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Isotropic periodic sum (IPS) is a method to calculate long-range interactions based on the homo-
geneity of simulation systems. By using the isotropic periodic images of a local region to repre-
sent remote structures, long-range interactions become a function of the local conformation. This
function is called the IPS potential; it folds long-ranged interactions into a short-ranged potential
and can be calculated as efficiently as a cutoff method. It has been demonstrated that the IPS
method produces consistent simulation results, including free energies, as the particle mesh Ewald
(PME) method. By introducing the multipole homogeneous background approximation, this work
derives multipole IPS potentials, abbreviated as IPSMm, with m being the maximum order of
multipole interactions. To efficiently calculate the multipole interactions in Cartesian space, we
propose a vector relation that calculates a multipole tensor as a dot product of a radial potential
vector and a directional vector. Using model systems with charges, dipoles, and/or quadrupoles,
with and without polarizability, we demonstrate that multipole interactions of order m can be
described accurately with the multipole IPS potential of order 2 or m − 1, whichever is higher.
Through simulations with the multipole IPS potentials, we examined energetic, structural, and
dynamic properties of the model systems and demonstrated that the multipole IPS potentials
produce very similar results as PME with a local region radius (cutoff distance) as small as
6 Å. [http://dx.doi.org/10.1063/1.4966019]

I. INTRODUCTION

Long-range interactions are crucial in governing prop-
erties of molecular systems. Because the calculation of long-
range interactions is expensive, many methods have been
developed for their efficient calculation. One main category is
the cutoff based methods, such as the energy switch, energy
shift, force switch, and force shift,1 as well as the “damped-
shifted” potential2 and the force-matching functions.3 These
methods are criticized for lack of physical basis4 and for
having the undesirable effect of abrupt truncations.4,5 Another
category is the field based methods which includes the reaction
field6 and molecular field7 methods. These methods have a
certain physical basis and have been successfully applied in
some simulation studies.8–10

The third category is the image based methods, such
as Ewald sum,11 Particle-mesh-Ewald (PME),12–18 and
fast multipole algorithm (FMA).19,20 These methods avoid
the deleterious effects of a cutoff and use the lattice
images created by periodic boundary conditions (PBCs)
to represent remote structures. In other words, remote
structures are represented by the PBC images, so that
the long-range interaction is a function of the coordinates
of the atoms within the simulation box and the PBC
parameters,
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where ε(ri j) is the pairwise interaction energy between atoms
i and j, and N is the number of atoms in the simulation
system. Because images generated by PBC depend not only
on the atom positions but also on the PBC parameters,
L = (L⃗x, L⃗y, L⃗z), the summation over images, φPBC(ri,r j,L),
is a complicated function of ri, r j, and L and has to be
calculated numerically with methods like PME and FMA.
PBC images reside at lattice points and distribute discretely
in space. As a result, the lattice sum of a pair of atoms
depends not only on their distance but also on their relative
orientation in the PBC box. Despite the drawbacks of the PBC
image approximation, methods of this category have gained
widespread acceptance due to efficient algorithms developed
in recent decades.12–15,17–19,21–27

The isotropic periodic sum (IPS) method,28,29 like the
lattice sum methods, is also an image based method. Instead of
using the lattice images created by PBC, IPS uses the so-called
isotropic periodic images to represent the remote structure.
The isotropic periodic images distribute continuously in
orientation. Because of this, the IPS interaction between a
pair of atoms is independent of their relative orientation in
the PBC box. Since the IPS images distribute in an isotropic
and periodic way, the sum of interactions with IPS images is
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a function of distance for each pair of atoms within the local
region and the radius of the local region, rc,
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We call φIPS(ri j,rc) the IPS potential, which is a function
of distance of the interacting atom pair within the local region
radius (or cutoff distance), rc. Unlike φPBC(ri,r j,L) which
needs to be solved numerically, φIPS(ri j,rc) depends only on
the distance and can be solved analytically for most potential
functions. For example, the interaction between a pair of point
charges has the following analytical form, which is called the
IPS electrostatic potential:28

εIPS
ele (r,rc) = εele(r) + φIPS

ele (r,rc)
=

1
r
− 1

2rc

(
2γ + ψ(1 − r

2rc
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)
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where γ = lim
n→∞

(
n

k=1

1
k
− log n

)
≈ 0.577 216 is the Euler’s

constant and ψ(z) is the digamma function: ψ(z) = Γ′(z)
Γ(z) ,

and Γ(z) =
∞
0

tz−1e−tdt. Here in Eq. (3) and in Secs. II–V, we

drop the charges for convenience.
When the local region is comparable in size to the

PBC box, the homogeneity approximation used by IPS is
found to be no worse than the lattice approximation used
by Ewald sum for non-lattice systems.28,30 The IPS method
makes long-ranged nonbonded interactions short-ranged so
that they can be calculated as simply as with a cutoff method.
Therefore, the IPS method has the accuracy of lattice sum
methods and can be calculated as efficiently as the cutoff
methods. The primary benefit of using IPS versus PME is for
speed and better parallelization, i.e., no k-space calculation,
with comparable accuracy. Further, the IPS method is not
limited to specific interaction types. The IPS potentials of
many interaction types, such as electrostatic and Lennard-
Jones energies, have been presented in our previous work.28

For homogeneous systems, the IPS method28 can be applied
with a small local region, typically, rc = 10 Å. It has been
demonstrated that the IPS results are fairly independent of the
cutoff radius for homogeneous systems. For heterogeneous
systems, the discrete fast Fourier transform accelerated 3D
IPS (3D IPS/DFFT) method29 provides an efficient way to
allow a local region large enough to contain the heterogeneity
of a simulation system, for a more accurate calculation of long-
ranged interactions. Venable and co-workers30 have compared
3D-IPS/DFFT with PME and demonstrated that this method
is highly accurate for simple bulk fluids, liquid/liquid, and
liquid/vapor interfaces, as well as lipid bilayers and mono-
layers. For lipid monolayers, 3D-IPS/DFFT is recommended
over PME.30 Ojeda-May and Pu have extended the IPS method
for quantum mechanical and molecular mechanical (QM/MM)
simulation, demonstrating that the QM/MM-IPS method can
be used as a reliable and efficient alternative to the QM/MM-
Ewald method.31,32 IPS is more convenient than PME in

decomposing pairwise interactions, which is essential for
some new simulation methods, such as the virtual mixture of
multiple states (VMMS’s) method.33 It has been demonstrated
that the free energies calculated with the IPS method are
consistent with that calculated with PME.33,34

While the IPS potentials of many interaction forms
have been derived, multipole interactions have not yet
been explored. It is recognized that multipoles have their
advantages in describing molecular interactions.35–44 They are
increasingly employed in force field development, such as
the AMOEBA force field45,46 and the sticky water model.47

Even though multipole interactions decay faster than charge-
charge interactions, the large number of multipole interaction
components makes a reduction of interaction pairs highly
desirable in simulation. Direct cutoff methods require a large
cutoff distance to maintain a specific accuracy. For example,
Bereau and co-workers43 applied the force-switch cutoff
method in multipole interactions with a cutoff distance ranging
from 12 Å for charge-dipole interactions to 9 Å for quadrupole-
quadrupole interactions. Further reduction in cutoff distances
would introduce significant errors in the calculation. PME
can effectively reduce the number of interaction pairs by
splitting interactions into direct sums and reciprocal sums.
The interaction numbers in the direct sum can be significantly
reduced with small cutoff distances.24 Therefore, much effort
has been dedicated to implementing PME for the calculation
of multipole-multipole interactions.18,24,27,48 However, the
reciprocal sum has a significant additional cost and is a
bottleneck for massive parallel computing. Therefore, deriving
multipole IPS potentials is desirable for efficient simulation
with multipole force fields. This work extends IPS electrostatic
potential to multipole interactions by introducing the multipole
background homogeneous approximation.

Multipole interactions can be calculated either in Carte-
sian space or in spherical harmonics basis. In Cartesian space,
Sagui et al.24 utilized Challacombe’s efficient McMurchie-
Davidson recursive scheme49,50 to enhance calculation
efficiency, which scales with multipole order l as O(l4),
whereas the spherical harmonic approach developed by
Hattig51,52 scales as O(l3). Given the convenience of Cartesian
expressions and the fact that the multipole IPS potentials no
longer satisfy Laplace’s equation, we present the multipole IPS
method in Cartesian space and leave the spherical harmonic
expression to future work. To efficiently calculate multipole
interactions, we present here a vector relation that calculates
multipole tensors as dot products of a radial potential vector
and directional vectors. This vector relation can be applied
to any charge-charge potential forms, regardless of whether
or not a potential form satisfies Laplace’s equation. Through
several model systems of various polarities, we examine the
behavior of the multipole IPS potentials of various orders and
compare them with PME results.

II. METHOD AND ALGORITHM

A. A vector relation for the calculation
of multipole interactions

With the IPS electrostatic potential shown in Eq. (3),
charge-charge interactions are no longer based on the simple
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1/r Coulomb potential form. We propose a way to calculate
multipole interactions for any form of charge-charge potential.
For a general type of interaction potential function, υ(r),
potential V (R) is related to the charge distribution ρ(r) by the
following relation:

V (R) =

υ(R − r)ρ(r)dr. (4)

Here, R is the position of any given point where the potential is
being calculated, and r is the integration variable representing
a charge position. υ(R − r) is the potential at R due to a unit
charge at r, which can be expanded in Taylor series around
r = 0 (|r| ≪ |R|),

υ(R − r) = υ(R) − rα∇αυ(R) + 1
2!

rαrβ∇α∇βυ(R)

− 1
3!

rαrβrr∇α∇β∇γυ(R) + · · ·. (5)

The derivatives in each term of Eq. (5) depend only on the
potential function and are called the generalized interaction
tensors,

T(R) = υ(R),
Tα(R) = ∇αυ(R),

Tαβ(R) = ∇α∇βυ(R), (6)
Tαβγ(R) = ∇α∇β∇γυ(R),

Tαβ · · ·υ(R) = ∇α∇β · · · ∇υυ(R).
The electrostatic energy of a charge, q, at R, is the potential at
its position multiplied by the charge, qV (R). In Secs. III–V,
we drop the charge, i.e., use a unit charge, for convenience so
that the potential function is the same as the energy function:
υ(r) = ε(r). This generalized interaction tensor can be applied
to any potential form, including the IPS potential εIPS

ele (r,rc)
shown in Eq. (3),

Ttuv =
∂ t

∂xt

∂u

∂ yu
∂v

∂zv
εIPS

ele (r,rc), (7)

where t ≥ 0, u ≥ 0, and v ≥ 0 are the differential orders in x,
y , and z directions, respectively. The electrostatic potential
can be written as

V (R) = qT(R) − µαTα + θαβTαβ − oαβγTαβγ + · · ·, (8)

where q, µα, θαβ, and oαβγ are charge, dipole, quadrupole,
octopole, and hexadecapole, whose multipole orders are l = 0,
1, 2, and 3, respectively. The multipole moments of the charge

distribution are defined as

q =


ρ(r)dr,

µα =


rαρ(r)dr,

θαβ =


rαrβρ(r)dr, (9)

oαβγ =


rαrβrγρ(r)dr,

ξαβ · · ·υ =


rαrβ · · · rυρ(r)dr.

Clearly, the multipole moments are independent of the
interaction potential function form, υ(r). To be general,
a multipole moment is denoted as Mtuv =


xt yuzvρ(r)dr,

which has a multipole order of l = t + u + v . The interaction
order between two multipoles, Mtuv and Mt′u′v′, is m = l + l ′

= t + u + v + t ′ + u′ + v ′. Between two charge distributions, A
and B, the multipole interaction energy is

EAB =

∞
tuv

M A
tuv

V BA
tuv (R)

=

∞
tuv, t′u′v′

(−1)t+u+vM A
tuv

MB

t′u′v′
T(t+t′)(u+u′)(v+v′). (10)

Effective calculation of the tensors resides in the center
of multipole interaction calculation. A series of recurrence
relations have been developed for the calculation of multipole
tensors. For example, McMurchie and Davidson developed the
first recursion relation for Cartesian Gaussians.49 Challacombe
et al. extended the McMurchie-Davidson formalism to the
Cartesian multipole interaction tensors with a Coulomb type
charge-charge interaction.50

Here, we propose a generalized multipole tensor
calculation method for any type of charge-charge interaction.
The generalized tensor can be factorized into a directional
vector, atuv, and a radial potential vector, S, and conveniently
expressed as the dot product of these two vectors,

Ttuv = atuvS. (11)

The radial potential vector S = (S0,S1,S2,S3,S4,S5, . . .) is
the same for all tensors and the directional vector atuv

= (a(tuv)
0 ,a(tuv)

1 ,a(tuv)
2 ,a(tuv)

3 , . . .) is independent of the poten-
tial. The components of atuv and S can be calculated with the
following direct and recursive relations:

Si =
d(i)εele(r)
d(r2/2)(i) =




εele(r) i = 0
1
r

dSi−1

dr
i > 0

, (12)

a(t,u, v)
i =

i
2 j≥t

i− j
2k≥u

i− j−k
2l≥v

l=i− j−k

c(t)2 j−tc
(u)
2k−uc(v)2l−vx2 j−t y2k−uz2l−v =




1 t + u + v = 0, i = 0
0 t + u + v = 0, i > 0

∂

∂x
a(t−1,u, v)
i + xa(t−1,u, v)

i−1 t + u + v > 0, in x

∂

∂ y
a(t,u−1, v)
i + ya(t,u−1, v)

i−1 t + u + v > 0, in y

∂

∂z
a(t,u, v−1)
i + za(t,u, v−1)

i−1 t + u + v > 0, in z

. (13)
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TABLE I. The polynomial constants, c(n)2i−n, for the directional vector calcu-
lation in Eq. (13).

i

c
(n)
2i−n 0 1 2 3 4 5 6 7 8 9 10

n

0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0 0 0
3 0 0 3 1 0 0 0 0 0 0 0
4 0 0 3 6 1 0 0 0 0 0 0
5 0 0 0 15 10 1 0 0 0 0 0
6 0 0 0 15 45 15 1 0 0 0 0
7 0 0 0 0 105 105 21 1 0 0 0
8 0 0 0 0 105 420 210 28 1 0 0
9 0 0 0 0 0 945 1260 378 36 1 0

10 0 0 0 0 0 945 4725 3150 630 45 1

Note that S0 = εele(r) can be any type of charge-charge
interaction, e.g., εele(r) can be the standard Coulomb potential,
the force-switched potential, the screened interaction in
PME direct sum calculation, or the IPS potential shown
in Eq. (3). The middle expression in Eq. (12) indicates that
the components of S can be understood as the derivatives
of the charge-charge potential function with respect to a
variable, r2/2. The middle expression in Eq. (13) provides a
polynomial form of the directional vectors. The polynomial
constants, c(t)2 j−t, c(u)2k−u, and c(v)2l−v, can be calculated with

c(n)2i−n =




n!
2n−i(n − i)!(2i − n)! 0 ≤ 2i − n ≤ n

0 otherwise
, (13a)

whose values for n = 0 ∼ 10 are listed in Table I. To illustrate
the vector relation shown in Eqs. (11)–(13) for the calculation
of multipole tensors, in Appendix A we list the expressions
of S and atuv, as well as interaction energies for a multipole
system with charges, dipoles, and quadrupoles.

B. Multipole IPS potentials

Multipoles are an alternative way to describe a group of
point charges, and interactions between these point charges

are the sum of interactions between these multipoles. The
interaction between the point charges can be calculated by the
IPS electrostatic potential28 as shown in Eq. (3). According to
Eq. (12), the IPS electrostatic potential shown in Eq. (3) has
non-zero radial potential vectors at the local region boundary
(r = rc). Here, we introduce a multipole background homo-
geneous approximation that the background multipole IPS
interactions have zero sums and can be removed from pairwise
terms. That is, for any multipole, Mtuv, at interaction site i, we
have

Ebg
i (Mtuv,{M

t′u′v′}) =


ri j<rc

Ebg
i j (Mtuv,Mt′u′v′)

= (−1)t+u+vMtuv


ri j<rc

M
t′u′v′T

bg
(t+t′)(u+u′)(v+v′)

= (−1)t+u+vMtuv


ri j<rc

Mt′u′v′a(t+t′)(u+u′)(v+v′)(ri j)

× Sbg(ri j,rc) ≈ 0. (14)

Here, Sbg(r,rc) =
(
Sbg

0 (r,rc),Sbg
1 (r,rc),Sbg

2 (r,rc), . . .
)

is the
background radial potential vector. Based on the recursive
relation of S components, Eq. (12), the background radial
potential vector components can be derived in the following
way:

Sbg
i (r,rc) =




Si(rc,rc) +
 r

rc

r ′Sbg
i+1(r ′,rc)dr ′ i ≤ m + 1

0 i > m + 1
.

(15)

Here, m is the order of the background potential. According
to the definition of the radial potential vector, Eq. (12), the
background potential is εbg

ele(r,rc) = Sbg
0 (r,rc). From Eq. (15)

we can see that the background radial potential vector has
the same components with i ≤ m + 1 as the IPS electrostatic
radial potential vector at the boundary. By subtracting the
background potential of order m from the IPS electrostatic
potential, we obtain the multipole IPS potential of the mth
order, which has zero derivatives of up to the (m + 1)th order.
We abbreviate the multipole IPS potentials of order m as
IPSMm, which can be expressed by the following recursive
equation:

εIPSMm
ele (r,rc) =




εIPS
ele (r,rc) − SIPS

0 (rc,rc) − 1
2
(r2 − r2

c)SIPS
1 (rc,rc) m = 0

ε
IPSM(m−1)
ele (r,rc) − 1

2m+1(m + 1)! (r
2 − r2

c)m+1SIPS
(m+1)(rc,rc) m > 0

. (16)

For convenience, we list the IPSMm potentials for m ≤ 5 in
Appendix B.

It is easy to verify that the IPSMm potential has zero
derivatives of up to the (m + 1)th order at the boundary,

∂k

∂rk
�
εIPSMm

ele (r,rc)�
�����r=rc

= 0 (0 < k ≤ m + 1), (17)

which we call the IPS boundary condition for multipole inter-
actions. Because the long-range part of the IPSMm potentials
shown in Eq. (16) are all even functions, we fit the long-range

part of the IPSMm potentials with rational even polynomial
functions, for an easy implementation in molecular simulation,

εIPSMm
ele (r,rc) = 1

r
*
,
1 +

r
rc

*
,
b0 + b1

(
r
rc

)2

+ b2

(
r
rc

)4

+ · · · +
-
+
-
.

(18)

Table II lists the polynomials that fit well to the IPS multipole
potentials given in Eq. (16) for m = 0–10 and their root-
mean-square deviations from Eq. (16). Fig. 1 show the IPS
multipole potentials and their polynomial fittings for m = 0,
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TABLE II. The fit polynomial functions for the multipole IPS potentials. The root-mean-square deviation (RMSD) is calculated against Eq. (16).

Order Pairsa Fit functions RMSD

0 M-M εIPSM0
ele = εIPSn= 1

r +
1

26rc

(
−36+8

(
r
rc

)2
+

(
r
rc

)4
+

(
r
rc

)6
)

1.7 × 10−3

1 M-D εIPSM1
ele = 1

r +
1

80rc

(
−153+109

(
r
rc

)2
−39

(
r
rc

)4
+3

(
r
rc

)6
)

5.4 × 10−4

2
N-Q

εIPSM2
ele = εIPSp= 1

r +
1

16rc

(
−35+35

(
r
rc

)2
−21

(
r
rc

)4
+5

(
r
rc

)6
)

6.9 × 10−3
D-D

3
M-O

εIPSM3
ele = 1

r +
1

128rc

(
−315+420

(
r
rc

)2
−378

(
r
rc

)4
+180

(
r
rc

)6
−35

(
r
rc

)8
)

2.2 × 10−3
D-Q

4
M-16th

εIPSM4
ele = 1

r +
1

256rc

(
−693+1155

(
r
rc

)2
−1386

(
r
rc

)4
+990

(
r
rc

)6
−385

(
r
rc

)8
+63

(
r
rc

)10
)

6.9 × 10−4D-O
Q-Q

5
M-32nd

εIPSM5
ele =

1
r
+

1
1024rc

*
,
−3003+6006

(
r

rc

)2

−9009
(
r

rc

)4

+ 8580
(
r

rc

)6

−5005
(
r

rc

)8

+1638
(
r

rc

)10

−231
(
r

rc

)12
+
-

2.2 × 10−4D-16th
Q-O

6

M-64th
εIPSM6

ele =
1
r
+

1
2048rc

*
,
−6435+15 015

(
r

rc

)2

−27 027
(
r

rc

)4

+32 175
(
r

rc

)6

− 25 025
(
r

rc

)8

+12 285
(
r

rc

)10

−3465
(
r

rc

)12

+429
(
r

rc

)14
+
-

7.1 × 10−5D-32nd
Q-16th

O-O

7

M-128th
εIPSM7

ele =
1
r
+

1
32 768rc

*
,
−109 395+291 720

(
r

rc

)2

−612 612
(
r

rc

)4

+875 160
(
r

rc

)6

− 850 850
(
r

rc

)8

+556 920
(
r

rc

)10

−235 620
(
r

rc

)12

+58 344
(
r

rc

)14

−6435
(
r

rc

)16
+
-

2.3 × 10−5D-64th
Q-32nd
O-16th

8

M-256th
εIPSM8

ele =
1
r
+

1
65 536rc

*
,
−230 945+692 835

(
r

rc

)2

−1 662 804
(
r

rc

)4

+2 771 340
(
r

rc

)6

−3 233 230
(
r

rc

)8

+ 2 645 370
(
r

rc

)10

−1 492 260
(
r

rc

)12

+554 268
(
r

rc

)14

−122 265
(
r

rc

)16

+12 155
(
r

rc

)18
+
-

7.5 × 10−6
D-128th
Q-64th
O-32nd

16th-16th

9

M-512nd
εIPSM9

ele =
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aMonopole, dipole, quadrupole, and octopole are denoted as M, D, Q, and O, respectively. Hexadecapole and higher are denoted by their numerical orders.

2, and 4. As can be seen from Fig. 1 and Table II, the
polynomials fit very well to the analytic expressions given in
Eq. (16). The polynomials with m ≥ 2 listed in Table II are
the lowest order polynomials that satisfy the multipole IPS
boundary condition, Eq. (17). For the multipole interaction of
the mth order, the lowest order polynomial given by Eq. (18)
has m + 2 coefficients, b0,b1, . . . ,bm+1, which can be solved
analytically from the multipole IPS boundary condition,
Eq. (17). Obviously, the more terms in the polynomial

function, Eq. (18), the better fit we can achieve. However, for
high order multipole interactions with m ≥ 2, we found that
more terms do not produce noticeably better simulation results.

From Table II we can see that the nonpolar 3D
IPS electrostatic potential (IPSn)53 is the multipole IPS
electrostatic potential of order 0, IPSM0, and the polar 3D
IPS electrostatic potential (IPSp) we proposed previously53

is the multipole IPS electrostatic potential of order 2,
IPSM2.
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C. Algorithm of the IPS method

To summarize the multipole IPS method, we list the calculated equations for multipole IPS interactions. We use a
charge-dipole-quadrupole system as an example to show the calculation of multipole IPS potentials.

For this charge-dipole-quadrupole system, the maximum interaction order is m = 4. We chose the IPSM4 to illustrate the
calculation,

εIPSM4
ele =




χ

r
+

1
rc

*
,
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256
+

1155
256

(
r
rc

)2
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128

(
r
rc

)4

+
495
128

(
r
rc
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− 385
256

(
r
rc

)8

+
63

256

(
r
rc

)10
+
-

r ≤ rc

0 r > rc

. (19)

Here, χ is a scaling factor that many force fields employ to
adjust contribution from covalent bonded atom pairs, which
typically takes the following form:

χ =




0 1-1, 1-2, and 1-3 covalent bonded atom pairs
χ(1-4) 1-4 covalent bonded atom pairs

1 otherwise
.

(20)

For the AMOEBA force field,46 χ
(1-4)
ele = 1. When χ = 1,

Eq. (19) and its derivatives up to the 5th order are continuous
at r = rc. Note that the covalent bonding adjusting only applies
to the direct interaction part, 1

r
, not the long-range IPS image

part because image atoms are at least rc distance away and are
not directly covalent-bonded with the central atom. Therefore,
the total energy is the sum over all atom pairs within rc,
including the excluded atoms (such as self-pairs and covalent-
bonded pairs, which are normally excluded in nonbonded
interactions).

From Eqs. (12) and (19) we can calculate S0 through S5,

S0 = ε
IPSM4
ele =
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, (21a)

FIG. 1. IPSMm potentials and their polynomial fittings for m = 0, 2, and 4.
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S5 =
1
r

dS4
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= −945χ

r11 +
945
r11

c
. (21f)

For the charge-dipole-quadrupole system, the energy calcu-
lation needs S0 through S4, while the force calculation
needs S1 through S5. With the S vector and the direction
vectors, Eq. (13), we can calculate all tensors according to
Eq. (11).

The IPSMm potentials are implemented into the AMBER
Sander program.54 The implementation is based on Sagui’s
implementation of the AMOEBA force field.24 Many
details of the multipole interaction, including global frame
transformation, torque treatment, etc., can be found in Sagui’s
paper.24 With the IPSMm potentials, only atom pairs within the
local region are calculated as described above. The calculation
in reciprocal space is completely avoided. Using the vector
relation proposed in this work, tensors are directly calculated
without recursion.

III. SIMULATION DETAILS

The multipole IPS potentials, IPSMm, for m = 0–5,
are examined against PME, energy shift (ESH), and force
switch (FSW) methods. The FSW method applies a switching
function to smoothly taper each multipole interaction energy
to zero between the distances ron and roff,43
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εFSW
AB (rA,rB,MA,MB,ron,rc) =




(−1)lAMAMBTAB(rA,rB) r ≤ ron

(−1)lAMAMBTAB(rA,rB) (r
2
c − r2)2(r2

c + 2r2 − 3r2
on)

(r2
c − r2

on)3
ron < r ≤ rc

0 r > rc

. (22)

The switch-on distance was set to ron = rc − 2 Å as
recommended by the authors.1

The energy shift (ESH) method shifts only the charge-
charge electrostatic energy function,1

εESH
ele (rAB,qA,qB,rc) =




qAqB

rAB
− qAqB

rc
r ≤ rc

0 r > rc

, (23)

and all interactions of higher order are calculated according
to Eq. (10) based on the tensors,

TESH
tuv = atuv · SESH. (24)

For the particle-mesh-Ewald (PME) method,15,55 the 5th
order b-spline interpolation was used. The grid size was
around 0.466 Å and the Ewald coefficient, β, was set to
be 0.45 Å−1.24 To focus the comparison on electrostatic
interactions, Lennard-Jones interactions were calculated with
the original method of AMOEBA with the same cutoff distance
of 10 Å.45,46 The cutoff distance, rc, which, for IPS, is also
the local region radius, was varied for multipole interactions
to examine its effect on simulation results.

To compare the IPSMm potential of different orders, we
modified the AMOEBA water to have various polarities as
shown in Table III. We use M, D, and Q to denote the type
of multipoles in the model systems. For example, as shown in
Table III, system M has only monopoles and system MQ has
monopoles and quadrupoles. These model systems contain
multipoles up to the order of 2 and correspondingly have
interactions up to the order of 4. To demonstrate the application
of the IPSMm potential in real protein simulations, we present
the simulations of an aqueous solution of dihydrofolate
reductase (DHFR) with the polarizable AMEOBA force field.
All model systems were simulated for 0.5 ns to evaluate their
energetic, structural, and dynamic properties. The SHAKE
algorithm56 was used to fix bond lengths. A time step
of 1 fs was used for all simulations, except for the NVE
simulations where the time step was 0.1 fs and bond lengths
were not constrained. All of the simulations (except the NVE
simulations) were performed at a constant temperature of
T = 300 K and a constant volume in a cubic periodic box with
a box side of 29.858 Å3. The only exception was the DHFR
system which was simulated in a cubic periodic box with a
side of 62.23 Å.

TABLE III. Model systems to examine the IPSMm potentials. Each system contains 890 three-atom molecules. Charges, dipoles, and quadrupoles are all in
atomic units.

System Monopole Dipole Quadrupole
(interaction order) q {µx, µy, µz} {θxx, θy y, θzz, θx y, θyz, θzx}

M (m= 0) qO=−0.52
qH1= qH2= 0.26

µO=µH1=µH2= {0,0,0} θO= θH1= θH2= {0,0,0,0,0,0}

D (m= 2) qO= qH1= qH2= 0
µO= {0,0,0.714}
µH1=µH2= {0,0,0} θO= θH1= θH2= {0,0,0,0,0,0}

Q (m= 4) qO= qH1= qH2= 0 µO=µH1=µH2= {0,0,0} θO= {0.95,−1.05,0.097,0,0,0}
θH1= θH2= {0,0,0,0,0,0}

MD (m= 2) qO=−0.104
qH1= qH2= 0.052

µO= {0,0,0.714}
µH1=µH2= {0,0,0} θO= θH1= θH2= {0,0,0,0,0,0}

MQ (m= 4) qO=−0.104
qH1= qH2= 0.052

µO=µH1=µH2= {0,0,0} θO= {0.95,−1.05,0.097,0,0,0}
θH1= θH2= {0,0,0,0,0,0}

DQ (m= 4) qO= qH1= qH2= 0
µO= {0,0,0.714}
µH1=µH2= {0,0,0}

θO= {0.95,−1.05,0.097,0,0,0}
θH1= θH2= {0,0,0,0,0,0}

MDQ (m= 4) qO=−0.104
qH1= qH2= 0.052

µO= {0,0,0.714}
µH1=µH2= {0,0,0}

θO= {0.95,−1.05,0.097,0,0,0}
θH1= θH2= {0,0,0,0,0,0}

Polarizable (m= 4)
qO=−0.5196
qH1= qH2= 0.2598

µO= {0,0,0.1428}
µH1=µH2= {−0.0386,−0.0582,0}

θO= {0.1896,−0.2090,0.0194,0,0,0}
θH1= θH2= {−0.0184,−0.0537,0.0721,0,−0.002 03,0}
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IV. RESULTS AND DISCUSSION

The IPSMm potentials derived in this work have different
interaction orders. Using model systems, we examined the
behavior of these potentials and compared them with ESH,
FSW, and PME results to produce a guide for selecting the
order of the IPSMm potential for multipole systems.

A. Energy conservation in NVE simulation

A basic requirement of a potential function is to be
able to conserve energy in a NVE simulation. For methods
with limited cutoff distances, typically, it requires both the
energy and force to approach zero at the cutoff boundary
to conserve energy. For multipole interactions, because the
force can be repulsive and attractive depending on the
orientation, the overall effects of non-zero forces at the
boundary cancel out. As a result, only the pairwise energies are
required to approach zero at the cutoff boundary to conserve
energy.

The FSW method forces all pairwise energies to be
zero at the boundary and can therefore maintain the energy
conservation. ESH has a zero charge-charge interaction
energy, but a non-zero multipole interaction energy at the
boundary for orders other than 0, and therefore will not be
able to conserve energy for systems with interaction orders
higher than 0. The IPSMm potential of order m produces zero
energy for interactions of order m + 1 or lower, which can
conserve energy for systems with interaction order of m + 1
or lower.

Fig. 2 shows the energy drifts of the model systems during
100 ps NVE simulations with various methods. Note that these
energy drifts are as reported by AMBER and do not include
a correction for the shadow Hamiltonian.57 PME is a full
range method and is expected to conserve energy well. The
energy drifts in the PME results are due to numerical errors.

Practically, an energy drift comparable to the PME results is
regarded as satisfactory in energy conservation.

For system M, where only charge-charge interactions
exist, i.e., the maximum interaction order is 0, all IPSMm
potentials, as well as FSW and ESH, have zero energies
at the boundary. Therefore, all methods conserve energy
satisfactorily for system M, as evident by the small energy
drifts shown in Fig. 2. The non-zero boundary forces of
ESH do cause a larger drift than other methods. For D and
MD systems, the maximum interaction order is 2. From
Fig. 2 we can see that ESH and IPSM0 cannot satisfactorily
conserve the total energy. For Q, MQ, and DQ systems, the
maximum interaction order is 4 and ESH, IPSM0, IPSM1,
and IPSM2 produced large energy drifts, indicating that they
cannot satisfactorily conserve the total energy. These results
support that only the potentials with zero boundary energies
can conserve energy. As a summary, for a system with the
maximum interaction order of k, the IPSMm potential with
m ≥ k − 1 can conserve the energy.

B. Energy distributions

Energy distribution reflects the energy surface sampled
in molecular simulation. Applying each of the potential
calculation methods, we performed NVT simulations to
examine the potential energy averages and fluctuations, which
are related to heat capacities of the simulation system.

Fig. 3 shows the average energies from these methods at
different cutoff distances. The PME results are shown as big
dots for an easy comparison. For system M, the results of FSW
and ESH are so different from the PME results that cannot be
seen in the plot range. The IPSMm potentials produced much
closer results to PME and the higher the interaction order, m,
is, the closer results it produced.

One important aspect of a calculation method for long-
range interactions is the dependence on cutoff distances.

FIG. 2. Total energy drifts in NVE sim-
ulations with various methods. The sim-
ulations were performed for a cubic box
of 890 molecules with a time step of
0.1 fs and a cutoff distance of 8 Å. The
drifts were calculated over a 100 ps pe-
riod. Each model system contains 890
three-atom molecules (see Table III).
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FIG. 3. Average potential energies ob-
tained from NVT simulations with dif-
ferent methods at different cutoff dis-
tances. Each model system contains 890
three-atom molecules (see Table III).

Theoretically, PME results are independent of cutoff distances.
However, due to numerical errors in calculation, there are
certain fluctuations when simulating with different cutoff
distances.

Examining the results in Fig. 3, we can see that FSW and
ESH have strong cutoff distance dependence for all model
systems. IPSM0 and IPSM1 show strong dependence for all
systems with m > 0, IPSM2 shows strong dependence for
systems with m > 2, and IPSM3, IPSM4, and IPSM5 show
little dependence for all model systems (where the maximum
interaction orders are 4 or less). This independence to the
cutoff distance allows an acceleration of simulation with
small cutoff distances without compromising accuracy too
much.

The potential energy is a relative quantity and may shift
up or down depending on the choice of the reference state.
However, the fluctuation in the potential energy is independent
of the reference state and can better describe the energy
distribution. The energy fluctuations from different methods
at different cutoff distances are shown in Fig. 4. For system M,
FSH and ESH fluctuations deviate significantly from the PME
results, while all IPSMm potentials produced similar results
to PME at all cutoff distances examined. FSW caused system
M to freeze, which is why a large difference was observed.

ESH and IPSM0 exhibit strong cutoff-distance dependence
for D, MD, MQ, and DQ. All IPSMm with an interaction
order of 2 or higher produced very similar fluctuation at all
cutoff distances. Combined with the energy averages shown in
Fig. 3, IPSMm potentials can accurately describe the energy
distributions in systems with a maximum interaction order of
m + 1 or less at all the cutoff distances examined here.

C. Radial distribution functions (RDFs)

Radial distribution functions (RDFs) are sensitive to
potential functions and often show abnormal deviations for
cutoff-based methods around the cutoff boundary. We use
root-mean-square deviations (RMSDs) in RDFs as compared
with the PME results to measure the accuracy in reproducing
the PME RDF,

RMSD =


1

Ng

Ng
i

(g(ri) − gPME(ri))2, (25)

where Ng is the number of data points in the calculated RDF.
A RMSD of 0.01 or less indicates a good agreement with the
PME result. The RMSD from different methods at different
cutoff distances is plotted in Fig. 5.
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FIG. 4. Potential energy fluctuations of the model sys-
tems obtained from NVT simulations with different
methods at different cutoff distances. Each model system
contains 890 three-atom molecules (see Table III).

From Fig. 5 we can see that FSW has large RMSD
for systems M, M-D, and M-Q, indicating FSW is poor
for interactions involving charges. ESH has large rms for
all systems except system, Q, which has pure quadrupoles,
indicating ESH is poor for interactions involving charges or
dipoles. It is clear to see that IPSM0 is poor for all systems
except the pure charge system, M, IPSM1 is good only for M
and D model systems, while IPSM2 is poor for all quadrupole
containing systems, Q, M-Q, and D-Q. IPSM3, IPSM4, and
IPSM5 are all similarly good for all systems and show little
dependence on cutoff distances. Also we can see that the lower
order the IPSMm potential has, the stronger cutoff dependence
the results show. In summary, the IPSMm potential is accurate
at reproducing the PME RDF for systems with a maximum
interaction order of m + 1 or less at all the cutoff distances
examined here.

D. Diffusion coefficients

Diffusion is a dynamic property and diffusion coefficient
is a convenient quantity for examining interaction calculation
methods. An accurate long-range interaction calculation
method must preserve the dynamics properties. From the

simulations of the model systems, we calculated the diffusion
coefficients according to the mean square displacements of
heavy atoms. Fig. 6 shows the diffusion coefficients obtained
from simulations with various methods and at different cutoff
distances. As can be seen, the FSW diffusion coefficients
are close to the PME results for systems D, Q, and D-Q.
However, the diffusion coefficients are significantly smaller
for M, MD, and M-Q, indicating FSW is poor for systems
involving charges. ESH produced very different results for all
systems and shows strong cutoff distance dependence. The
diffusion coefficients of IPSM0 agree with those of PME only
for system M. IPSM1 and IPSM2 results agree with the PME
results for systems M, D, and M-D. IPSM3, IPSM4, and
IPSM5 results are close to the PME results for all systems and
at all cutoff distances. From these results we can see again
that the IPSMm potentials can well describe the diffusion
coefficients in systems with a maximum interaction order of
m + 1 or less at all the cutoff distances examined here.

E. Polarizable water

Multipole interactions are especially important for
polarizable force fields.35,45,58 Here we show the application
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FIG. 5. RDF RMSD of various meth-
ods at different cutoff distances as
compared with the PME results. RDF
RMSD was calculated with all atom
pairs, including O–O, O–H, and H–H.
Each model system contains 890 three-
atom molecules (see Table III).

of the IPSMm potentials to the AMOEBA polarizable
water45,46 to demonstrate its applicability in polarizable force
fields.

Induced dipole moments measure the local electric
field that molecules experience and are critical quantities
for a polarizable force field. We first examine induced
dipole moments calculated with different methods. Fig. 7
compares atomic induced dipole moments from FSW, ESH,
IPSM0, and IPSM4, against that from PME. Clearly,
IPSM0 and IPSM4 correlate very well with PME, while
FSW and ESH results have significant deviations. The
dipole moment RMSD for FSW, ESH, IPSM0, and
IPSM4 is 0.0439, 0.0085, 0.0013, and 0.0014 D, respec-
tively.

Next, we examine the RDF from different methods at
different cutoff distances. Fig. 8 shows the RDFs obtained
with PME, FSW, IPSM0, and IPSM4 at different cutoff
distances. At rc = 6 Å, the RDFs obtained with FSW and
IPSM0 are very different from those obtained with PME,
while IPSM4 produced very similar RDFs as PME. As the
cutoff distance increases, the RDFs obtained with IPSM0
become closer to those of PME. At Rc = 10 Å, both IPSM0
and IPSM4 methods produced very similar RDFs as PME,

while the FSW result still has a significant deviation from the
PME result.

Comparison of different methods is further done with
energy, energy fluctuation, RDF RMSD, and diffusion
coefficients and the results are shown in Fig. 9. For all
the properties examined here, FSW, ESH, and IPSM0
produced significant different results from PME, while
IPSM1 through IPSM5 agree well with PME at all cutoff
distances examined here. These results demonstrate that
IPSM potentials with order of 1 or above can accurately
describe the polarizable water with a cutoff distance as small
as 6 Å.

F. Polarizable protein system

The small cutoff distance used in water simulation can
be applied to more heterogeneous systems. Even though
the images in a small cutoff range can hardly represent the
structures beyond the local region, the difference caused is
in the second order and therefore does not have significant
effects on long-range interactions. This is the basis to apply
IPS potentials to systems with a heterogeneity scale much
larger than the cutoff distance. To demonstrate that, we chose
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FIG. 6. Comparison of diffusion coefficients obtained
from NVT simulations with different methods at different
cutoff distances. Each model system contains 890 three-
atom molecules (see Table III).

the DHFR aqueous solution which is large when compared
with the cutoff distance. This is a protein system widely used
as a benchmark for molecular simulation (details can be found

at http://ambermd.org/amber10.bench1.html). Fig. 10 shows
a snapshot of this system. The system contains 23 558 atoms.
DHFR has 159 residues with 2489 atoms. There are 7023

FIG. 7. Induced dipole moments of
AMOEBA water from FSH, ESH,
IPSM0, and IPSM4 are compared
against the PME results. A cutoff dis-
tance of 8 Å was used for the cal-
culations. The system contains 890
AMOEBA water (see Table III).
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FIG. 8. RDFs of AMOEBA polariz-
able water from simulations with PME,
FSW, IPSM0, and IPSM4 at different
cutoff distances. The system contains
890 AMOEBA water (see Table III).

AMOEBA water molecules with 21 069 atoms. The system
was simulated in a cubic periodic box with a box side of
62.23 Å.

Because the size of the protein is around 50 Å, much
larger than the cutoff distance for the IPSMm potentials,
which are typically 10 Å or less, it is not homogeneous in
a 10 Å length scale. It is interesting to examine how well
the IPSMm potentials describe interactions of this system
with small cutoff distances. Table IV lists average potential
energies and their fluctuations, as well as the RMSDs of
induced dipole moments and the final conformations between
simulations with the IPSM4 potential and with PME. As can
be seen, the average energies and their fluctuations, simulated
with the IPSM4 potential at cutoff distances ranging from

6.0 Å to 10 Å, are very close to the PME result and show
little dependence on the cutoff distance. The induced dipole
moments with the IPSM4 potential have small deviations from
that with PME and the deviation is smaller with larger cutoff
distance. The RMSDs of the final conformations obtained
with IPSM4 are around 1.3 Å from that obtained with
PME. These results demonstrate that the IPSM4 potential can
reasonably describe interactions in macromolecule systems
with a cutoff distance as small as 6 Å. In other words,
molecular interactions beyond the cutoff distance can be
well represented with interactions with the isotropic periodic
images.

When it is desired to fully consider the heterogeneity,
a large local region to include the whole system is needed.

FIG. 9. Ensemble average properties of
AMOEBA polarizable water from NVT
simulations with different methods. The
system contains 890 AMOEBA water
(see Table III).
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FIG. 10. A polarizable dihydrofolate reductase (DHFR) in a cubic box of
AMOEBA water. There are 159 residues and 7023 water molecules, 21 069
atoms in total. The box side is 62.23 Å.

The IPS/DFFT method proposed previously29 can efficiently
handle large cutoff distances which will be the topic of our
future development.

Another advantage of using the IPSMm potentials is
a faster dipole convergence than using PME. To reach an
induced dipole tolerance of 10−5 D with the induced dipole
solver which comes with SANDER of AMBER 16,54 27
iterations were needed when using PME while only 18
iterations were needed when using IPSM4. Of course, the
iteration numbers can be significantly reduced with better
induced dipole solvers and the faster convergence in induce
dipole calculation may not be that significant. Combined with
the savings in eliminating the reciprocal space calculation
and reducing the iteration numbers, the simulation using
IPSM4 is much faster than that using PME at the same
cutoff distance of 6.7 Å, 14.5 h vs. 40.2 h (see Table IV).
For parallel computing, it is expected that IPSMm will
scale better because of the poor scalability of FFT in PME
calculation.

TABLE IV. Comparison of PME and IPSM4 in the simulation of the po-
larizable DHFR in AMOEBA water. The averages are calculated over a
10 ps period and the RMSD is between the final conformations from IPSM4
and PME simulations. The simulations were run with a single cpu. The
PME simulation uses an 80×80×80 grid. The induced dipole tolerance is
1×10−5 D.

Method
rc

(Å)
⟨Ep⟩

(kcal/mol)
δEp

(kcal/mol) δµ (D)
RMSD

(Å)
cpu time

(h)

PME 6.7 −65 238 ± 63 178 ± 18 0 0 36.4
IPSM4 6.0 −65 459 ± 52 166 ± 15 0.0099 1.25 10.5
IPSM4 6.7 −65 491 ± 59 171 ± 16 0.0092 1.10 13.5
IPSM4 8.0 −65 356 ± 58 167 ± 17 0.0081 1.18 20.8
IPSM4 10.0 −65 427 ± 61 181 ± 18 0.0071 1.29 39.5

V. CONCLUSIONS

This work extended the IPS method to multipole
interactions by introducing the background homogeneous
approximation. Multipole IPS potentials (IPSMm) were
derived for the calculation of multipole interactions of order
m. Through model systems, we demonstrated that the IPSMm
potentials with m ≥ 2 are accurate in describing multipole
systems with maximum interaction order of m + 1 or less.
The energetic, structural, and dynamic properties obtained
with the IPSMm potentials agree well with those with
PME. FSW performs very poorly for systems involving
charges, while ESH is poor for systems with charges and/or
dipoles.

To efficiently calculate multipole interactions in Cartesian
space, we proposed a vector relation where a multipole tensor
is calculated as a dot product between a radial potential
vector and a directional vector. This vector relation can be
applied to any type of charge-charge interactions, including
the IPSMm potentials. With the IPSMm potentials, long-range
multipole interactions are calculated just as easily as with the
cutoff methods. Additionally, the calculation cost scales as
O(N), while the cost of PME scales as O(N log N). We
have demonstrated that the IPSMm potentials can reproduce
PME results to certain accuracy. By eliminating the need of
reciprocal space calculation and the associated FFTs, IPSMm
potentials have much better scaling performance than PME
for massive parallel computing. The IPSMm potentials are
especially convenient for polarizable force fields and converge
faster than PME.

Because simulations with the IPSMm potentials have
little dependence to the cutoff distance when it is 6 Å or
larger, the IPSMm potentials allow small cutoff distances to
be used to significantly reduce the number of interacting pairs
to accelerate simulation. Application to the DHFR protein
system demonstrated that a small cutoff around 6 Å can
provide reasonably accurate properties.

Because charges (monopoles) often form dipoles in
molecular systems and interact mainly in a dipole manner,
the IPSMm potentials of the minimum order to use are
IPSM2, which is IPSp proposed previously,53 even for systems
with only monopoles (charges). Based on our analysis and
simulation results, for multipole systems with a maximum
interaction order of k, it is recommended to use the IPSMm
potentials of order 2 or k − 1, whichever is higher.
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APPENDIX A: MULTIPOLE INTERACTIONS
BETWEEN CHARGES, DIPOLES, AND QUADRUPOLES

To illustrate the calculation of the vector relation, let
us consider a multipole systems with charges, dipoles, and
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quadrupoles, where the highest interaction order is m = 4.
To calculate forces, one needs the radial potential vector
components with i ≤ m + 1 = 5 and the directional vectors
with t + u + v ≤ m + 1 = 5. For convenience, all components
with i ≤ 5 in the radial potential vector are explicitly written
as follows:

S0 = εele, (A1)

S1 =
1
r

d
dr
εele, (A2)

S2 = −
1
r3

d
dr
εele +

1
r2

d2

dr2εele, (A3)

S3 =
3
r5

d
dr
εele −

3
r4

d2

dr2εele +
1
r3

d3

dr3εele, (A4)

S4 = −
15
r7

d
dr
εele +

15
r6

d2

dr2εele −
6
r5

d3

dr3εele +
1
r4

d4

dr4εele,

(A5)

S5 =
105
r9

d
dr
εele −

105
r8

d2

dr2εele +
45
r7

d3

dr3εele

− 10
r6

d4

dr4εele +
1
r5

d5

dr5εele. (A6)

Here, r is the distance between the two interacting sites. All
directional vectors with t + u + v ≤ 5 are listed as follows:

a000 = (1,0,0,0,0,0, . . .),
a100 = (0, x,0,0,0,0, . . .), a010 = (0, y,0,0,0,0, . . .), a001 = (0, z,0,0,0,0, . . .),
a200 = (0,1, x2,0,0,0, . . .), a110 = (0,1, x y,0,0,0, . . .), a101 = (0,1, xz,0,0,0, . . .),
a020 = (0,1, y2,0,0,0, . . .), a011 = (0,1, y z,0,0,0, . . .), a002 = (0,1, z2,0,0,0, . . .),
a300 = (0,0,3x, x3,0,0, . . .), a210 = (0,0, y, x2y,0,0, . . .), a201 = (0,0, z, x2z,0,0, . . .),
a120 = (0,0, x, y2x,0,0, . . .), a111 = (0,0,0, x y z,0,0, . . .), a102 = (0,0, x, xz2,0,0, . . .),
a030 = (0,0,3y, y3,0,0, . . .), a021 = (0,0, z, y2z,0,0, . . .), a012 = (0,0, y, y z2,0,0, . . .),
a003 = (0,0,3z, z3,0,0, . . .),
a400 = (0,0,3,6x2, x4,0, . . .), a310 = (0,0,0,3x y, x3y,0, . . .), a301 = (0,0,0,3xz, x3z,0, . . .),
a220 = (0,0,1, x2 + y2, x2y2,0, . . .), a211 = (0,0,0, y z, x2y z,0, . . .), a202 = (0,0,1, x2 + z2, x2z2,0, . . .),
a130 = (0,0,0,3x y, x y3,0, . . .), a121 = (0,0,0, xz, x y2z,0, . . .), a112 = (0,0,0, x y, x y z2,0, . . .),
a103 = (0,0,0,3xz, xz3,0, . . .), a040 = (0,0,3,6y2, y4,0, . . .), a031 = (0,0,0,3y z, y3z,0, . . .),
a022 = (0,0,1, y2 + z2, y2z2,0, . . .), a013 = (0,0,0,3y z, y z3,0, . . .), a004 = (0,0,3,6z2, z4,0, . . .),
a500 = (0,0,0,15x,10x3, x5,0, . . .), a410 = (0,0,0,3y,6x2y, x4y,0, . . .),
a401 = (0,0,0,3z,6x2z, x4z,0, . . .), a320 = (0,0,0,3x, x3 + 3x y2, x3y2,0, . . .),
a311 = (0,0,0,0,3x y z, x3y z,0, . . .), a302 = (0,0,0,3x, x3 + 3xz2, x3z2,0, . . .),
a230 = (0,0,0,3y,3x2y + y3, x2y3,0, . . .), a221 = (0,0,0, z, (x2 + y2)z, x2y2z,0, . . .),
a212 = (0,0,0, y, (x2 + z2)y, x2y z2,0, . . .), a203 = (0,0,0,3z,3x2z + z3, x2z3,0, . . .),
a140 = (0,0,0,3x,6x y2, x y4,0, . . .), a131 = (0,0,0,0,3x y z, x y3z,0, . . .),
a122 = (0,0,0, x, x(y2 + z2), x y2z2,0, . . .), a113 = (0,0,0,0,3x y z, x y z3,0, . . .),
a104 = (0,0,0,3x,6xz2, xz4,0, . . .), a050 = (0,0,0,15y,10y3, y5,0, . . .),
a041 = (0,0,0,3z,6y2z, y4z,0, . . .), a032 = (0,0,0,3y, y3 + 3y z2, y3z2,0, . . .),
a023 = (0,0,0,3z,3y2z + z3, y2z3,0, . . .), a014 = (0,0,0,3y,6y z2, y z4,0, . . .),
a005 = (0,0,0,15z,10z3, z5,0, . . .).

(A7)

Here, x, y , and z are the coordinate differences between the
two interacting sites along the three axes. The directional
vector, atuv, has only a few non-zero components and a dot
product with the radial potential vector, S, produces only a
few non-zero terms. The directional vector can be significantly
simplified further if we reorient the interacting multipoles to

a frame (x ′, y ′, z′) with z′ along the radial direction, which
we call the quasi-internal frame, so that x ′ = 0, y ′ = 0, and
z′ = r . In the quasi-internal frame, the radial potential vector,
S, remains unchanged while the directional vectors, atuv, are
changed to a′tuv and most of a′tuv are zero except the following
vectors (for t + u + v ≤ 5):
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a′000 = (1,0,0,0,0,0, . . .),
a′001 = (0,r,0,0,0,0, . . .),
a′200 = (0,1,0,0,0,0, . . .), a′110 = (0,1,0,0,0,0, . . .),
a′101 = (0,1,0,0,0,0, . . .),
a′020 = (0,1,0,0,0,0, . . .), a′011 = (0,1,0,0,0,0, . . .),
a002 = (0,1,r2,0,0,0, . . .),
a′201 = (0,0,r,0,0,0, . . .), a′021 = (0,0,r,0,0,0, . . .),
a′003 = (0,0,3r,r3,0,0, . . .),
a′400 = (0,0,3,0,0,0, . . .), a′220 = (0,0,1,0,0,0, . . .),
a′202 = (0,0,1,r2,0,0, . . .),
a′040 = (0,0,3,0,0,0, . . .), a′022 = (0,0,1,r2,0,0, . . .),
a′004 = (0,0,3,6r2,r4,0, . . .),
a′401 = (0,0,0,3r,0,0, . . .), a′221 = (0,0,0,r,0,0, . . .),
a′203 = (0,0,0,3r,r3,0, . . .),
a′041 = (0,0,0,3r,0,0, . . .), a′023 = (0,0,0,3r,r3,0, . . .),
a′005 = (0,0,0,15r,10r3,r5, . . .).

(A8)

For a charge-dipole-quadrupole system, the multipoles at

interaction site i are charges, qi, dipoles, µi =
(
µi x

µi y

µiz

)
, and

quadrupoles, θi =
(
θi xx θi x y θi xz
θi yx θi y y θi yz
θiz x θiz y θizz

)
. In the quasi-internal

frame, the charges remain to be qi, the dipole is µ′i =
(
µ′i x
µ′i y
µ′iz

)
,

and the quadrupole is θ′i =
(
θ′i xx θ′i x y θ′i xz
θ′i yx θ′i y y θ′i yz
θ′iz x θ′iz y θ′izz

)
. Here, by

substituting Eqs. (A1)–(A8) into Eqs. (11) and (10), we obtain
the energies of the multipole interactions listed as follows:
Charge-charge interaction:

ε
qq
i j = qiqja0,0,0S = qiqjS0. (A9)

Charge-dipole interaction:

ε
qµ
i j = qiµ j xa1,0,0S + qiµ j ya0,1,0S + qiµ j za0,0,1S
= qiµ j xxS1 + qiµ j y yS1 + qiµ j zzS1

= qiµ′j zrS1. (A10)

Charge-quadrupole interaction:

ε
qθ
i j = qiθ j xxa2,0,0S + qiθ j xya1,1,0S + qiθ j xza1,0,1S + qiθ j y ya0,2,0S + qiθ j yza0,1,1S + qiθ j zza0,0,2S

= qiθ j xx(S1 + x2S2) + qiθ j xy(S1 + x yS2) + qiθ j xz(S1 + xzS2)
+ qiθ j y y(S1 + y

2S2) + qiθ j yz(S1 + y zS2) + qiθ j zz(S1 + z2S2)
= qi(θ ′j xx + θ ′j xy + θ ′j xz + θ ′j y y + θ ′j yz + θ ′j zz)S1 + qiθ ′j zzr

2S2. (A11)

Dipole-dipole interaction:

ε
µµ
i j = µi xµ j xa2,0,0S + (µi xµ j y + µiyµ j x)a1,1,0S + (µi xµ j z + µizµ j x)a1,0,1S

+ µiyµ j ya0,2,0S + (µiyµ j z + µizµ j y)a0,1,1S + µizµ j za0,0,2S
= µi xµ j x(S1 + x2S2) + (µi xµ j y + µiyµ j x)(S1 + x yS2) + (µi xµ j z + µizµ j x)(S1 + xzS2)
+ µiyµ j y(S1 + y

2S2) + (µiyµ j z + µizµ j y)(S1 + y zS2) + µizµ j z(S1 + z2S2)
= (µ′i x + µ′iy + µ′iz)(µ′j x + µ′j y + µ′j z)S1 + µ

′
izµ
′
j zr

2S2. (A12)

Dipole-quadrupole interaction:

ε
µθ
i j = µi x(θ j xxa3,0,0 + θ j xya2,1,0 + θ j xza2,0,1 + θ j y ya1,2,0 + θ j yza1,1,1 + θ j zza1,0,2)S

+ µiy(θ j xxa2,1,0 + θ j xya1,2,0 + θ j xza1,1,1 + θ j y ya0,3,0 + θ j yza0,2,1 + θ j zza0,1,2)S
+ µiz(θ j xxa2,0,1 + θ j xya1,1,1 + θ j xza1,0,2 + θ j y ya0,2,1 + θ j yza0,1,2 + θ j zza0,0,3)S
= µi x(θ j xx(3xS2 + x3S3) + θ j xy(yS2 + x2yS3) + θ j xz(zS2 + x2zS3) + θ j y y(xS2 + y

2xS3) + θ j yz(x y zS3)
+ θ j zz(xS2 + z2xS3)) + µiy(θ j xx(yS2 + x2yS3) + θ j xy(yS2 + x2yS3) + θ j xz(x y zS3) + θ j y y(3yS2 + y

3S3)
+ θ j yz(zS2 + y

2zS3) + θ j zz(yS2 + z2yS3)) + µiz(θ j xx(zS2 + x2zS3) + θ j xy(x y zS3) + θ j xz(xS2 + z2xS3)
+ θ j y y(zS2 + y

2zS3) + θ j yz(yS2 + z2yS3) + θ j zz(3zS2 + z3S3))
= (µ′i xθ ′j xz + µ′iyθ ′j yz + µ′iz(θ ′j xx + θ ′j y y + 3θ ′j zz))rS2 + µ

′
izθ
′
j zzr

3S3. (A13)

Quadrupole-quadrupole interaction:

εθθi j = θi xxθ j xxa4,0,0 + (θi xxθ j xy + θi xyθ j xx)a3,1,0 + (θi xxθ j xz + θi xzθ j xx)a3,0,1 + (θi xxθ j y y + θi xyθ j xy + θiy yθ j xx)a2,2,0

+ (θi xxθ j zz + θi xzθ j xz + θizzθ j xx)a2,0,2 + (θi xxθ j yz + θi xyθ j xz + θi xzθ j xy + θiyzθ j xx)a2,1,1 + (θi xyθ j y y + θiy yθ j xy)a1,3,0

+ (θi xzθ j zz + θizzθ j xz)a1,0,3 + (θi xyθ j yz + θi xzθ j y y + θiyzθ j xy + θiy yθ j xz)a1,2,1

+ (θi xyθ j zz + θi xzθ j yz + θizzθ j xy + θiyzθ j xz)a1,1,2 + θiy yθ j y ya0,4,0 + (θiy yθ j yz + θiyzθ j y y)a0,3,1

+ (θiy yθ j zz + θiyzθ j yz + θizzθ j y y)a0,2,2 + (θizzθ j yz + θiyzθ j zz)a0,1,3 + θizzθ j zza0,0,4
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= θi xxθ j xx(3S2 + 6x2S3 + x4S4) + (θi xxθ j xy + θi xyθ j xx)(3x yS3 + x3yS4) + (θi xxθ j xz + θi xzθ j xx)(3xzS3 + x3zS4)
+ (θi xxθ j y y + θi xyθ j xy + θiy yθ j xx)(S2 + (x2 + y2)S3 + x2y2S4) + (θi xxθ j zz + θi xzθ j xz + θizzθ j xx)
× (S2 + (x2 + z2)S3 + x2z2S4) + (θi xxθ j yz + θi xyθ j xz + θi xzθ j xy + θiyzθ j xx)(y zS3 + x2y zS4) + (θi xyθ j y y + θiy yθ j xy)
× (3x yS3 + y

3xS4) + (θi xzθ j zz + θizzθ j xz)(3xzS3 + z3xS4) + (θi xyθ j yz + θi xzθ j y y + θiyzθ j xy + θiy yθ j xz)
× (xzS3 + y

2xzS4) + (θi xyθ j zz + θi xzθ j yz + θizzθ j xy + θiyzθ j xz)(x yS3 + z2x yS4) + θiy yθ j y y(3S2 + 6y2S3 + y
4S4)

+ (θiy yθ j yz + θiyzθ j y y)(3y zS3 + y
3zS4) + (θiy yθ j zz + θiyzθ j yz + θizzθ j y y)(S2 + (z2 + y2)S3 + z2y2S4)

+ (θizzθ j yz + θiyzθ j zz)(3y zS3 + z3yS4) + θizzθ j zz(3S2 + 6z2S3 + z4S4)
= (3θ ′i xxθ ′j xx + 3θ ′iy yθ

′
j y y + 3θ ′izzθ

′
j zz + θ

′
i xxθ

′
j y y + θ

′
i xyθ

′
j xy + θ

′
iy yθ

′
j xx + θ

′
i xxθ

′
j zz + θ

′
i xzθ

′
j xz + θ

′
izzθ

′
j xx + θ

′
iy yθ

′
j zz

+ θ ′iyzθ
′
j yz + θ

′
izzθ

′
j y y)S2 + (θ ′i xxθ ′j zz + θ ′i xzθ ′j xz + θ ′izzθ ′j xx + θ ′iy yθ ′j zz + θ ′iyzθ ′j yz + θ ′izzθ ′j y y + 6θ ′izzθ

′
j zz)r2S3

+ θ ′izzθ
′
j zzr

4S4. (A14)

The second expressions of Eqs. (A10)–(A14) show the
calculation in the global frame and the third expressions show
the calculation in the quasi-internal frame. Because of the
zero values for most components of the directional vectors,
the multipole interactions in the vector expressions have
many fewer terms than in McMurchie-Davidson recursive
expressions. From Eqs. (A10)–(A14) we can see that in
the quasi-internal frame, the interaction energies have much
simpler form. However, to calculate in the quasi-internal
frame, it is required either to rotate the interacting multipoles
to the quasi-internal frame, transforming (qi, µi,θi, . . .) and�
qj, µ j,θ j, . . .

�
to
�
qi, µ′i,θ

′
i, . . .

�
and

(
qj, µ

′
j,θ
′
j, . . .

)
, or to rotate

the directional vectors from the quasi-internal frame, a′tuv, to

the global frame, atuv, which could be expensive especially
for high orders of multipoles, and in the former case the
forces and torques evaluated need to be rotated back to the
global frame. But even with the additional cost of rotations,
the quasi-internal frame may be beneficial for other reasons27

and will be the topic of our future development. In this work,
all calculations were done in the global frame.

APPENDIX B: MULTIPOLE IPS POTENTIALS

The IPSMm potentials given by Eq. (16) can be explicitly
written as follows (for m ≤ 5):

εIPSM0
ele (r,rc) = εIPS

ele (r,rc) − SIPS
0 (rc,rc) − 1

2
(r2 − r2

c)SIPS
1 (rc,rc), (B1)

εIPSM1
ele (r,rc) = εIPS

ele (r,rc) − SIPS
0 (rc,rc) − 1

2
(r2 − r2

c)SIPS
1 (rc,rc) − 1

8
(r2 − r2

c)2SIPS
2 (rc,rc), (B2)

εIPSM2
ele (r,rc) = εIPS

ele (r,rc) − SIPS
0 (rc,rc) − 1

2
(r2 − r2

c)SIPS
1 (rc,rc) − 1

8
(r2 − r2

c)2SIPS
2 (rc,rc) − 1

48
(r2 − r2

c)3SIPS
3 (rc,rc), (B3)

εIPSM3
ele (r,rc) = εIPS

ele (r,rc) − SIPS
0 (rc,rc) − 1

2
(r2 − r2

c)SIPS
1 (rc,rc) − 1

8
(r2 − r2

c)2SIPS
2 (rc,rc)

− 1
48

(r2 − r2
c)3SIPS

3 (rc,rc) − 1
384

(r2 − r2
c)4SIPS

4 (rc,rc), (B4)

εIPSM4
ele (r,rc) = εIPS

ele (r,rc) − SIPS
0 (rc,rc) − 1

2
(r2 − r2

c)SIPS
1 (rc,rc) − 1

8
(r2 − r2

c)2SIPS
2 (rc,rc)

− 1
48

(r2 − r2
c)3SIPS

3 (rc,rc) − 1
384

(r2 − r2
c)4SIPS

4 (rc,rc) − 1
3840

(r2 − r2
c)5SIPS

5 (rc,rc), (B5)

εIPSM5
ele (r,rc) = εIPS

ele (r,rc) − SIPS
0 (rc,rc) − 1

2
(r2 − r2

c)SIPS
1 (rc,rc) − 1

8
(r2 − r2

c)2SIPS
2 (rc,rc) − 1

48
(r2 − r2

c)3SIPS
3 (rc,rc)

− 1
384

(r2 − r2
c)4SIPS

4 (rc,rc) − 1
3840

(r2 − r2
c)5SIPS

5 (rc,rc) − 1
46 080

(r2 − r2
c)6SIPS

6 (rc,rc), (B6)

where εIPS
ele (r,rc) and SIPS

0 (rc,rc) through SIPS
6 (rc,rc) are

εIPS
ele (r,rc) = 1

r
− 1

2rc

(
2γ + ψ(1 − r

2rc
) + ψ(1 + r

2rc
)
)
, (B7)
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SIPS
0 (rc,rc) = 1

2rc

(
2 − 2γ − ψ

(
1
2

)
− ψ

(
3
2

))
≈ 1.386 29

rc
, (B8)

SIPS
1 (rc,rc) = 0, (B9)

SIPS
2 (rc,rc) = 1

8r5
c

(
16 − ψ(2)

(
1
2

)
− ψ(2)

(
3
2

))
≈ 4.20720

r5
c

, (B10)

SIPS
3 (rc,rc) = 3

8r7
c

(
−16 + ψ(2)

(
1
2

)
+ ψ(2)

(
3
2

))
≈ −12.6216

r7
c

, (B11)

SIPS
4 (rc,rc) = 1

32r9
c

(
1728 − 60ψ(2)

(
1
2

)
− 60ψ(2)

(
3
2

)
− ψ(4)

(
1
2

)
− ψ(4)

(
3
2

))
≈ 111.325

r9
c

, (B12)

SIPS
5 (rc,rc) = 5

16r11
c

(
−1440 + 42ψ(2)

(
1
2

)
+ 42ψ(2)

(
3
2

)
+ ψ(4)

(
1
2

)
+ ψ(4)

(
3
2

))
≈ −923.927

r11
c

, (B13)

SIPS
6 (rc,rc) = 1

128r13
c

(
656 640 − 15 120

(
ψ(2)

(
1
2

)
+ ψ(2)

(
3
2

))
− 420

(
ψ(4)

(
1
2

)
+ ψ(4)

(
3
2

))
− ψ(6)

(
1
2

)
− ψ(6)

(
3
2

))
≈ 10 479.3

r13
c
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