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Abstract

Current seasonal influenza virus vaccines are effective against infection but they have to be 

reformulated on a regular basis to counter antigenic variations. The majority of the antibodies 

induced in response to seasonal vaccination are strain-specific. However, antibodies targeting 

conserved epitopes on the hemagglutinin protein have been identified and they offer broad 

protection. Most of these antibodies bind the hemagglutinin stalk domain and are generated from 

preexisting memory B cells. Broadly protective stalk-biased responses induced by antigenically 

divergent influenza strains, in concert with prior immunity, are sufficient to eradicate seasonally 

circulating strains. Future vaccine trials should aim to harness and maintain such a response with 

the realistic goal of developing a universal influenza vaccine.

Introduction

Influenza virus epidemics contribute to 250,000 to 500,000 deaths per year worldwide [1]. 

Current seasonal influenza virus vaccines are effective against infection with some 

limitations, such as the need to be reformulated most years to counter antigenic variations, 

also called antigenic drift [2]. Due to the timely production of the vaccine, the strains 

composing the seasonal vaccine have to be determined based on prediction and surveillance; 

mismatches between vaccine and circulating strains occasionally occur [3]. Furthermore 

such vaccines do not protect against novel pandemic strains, which are occasionally 

introduced into the human population, typically due to antigenic shift [4]. Seasonal 

vaccination generally induces a narrow, strain-specific response against the highly variable 

head domain of hemagglutinin (HA) and thus antibodies targeting the globular head quickly 

lose efficacy against drifted strains [5,6]. The stalk domain, in contrast, is more conserved 

among influenza A (group 1 and 2) and B viruses allowing antibodies that target this region 

to neutralize a wide spectrum of influenza virus subtypes [7–9]. Such antibodies are 

relatively rare in the human population but novel approaches to enhance these antibodies are 
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currently being developed [10,11]. Importantly, it is believed that targeting such conserved 

epitopes is the key to the elimination of seasonal influenza strains. Broadly neutralizing 

stalk-reactive antibodies are emerging therapeutic tools against influenza virus infections 

and are a promising prospect for the development of a universal influenza virus vaccine. A 

key issue in the field is whether or not an antibody response to HA stalk epitopes could 

sufficiently protect and sustain for permanent immunity to all, or most, circulating influenza 

strains. We argue herein that indeed a properly designed stalk-based vaccine could provide 

broad immunity.

Antibody responses to influenza virus

The influenza virus has two main surface glycoproteins: HA and neuraminidase (NA) [12]. 

HA is a trimeric protein with an immunodominant head domain that is preferentially 

mutated during immune evasion [4,13,14]. There is a receptor-binding site within the head 

domain that binds to sialic acid moieties on the surface of host cells to facilitate viral 

infection [15]. Antibodies blocking this binding site are characterized by their ability to 

prevent influenza virus mediated agglutination; in vitro these antibodies can be identified 

using a hemagglutination-inhibition assay (HAI) [12]. The HA stalk domain is composed of 

three helical bundles and is functionally required for the pH induced conformational changes 

involved in membrane fusion during viral entry and exit from the host cell [8,14,16,17]. 

Antibodies specific for this region can be identified by their ability to block viral cell 

infection independently of HAI activity, using in vitro microneutralization or plaque assay. 

NA, on the other hand, is required for cleaving the HA-sialic acid tethering to release new 

virions, allowing for viral spread [18,19]. Potentially protective NA-reactive antibodies are 

identified by their ability to block NA cleavage [20,21].

Influenza A viruses are subtyped based on the sequence and antigenic divergence of the HA 

and NA surface proteins. A total of 18 HA and 11 NA subtypes have been identified so far, 

with the type of HA expressed splitting influenza A viruses into two phylogenetic groups 

(Group 1: H1, H2, H5, H6, H8, H9, H11, H13, H16, H17, H18; and Group 2: H3, H4, H7, 

H10, H14, H15) [22–25]. Influenza B viruses are divided into two antigenically different 

lineages (Victoria and Yamagata) [26]. The majority of protective antibodies generated in 

response to influenza target the HA protein [27]. Less is known about how the antibody 

response to NA alters the course of an influenza infection, although NA-inhibitors such as 

Oseltamivir (Tamiflu), Zanamivir (Relenza), Laninamivir (Inavir), and Peramivir (Rapivab) 

have some efficacy in reducing severity if used early during the course of infection [28,29]. 

This review focuses on the antibody response to HA.

Conserved protective epitopes on HA

Despite the fact that the majority of the protective antibodies targeting HA recognize the 

head domain and display a high level of strain specificity [6], a number of head specific 

antibodies have been identified with varying levels of cross-reactivity between influenza 

strains [30–42]. All of these antibodies identified thus far, target one of two cross-protective 

head epitopes (Figure 1). Antibodies that target epitope A must overcome the extreme 

variability of the HA head, by forming key interactions within the highly conserved 
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receptor-binding site [30–39,42]. An extensive study of antibodies binding to this epitope 

revealed that they are fairly common in a vaccine response, have diverse V(D)J gene usage 

and utilize sialic acid mimicry on their HCDR3 loops to directly engage the receptor binding 

site [42]. These interactions are sufficient to overcome the extreme strain-to-strain variation 

present in the surrounding contact residues [15,42]. Epitope B is protective in both B strain 

lineages and includes the vestigial esterase domain at the base of the HA head [31].

In contrast to the HA-head variability, the stalk domain displays a much higher level of 

conservation across influenza strains with some central residues being identical across all 

subtypes [7–9]. Three protective epitopes, with varying levels of cross-reactivity between 

group 1 and 2 influenza strains, have been identified within the stalk portion of influenza A 

HA (Figure 1) [8,9,31,43–47]. Epitope 1 is centered on the A α-helix of the HA2 region of 

HA [8,9,31,44,48]. Targeting this epitope is also protective against B strains, but the 

antibody must have unique properties to accommodate key modifications helping to obscure 

the epitope surface [31]. Epitopes 2 and 3 are protective across group 2 influenza A 

subtypes. Epitope 2 includes the upper portion of the long alpha helix CD in HA2 [49], 

whereas epitope 3 is located at the base of the HA2 stalk spanning regions of the fusion 

peptide and helix-capping loops [43]. The fourth protective stalk epitope is located in the C 

terminal portion of HA1 and offers broad protection across both B strain lineages [50]. 

Generating a strong antibody response against any of these conserved epitopes can offer 

broader and more durable protection against influenza by circumventing reliance on epitopes 

prone to antigenic drift.

The antibodies specific for the conserved epitopes within the head and stalk are protective 

due to their neutralizing capacity. Recently we, and others, discovered a novel group of non-

neutralizing protective antibodies. We identified these antibodies following H7N9 

vaccination in humans. They are broadly cross-reactive, harbor high level of somatic 

mutations and target new epitopes on the HA protein conserved between group 1 and 2 [51]. 

Such antibodies have also been isolated after H7 immunization in mice [52]. Both studies 

showed that protection by these non-neutralization antibodies is partially dependent on Fc-

FcγR interactions. The discovery of such antibodies is reinforced by serum studies showing 

that cross-reactive antibodies were found in influenza seropositive humans in the absence of 

neutralization [53] and in the absence of HAI activity [54]. Moreover passive transfer of 

both neutralizing and non-neutralizing antibodies from vaccinated individual sera improved 

virus clearance in a mouse model [55]. Targeting antibodies against any of these conserved 

protective epitopes would offer significantly improved protection against circulating 

influenza strains. Most hope is currently being placed on antibodies specific for the stalk 

domain because it is so widely conserved and can be independently targeted as an 

immunogen.

Occurrence of broadly neutralizing stalk-reactive antibodies

Broadly neutralizing stalk-reactive responses have been characterized following natural 

infection with seasonal H1N1 and H3N2 strains, but are more rare after seasonal influenza 

vaccination [56,57]. However, plasmablasts with HA stalk specificity have been reported 

after vaccination with the seasonal trivalent vaccine [58] and more recently, we found that 
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group 2 cross-reactive stalk antibodies induced by seasonal vaccination were not uncommon 

[45]. Studies are now revealing that broadly neutralizing stalk-reactive antibodies are 

boosted more efficiently in humans upon exposure to antigenically divergent head HA 

domains, which was the case with the 2009 pandemic H1N1 strain [36,59–63]. Interestingly, 

this pandemic H1N1 virus led to the disappearance of all pre-pandemic H1N1 strains in the 

human population. In nature, the replacement of existing seasonal viruses by novel 

pandemic strains in the human population is a recurrent phenomenon. Over the past 60 

years, multiple instances of seasonal circulating viruses being eradicated by the emergence 

of pandemic influenza viruses have occurred. In 1957, the H2N2 pandemic virus replaced 

the seasonal H1N1 strains that were previously circulating in humans [64]. In 1968, a boost 

in antibodies against conserved epitopes on neuraminidase after the introduction of the 

H3N2 strain might have caused the extinction of human H2N2 strains [65]. Both the 1957 

and 2009 pandemic H1N1 virus expressed divergent head domains compared to the previous 

circulating strains but had conserved stalk domains. These observations lead to the 

hypothesis that antibodies against conserved epitopes, regulated by the immune status of the 

general population, could be responsible for the extinction of circulating seasonal influenza 

viruses after the emergence of novel pandemic strains [66]. In support of this, an elegant 

study using chimeric hemagglutinin proteins revealed that anti-stalk antibodies generated 

after the pandemic H1N1 infection played a substantial role in the disappearance of the 

existing seasonal H1 viruses [67].

Zoonotic reservoirs are the source of pandemic influenza strains [68]. Our documented 

history of influenza infections only spans 100 years and it is likely that many more subtypes 

than are currently appreciated have existed throughout human history. We discussed above 

how broad protection induced from exposure to novel strains in conjunction with existing 

partial immunity to antigenically drifted epitopes could cause circulating strains to be 

eliminated. The current evidence suggests that targeted vaccines that induce broad immunity 

on a wide scale could eliminate all currently circulating influenza strains. However, the 

progeny of past strains, or genetic reassortants thereof, are always available within these 

zoonotic reservoirs to re-enter human populations as reoccurring seasonal strains (Figure 2). 

People who have been exposed to similar antigens in the past will meet these strains with 

broad protective immunity, but the majority of the population will be vulnerable due to loss 

of antigen breadth and herd immunity over time. This cycle will only be broken by removal 

of zoonotic reservoirs, which is likely not possible, or by widespread and durable 

immunization against conserved epitopes. This could come in the form of a broadly 

protective vaccination, which eliminates currently circulating strains, and is reformulated 

upon cyclic re-entry from zoonotic reservoirs. These issues will need to be addressed in the 

design of a universal influenza vaccine.

Memory origin of stalk-reactive antibodies

Humans have an extensive immune history and upon antigen re-exposure, antigen-specific 

memory B cells are recalled in the immune response. The antibody producing plasmablast 

population bursts after vaccination, or infection, and is mostly comprised of antigen-specific 

cells [6]. It is now well appreciated that the adult influenza vaccine response is driven by 

activation of preexisting memory B cells, which can be identified by extensively mutated 
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variable region genes [6,36,48]. By analyzing the B cell response to vaccination in adult 

subjects who received the trivalent influenza vaccine over consecutive years, we showed that 

memory B cells are the predominant precursors to the plasmablast influenza response [69]. 

Based on their substantial mutation load and their binding affinity, stalk-reactive antibodies 

appear to be pre-existent within the memory compartment [36,48,69]. Protective H7N9 

stalk-reactive antibodies have even been identified in people who have never been exposed 

to this virus, due to presence of group 2 cross-reactive memory B cells [45]. Additionally, an 

H7 vaccine study showed the generation of a vigorous, high-affinity, stalk-specific antibody 

response with a consistent increase in circulating memory B-cell frequencies [70]. Finally, 

geriatric populations with extensive memory B cell compartments but limited naïve B cells, 

showed a stalk-biased serum antibody response following seasonal vaccination [71]. These 

studies suggest that the key to inducing broad protection against influenza is to activate 

cross-reactive memory B cells.

How to boost stalk-reactive antibody responses

It is known that immunological memory acquired against influenza strains alters the 

response to subsequent viral encounters [72], but how sequential exposure to antigenically 

distinct influenza strains shapes the humoral immune response remains poorly understood. 

Two recent longitudinal studies provide important new insights. The first study is an analysis 

of antibody titers against various pandemic and seasonal influenza strains spanning a 20-

year period, before the pandemic 2009 H1N1. HAI neutralizing titers specific to pandemic 

viruses in human circulation between 1957 and 2008 (H2N2, H3N2, and H1N1) exhibited 

sustained increases over the course of study. Interestingly group 1 and 2 stalk-reactive 

antibodies also rose modestly over the same period of time, even in the absence of major 

antigenic shift. However, group 1 HA stalk-reactive antibody titers were greatest in 

individuals who were exposed to the most diverse group 1 viruses [73]. An antigenically 

more stable virus, human cytomegalovirus, did not induced sustained increase in 

neutralizing antibody titers, suggesting that antigenic variation of influenza A viruses play a 

role in shaping the humoral response. The second study analyzed the B cell response to the 

pandemic 2009 H1N1 strain at the monoclonal antibody level upon first or second exposure 

[69]. Only individuals with low preexisting serological levels of pandemic H1N1-specific 

antibodies generated a broadly neutralizing plasmablast response directed toward the HA 

stalk. This observation confirmed that in the context of exposure to divergent influenza 

strains, immune history directly determines the likelihood of generating a broadly protective 

response (Figure 3A). Moreover maintaining a sustainable broadly neutralizing stalk-biased 

response upon subsequent exposures is a challenge, as re-exposure to the pandemic 2009 

H1N1 strain by vaccination induced an HA head–biased response [69].

The effects of immune history on induction of these broadly neutralizing antibodies result 

from characteristics of the virus and the antibodies themselves (Figure 3B). Firstly, there is 

an immuno-dominance towards epitopes located on the globular head. One reason proposed 

for sub-dominance of the stalk HA epitopes is a limited access due to steric shielding by the 

HA globular head and/or because of their proximity to the viral envelope [74,75]. However, 

structural studies have demonstrated that the HA stalk epitopes are accessible for antibody 

binding [76]. Although the epitopes are accessible, we found that stalk-reactive antibodies 
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have reduced affinity to whole virus but a similar affinity to soluble HA protein compared to 

head-reactive antibodies. [69]. The structure of HA on whole virions must be the limiting 

factor to antibody binding. In addition to these steric restrictions there are also molecular/

biochemical constrains imposed by the epitopes themselves, with most antibodies specific 

for the conserved HA stalk epitope 1 preferring the VH1-69 and VH1-18 genes 

[8,9,43,69,77]. This is attributed to three conserved hydrophobic residues located within the 

HCDR2 & HCDR3 loops of this V gene, which are required for the heavy chain mediated 

interaction [8,9,43,78]. Less common antibodies specific for this epitope have been 

identified without gene restriction and they utilize the more canonical antigen binding 

mediated by both the heavy and the light chain [44]. Broad immunoglobulin variable gene 

usage has also been identified for the other stalk epitopes [43,79]. These observations 

suggest that the limited accessibility of the HA stalk epitopes imposes molecular constraints 

on antibodies, leading to restricted VH usage of neutralizing HA stalk–reactive antibodies.

Anti-HIV antibodies that bind the gp140 glycoprotein have been shown to be polyreactive. 

The antibodies have one high-affinity binding site on gp140 and one low-affinity binding 

site on another molecule at the surface of HIV virus. This mechanism, referred to as 

heteroligation, demonstrably increases the apparent affinity of polyreactive antibodies to 

HIV and improves viral neutralization [80,81]. Interestingly, broadly neutralizing stalk-

reactive antibodies have also been reported to have higher levels of polyreactivity [69]. We 

found that polyreactivity is a specific characteristic of antibodies capable of binding broadly 

protective epitopes on the HA stalk, independently of the VH usage. Therefore, immune 

checkpoints that curb possible self-reactivity, including polyreactivity [82] may also 

contribute to the scarcity of these broadly protective cells, further contributing to HA head 

immuno-dominance (Figure 3B).

New approaches towards a universal influenza virus vaccine

Two main avenues are currently being explored to modify the seasonal influenza vaccine to 

induce a more protective stalk-biased response. The first approach utilizes immunizations 

with recombinant HA proteins; either a stabilized headless version or a chimeric HA with a 

conserved stalk region combined with a diverse HA head [74,83–85]. The second focuses on 

modifying the current vaccine to include an adjuvant or to incorporate a live attenuated 

influenza vaccine boost prior to the inactivated vaccine [70,86,87]. These approaches have 

been successful at biasing the antibody response against the conserved stalk domains in 

animal models, and coincide with the literature on recalling stalk antibodies from within the 

pre-existing memory compartment. The chimeric-HA immunization strategy is in 

preparation for clinical trials. It will be quite interesting to see the results of this trial vaccine 

when placed in the context of a diverse immune memory/history [88,89].

Summary and outlook

We have learned from nature that the eradication of particular influenza viruses is possible. 

Further, the discovery of stalk-reactive antibodies has been a catalyst for the goal of a 

universal influenza virus vaccine. Understanding the impact of immune memory to 

conserved influenza virus epitopes in humans is critical for the induction of a broadly stalk-
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reactive antibody response and its sustainability over time. Future clinical trials with vaccine 

candidates targeting such a response in humans will demonstrate how realistic a universal 

influenza vaccine is.
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Highlights

1. Conserved epitopes on the influenza HA protein offer broad protection

2. Antibodies specific for these conserved epitopes are induced by 

exposure to antigenically distinct strains

3. Immune history directly determines the likelihood of generating a 

broadly protective response

4. Current vaccine trials are underway to harness this response with the 

realistic goal of eradicating seasonal influenza strains
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Figure 1. Conserved protective hemagglutinin (HA) epitopes
Epitopes shared between all three influenza groups are indicated by red ovals, influenza A 

group 2 are blue and influenza B epitopes are green. Two conserved epitopes have been 

identified within the HA head domain. Epitope A includes the receptor-binding site, which 

is conserved across all influenza subtypes. Epitope B contains the vestigial esterase domain 

and is conserved across both B strain lineages. Four conserved epitopes have been identified 

within the HA stalk domain. Epitope 1, which includes the A α helix of HA2, is conserved 

across influenza A group 1, group 2 and influenza B strains. Stalk epitope 2 consists of the 

CD α helix in HA2, while epitope 3 encompasses regions of at the base of the HA2 stalk. 

Both of these epitopes are conserved within influenza A group 2. Epitope 4 is conserved 

between both B lineages and is located in the C terminal portion of HA1. Each epitope is 

only indicated on a single monomer within the HA trimer. Accession numbers: Group 1 

H5N1 (2FK0), Group 3 H3 (3ZTJ) and influenza B/Brisbane/60/2008 (4FQM).
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Figure 2. Model for cyclic re-entry of zoonotic influenza strains to humans
Diverse strains of influenza persist in zoonotic reservoirs and can re-enter the human 

population. Introduction of novel zoonotic strains, most often due to genetic reassortment, 

boosts immunity preferentially to conserved epitopes. The breadth of this response decreases 

over time with subsequent exposures. Herd immunity to past circulating strains is lost over 

generations and they can again become infectious to humans. Both sources of novel 

influenza strains result in a never-ending cycle of re-entry. Inducing broad immunity on a 

wide scale, and maintaining it indefinitely at the population level, could eradicate influenza 

infections of humans.
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Figure 3. Broadly protective antibodies
(A) Antibodies against conserved epitopes, shown in red on a single monomer of the HA 

trimer, are generated at a low frequency during a primary exposure. The B cells generating 

these antibodies are recalled upon secondary exposure to an antigenically distinct influenza 

strain, and contribute significantly when only these protective epitopes are conserved. 

Unfortunately, due to the immuno-dominant nature of the HA-head, when secondary 

exposure is against an antigenically similar influenza strain the stalk antibodies will be lost 

in the crowd of strain specific HA-head antibodies. (B) There are multiple factors proposed 
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to be responsible for the relative scarcity of broadly protective stalk antibodies. First, the 

subdominant immunogenicity of the stalk domain has been attributed to steric constrains, 

which impose harsh molecular restrictions on the antibodies recognizing these epitopes. 

Second, immune tolerance to curb polyreactivity may also select against these cells.
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