components equally. Finally, after observing
the oscillatory convergence of the PT series, discussed below,
we tried the guess {0,0, . . . ,0, 1

2 ,
1
2 } which is the mean of the

two highest orders of PT, Un +Un−1
2 . Although all of these

guesses have coefficients that sum to one, consistent with the
ExPT treatment, Eq. (9), no restrictions were placed on the
sum of the coefficients during the optimization. For all systems
in the training set and all orders of OPTn optimization, the
final parameters were identical for all starting guesses.

The resulting parameters are shown alongside the
resulting RMS induced dipole errors in Table I. We included
OPT0 in our parameterization because this uses the same
“direct” polarization algorithm as the iAMOEBA method.
Direct polarization is obtained by completely neglecting
coupling between induced dipoles, averting the need for any
expensive matrix-vector products. In iAMOEBA, the entire
set of bonded and noncovalent parameters were re-optimized
to compensate for the lack of mutual dipole coupling; our PT0
parameterization simply introduces a polarization scale factor,
which is equivalent to uniformly scaling all polarizabilities.

Dipole response force errors notwithstanding, a target
RMS change in the dipoles of 0.01 D has been considered

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-009640
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-009640
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-009640
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TABLE I. Results of the OPTn fitting procedures.a

Method M0 M1 M2 M3 M4


j M j Dipole error (D)b

OPT0 1.044 (0.142) 1.044 0.084 (0.036)
OPT1 0.412 (0.103) 0.784 (0.096) 1.197 0.029 (0.012)
OPT2 −0.115 (0.081) 0.568 (0.079) 0.608 (0.126) 1.062 0.012 (0.006)
OPT3 −0.154 (0.036) 0.017 (0.120) 0.657 (0.050) 0.475 (0.125) 0.995 0.006 (0.003)
OPT4 −0.041 (0.032) −0.176 (0.026) 0.169 (0.154) 0.663 (0.027) 0.374 (0.124) 0.987 0.004 (0.003)

aThe M j coefficients shown are those defined in Eq. (10). Standard deviations across the data set are shown in parentheses.
bThe mean RMS error in the OPTn induced dipoles across the training set of 50 molecules with respect to the tightly-converged,
variational reference values.

a sufficient stopping criterion for iterative dipole solvers in
previous works.29,50 Although modern protocols commonly
specify much tighter convergence of at least 10−5 D, we will
consider 0.01 D as a desirable threshold error for our methods
to deliver, keeping in mind that the forces are always evaluated
exactly in these approximations, unlike the loosely converged
variational solutions. Inspection of Table I reveals that the
mean error in the OPT2 dipoles is 0.012 D across the data set,
while for OPT3 this drops to 0.006 D; we will therefore focus
much of our discussion on the OPT3 method. To visualize
the spread in ideal third order coefficients (i.e., those that are
optimal for each system) for each system in the training set,
whose mean defines the consensus OPT3 coefficients, those
ideal coefficients are plotted in Figure 1, alongside the OPT3
coefficients. The homogeneous liquids and ionic liquids adopt
similar coefficients, while the biological systems generally
adopt more positive M1 and more negative M3 coefficients
than the ions and liquids. Among the ionic liquids, the single
outlier possessing a large M1 and corresponding low M3 is
benzene, which, like the biological systems, has a relatively
low dielectric. For the even terms in the series, the coefficients
for all systems are more closely clustered.

The OPT3 coefficients closely resemble an average of the
two highest orders of perturbation theory, which is akin to
the quantum mechanical Møller-Plesset MP2.5 method51 that
is an average of the MP2 and MP3 methods, consistent with
the oscillatory convergence patterns. On the other hand, the
ExPT coefficients have a rather different structure, while the

FIG. 1. Ideal third-order coefficients for each system in the training set,
classified into three broad categories, described in the text. The mean of the
set of 50 values for each coefficients constitute the OPT3 coefficients, which
are depicted as hollow, black circles.

µ2 coefficient in the OPT3 method is the largest for any of
the four µn components, that same coefficient is zero in the
ExPT approach as a direct consequence of the assumption
that all dipole components converge exponentially, with the
same exponent. Those same assumptions lead to the constraint
that the ExPT coefficients must sum to one; although no such
constraint was applied in the OPT3 fit, the coefficients sum to
0.995.

Figure 2 shows the RMS atomic induced dipole errors
for each system in the training set, for a range of induced
dipole algorithms. The ExPT method offers a significant
reduction in the errors for the liquids and ionic systems upon
which it was initially tested, but performs very poorly for
the biological systems, for which even the direct algorithm
offers better performance. The poor performance of ExPT for
highly inhomogeneous systems can be explained by the plots
in Figure 3, which depict the convergence behavior of the
PT series for some representative cases for each of the three
system types in our training set. The odd terms in the series are
convergent for the MgCl2 and acetic acid cases but divergent
for the protein test. Our preliminary development of ExPT
included a test that was divergent but exhibited convergence
in the lower orders of PT before diverging; for cases such as
the dry protein crystals examined herein, the lower odd orders
of PT are often divergent, causing ExPT to fail. The PT0
method offers little improvement over the direct algorithm,
while PT1 introduces massive improvements, especially for
proteins, with all systems possessing an RMS induced dipole
error below 0.05 D. The OPT4 method offers only a marginal

FIG. 2. The RMS atomic induced dipole errors for each system in the training
set, broken down by system type, for a range of induced dipole algorithms.
The horizontal gray line depicts an error of 0.01 D.
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FIG. 3. Observed behavior of polarization energy errors for the perturbation
series as a function of series order for (a) a monotonically convergent case
(acetic acid) (b) oscillatory convergence (6 MgCl2 in 1331 waters), and (c) a
divergent case (albumin binding protein, 1PRB).

improvement over OPT3, reducing the mean RMS induced
dipole error by just 0.002 D.

Despite the very disparate convergence patterns observed
in our training set, optimized perturbation theory performs
very well across the board. Remembering that the OPT3
energy is mostly an average of U2 and U3, with a slight
emphasis on the former, it is evident from Figure 3 that such
a strategy should work. In the monotonically convergent case,
both values fall close to the exact result and are pushed closer
by the small amount of U0 that is subtracted. When the series
is oscillatory, whether convergent or not, the averaging of
contiguous PT methods yields a result with close to zero error
by virtue of the odd and even terms bounding the exact result.
A detailed breakdown of the induced dipole errors, OPT3 force
errors, and convergence analysis of the PT series, for each
system in the training set is provided in the supplementary
material.

Figure 4 shows the mean error in the norm of the force
on each atom, plotted for each of the OPTn methods, for all
systems in the training set. The homogeneous liquids clearly
represent a far less challenging system than the other cohorts;
the OPT0 method produces errors in the atomic force norms
within 4% of the exact value, and this drops down to 0.4% for
OPT2. The solvated ions have force errors as large as 18%,
which reduces below 2% for OPT2 and just 0.7% for OPT3; a
similar trend is observed for the protein systems, with OPT3
delivering errors within 0.9%.

To gauge the quality of condensed phase properties,
Table II shows some computed properties of water for
OPTn (n = 0-4), ExPT and the variational reference method
computed from a 1 ns NPT simulation of 729 AMOEBA03
water molecules.29 The density appears to be well modeled
for all methods, with the sequence OPT1 to OPT4 offering
systematically decreasing errors from−0.5% for OPT1, falling
to just−0.2% for OPT3 and culminating in agreement between
OPT4 and the reference; OPT0 is fortuitously close for this
property. The self-diffusion is harder to model correctly,
with a very large deviation observed for OPT0, and even
OPT3 overestimates the water self-diffusion by 10%. As is
the case for the density, complete agreement is obtained
between OPT4 and the reference calculation. The error in
the mean potential energy is −0.19 kcal mol−1 per molecule

FIG. 4. Mean absolute errors in the norm of the atomic forces, for each
system in the training set for the OPTn methods developed in this work.

for OPT3, dropping to just 0.01 kcal mol−1 per molecule
for OPT4, with similar fluctuations observed for both. The
formulation of ExPT considered only energies, so its deviation
of just 0.08 kcal mol−1 per molecule is unsurprising. This
shows that accurate energies can be captured by third order
methods. However, the fact that ExPT provides the poorest
description of the density for all methods tested here shows
that properties beyond the energy should be considered in the
model development. Our use of the dipoles as a target for
parameterization in OPTn has yielded a series of methods that
offer systematically improving performance for describing
water.

One potential pitfall of a perturbative scheme is the
singularity at zero bond length, which could lead to far
more extreme divergence of the series than we observe
in our training set, in the presence of anomalously short
contacts. The use of Thole damping — effectively blurring
the point induced dipole — mitigates this, as is evident from
Figure 5, which compares the OPTn (n = 1-3) methods to
the iterative method in describing the potential energy curve,
and derivative thereof, for H2O · · ·Mg2+ dissociation along
the C2v axis. At large separations, the polarization effect
is small, and at short distances the Thole damping greatly
diminishes the magnitude; in these extremes, the agreement
for OPT2 and OPT3 with the variational reference curve is
excellent. Around the equilibrium region, the OPT2 and OPT3

TABLE II. Properties for AMOEBA water, computed from 1 ns NPT simu-
lations, using a range of polarization algorithms.a

Method ρb Dc V d

ExPT 0.992 (0.005) 1.63 (0.07) −9.100 (0.072)
OPT0 0.999 (0.005) 4.52 (0.15) −7.984 (0.063)
OPT1 0.995 (0.007) 1.41 (0.05) −9.510 (0.073)
OPT2 0.997 (0.007) 1.49 (0.08) −9.313 (0.070)
OPT3 0.998 (0.006) 2.04 (0.06) −8.831 (0.072)
OPT4 1.000 (0.006) 1.85 (0.06) −9.015 (0.073)
SCF 1.000 (0.006) 1.85 (0.06) −9.025 (0.068)

aThe SCF entry corresponds to tightly converged, variational reference values.
bThe density (g cm−3) with standard deviation in parentheses.
cThe self-diffusion constant (105 cm2 s−1) with standard deviation in parentheses.
dThe mean potential energy per molecule (kcal mol−1) with standard deviation in
parentheses.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-009640
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-009640
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FIG. 5. Constrained potential energy scans for the H2O · · ·Mg2+ dimer, using
the variational, OPT1, OPT2, and OPT3 methods. The top plot depicts the
potential energy while the bottom shows the RMS atomic force.

methods yield a slight under-binding of ca. 1 kcal mol−1, but
both greatly outperform the simpler OPT1 method, which
greatly overestimates the polarization stabilization across the
entire potential curve. The plot of the RMS force on the
system reveals that, although the OPT2 energies very closely
track the reference values, the forces are quite systematically
overestimated along the dissociation coordinate, with a
minimum that occurs at a slightly shorter bond length. To
investigate the effects of these errors, we simulated a periodic
system comprising a single MgCl2 molecule in 1331 waters
for 500 ps, in an NVT ensemble at 300 K; the resulting radial
distribution functions are shown in Figure 6. The OPT2 and
OPT3 distribution functions are almost indistinguishable from
the variational reference. Although OPT1 correctly predicts
a sharp peak at 2.1 Å, corresponding to the first solvation
shell, the second solvation shell is erroneously placed at
4.4 Å instead of 4.2 Å. As a test of performance for monovalent
ion solvation, Figure 7 shows the analogous radial distribution
function for KCl. As for MgCl2, all three OPT methods tested
provide a very accurate description of the first solvation shell.
The weakly-structured second and third solvation shells are
described very well by OPT2 and OPT3, with OPT1 offering
a very slightly over structured description in the vicinity of
the second shell.

To further probe the effect of simulation condi-
tions on the parameterization, we studied ubiquitin with

FIG. 6. Radial distribution function for the Mg2+–O pair, derived from
500 ps simulation of MgCl2 in 1331 water molecules at 300 K.

FIG. 7. Radial distribution function for the K+–O pair, derived from 500 ps
simulation of KCl in 1331 water molecules at 300 K.

the 58 water molecules found in the PDB file, the
same system with no water molecules and the same
system with a total of 3071 water molecules to fill
the unit cell; the resulting ideal third order coefficients
are {−0.18,0.06,0.70,0.42}, {−0.18,0.10,0.70,0.39}, and
{−0.19,0.08,0.70,0.40}, respectively. The same molecule
with no waters and no periodic images has ideal third order
coefficients of {−0.18,0.05,0.70,0.42}. Such insensitivity to
periodicity and solvation effects supports the idea that a
universal set of coefficients may be employed for all molecular
systems.

Our preliminary implementation provides functionality
for users to determine ideal expansion coefficients for any
system of interest. This offers a remedy for any difficult
cases that may be encountered, for which the consensus
OPTn coefficients may not yield satisfactory agreement
with reference values. However, any coefficient tailored
this way must be explicitly reported in the interests of
reproducibility.

Recent efforts to improve the efficiency of induced dipole
treatments have yielded some promising methods, including
conjugate gradient (CG) SCF solvers34 and SCF using a
propagated EL guess.43 Although the number of iterations
needed to converge the conventional SCF equations to a
given tolerance depends on the algorithm used, the nature of
the system under study and the desired convergence level,
we will briefly compare the computational cost of these
methods to OPTn. Reference 43 reports that the leading CG
solver with a predictor guess34 achieves convergence of the
dipoles to 10−6 D in 5 SCF cycles, which generates a drift
of 4.63 × 10−6 kcal mol−1 ps−1 for a water box. Because
CG requires a matrix-vector product (MVP) in the setup
and another in each iteration, this corresponds to 6 MVPs,
which provides a good measure of the overall polarization
cost. By introducing a thermostat for the auxiliary degrees of
freedom used to obtain the dipole guess in the hybrid EL/SCF
approach, similar energy conservation can be achieved by
converging the SCF equations to just 10−2 D, which requires
4 iterations of CG (5 MVPs);43 good energy conservation
(∼3 × 10−5 kcal mol−1 ps−1) is also realized when a criterion
of 10−1 D is used, at a cost of 3 iterations (4 MVPs).

The ExPT method conserves energy19 due to the
forces being calculated analytically, but the water properties
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computed herein show some significant deviations with
respect to SCF reference values. The OPT3 method, like
ExPT, has analytic forces and costs 3 MVPs but provides
much better properties for water. Moreover the OPT3 method
produces accurate dipoles over a diverse range of compounds,
where ExPT fails; this is because the former uses a less
constrained parameterization scheme and makes no a priori
assumptions about the convergence behavior of the PT series.
Adaptation of an ExPT code to use OPT3 coefficients is
trivial due to the similarity of their formulation. Similarly,
generalizing the implementation for arbitrary-order OPTn is
also straightforward.

IV. CONCLUSIONS

Building on our previous work, we have developed a new
series of perturbation theory techniques for induced dipoles;
the current work proposes new extrapolation techniques to
accurately approximate the exact solution with only a few
low order terms. By considering a diverse set of molecules
and simply optimizing the coefficients for each term in the
PT series up to nth order, we have developed the OPTn
family of methods. The resulting methods form a hierarchy of
approaches that span the spectrum from the “direct” algorithm,
where mutual coupling is completely neglected, approaching
the exact solution. One key feature of the OPTn methods
is that they are fully analytic at all levels of approximation.
While forces from the more approximate, lower order OPTn
methods are less accurate than their higher order analogs,
these forces are just as precise as the energies — leading
to energy conservation. In contrast, attempting to accelerate
iterative solvers by loosening convergence criteria for the
variational induced dipole method yields a family of methods
that are accurate but lack precision; this reduced precision can
manifest itself in catastrophically erroneous forces, so caution
must be exercised when attempting to tune such approaches
for dynamics.

The OPT3 method offers excellent computational
efficiency, requiring just three of the rate-limiting matrix-
vector products and is able to deliver dipoles with an RMS
error of just 0.006 D across a diverse set of 50 molecules.
More extensive testing is being performed to understand how
these small errors manifest themselves in various chemical
properties. The data presented herein suggest that OPT3 is the
minimal possible OPTn method that may be considered for use
as a drop-in replacement for iterative algorithms, without any
reparameterization of the force field. The more approximate
OPT2 method may not be accurate enough to be considered
as a drop-in replacement for CG solvers, and its use may
require reparameterization of the underlying force field. We
note that an algorithm equivalent to OPT1 is already used
as the polarization algorithm for the POSSIM force field,52

with the parameters defined accordingly. The OPT4 method
requires one more matrix-vector product than OPT3, but
appears to be very robust with respect to accurately describing
a range of compounds with a universal set of coefficients. We
do not recommend pursuing higher order methods (n > 4),
as they would not be competitive with currently used SCF
methods.34,43,53

SUPPLEMENTARY MATERIAL

See supplementary material for details of the training set,
and a listing of the ideal coefficients, induced dipole errors,
PT series convergence patterns, and OPT3 atomic force error
distributions for each member of this set.
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