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Abstract

Purpose—Past studies of sepsis epidemiology did not address misclassification bias due to 

imperfect verification of sepsis detection methods to estimate the true prevalence.

Methods—We examined 273 126 hospitalizations from 2008–2012 at a tertiary-care center to 

develop surveillance-aimed sepsis detection criteria, based on the presence of the sepsis explicit 

International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes 

(995.92 or 785.52), blood culture orders, and antibiotics administration. We used Bayesian 

multinomial latent class models to estimate the true prevalence of sepsis, while adjusting for the 

imperfect sensitivity and specificity and the conditional dependence among the individual criteria.

Results—The apparent annual prevalence of sepsis hospitalizations based on explicit ICD-9-CM 

codes were 1.5%, 1.4%, 1.6%, 2.2%, and 2.5% for the years 2008 to 2012. Bayesian posterior 

estimates for the true prevalence of sepsis suggested that it remained stable from 2008, 19.2% 

(95% credible interval [CI]: 17.9%, 22.9%), to 2012, 17.8% (95% CI: 16.8%, 20.2%). The 

sensitivity of sepsis-explicit codes, however, increased from 7.6% (95% CI: 6.4%, 8.4%) in 2008 

to 13.8% (95% CI: 12.2%, 14.9%) in 2012.

Conclusions—The true prevalence of sepsis remained high, but stable despite an increase in the 

sensitivity of sepsis-explicit codes in administrative data.
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Introduction

Sepsis is a major public health problem and is one of the leading causes of death in the 

United States [1]. The high morbidity of sepsis results in $20.3 billion in annual hospital 

costs in the United States [2], in addition to the potential costs associated with permanent 

organ damage, long-term cognitive impairment, and functional disability [3]. The Agency 

for Healthcare Research and Quality (AHRQ) reported that sepsis was involved in 2.8% of 

all hospitalizations in 2011 [2].

Sepsis was defined in 1991 by a consensus conference of the American College of Chest 

Physicians (ACCP) and the Society of Critical Care Medicine (SCCM) as a syndrome of 

dysregulated inflammatory response to severe infection [4]. The consensus group recognized 

(and reaffirmed in 2001) the host response, called the systemic inflammatory response 

syndrome (SIRS), as a result of suspected or confirmed infection, for the definition, as 

opposed to the presence of a specific infection [4]. The most recent revision (i.e. Sepsis-3) to 

the consensus definition defines sepsis as a life-threatening organ dysfunction as a result of a 

dysregulated response to an infectious insult [5]. The diverse causes and clinical 

manifestations of sepsis such as pneumonia or urinary tract infection accompanied with 

organ dysfunctions or shock has created difficulty for surveillance and assessment of quality 

of care.

Several multicenter studies and national reports in the literature that relied on administrative 

billing data, suggested that the incidence of sepsis has been increasing by about 10% 

annually [6–14]. Similarly, a recent 5-year study at our tertiary-care center reported a 9.7% 

annual percent change in hospitalizations with a discharge diagnosis of sepsis [15]. The 

results of a study at our institution also did not find an increase in sepsis incidence when we 

used patient-level data to adjust for the coinciding improvement in the clinical diagnosis of 

sepsis, its documentation, and administrative coding of sepsis during the same period [16]. 

These studies demonstrated a lack of a temporal trend in the apparent prevalence (or 

incidence) of sepsis; however, there has not been an attempt to estimate the true prevalence 

of sepsis by adjusting for the misclassification bias due to the imperfect accuracy of current 

sepsis detection using administrative data.

In this study we developed criteria, referred to as surveillance-aimed sepsis detection 
(SASD) criteria to estimate the true prevalence of sepsis from administrative data. In 

specifying the criteria, we considered some fundamental concepts of a surveillance system 

such as simplicity of implementation, accuracy (diagnostic sensitivity and specificity), 

precision (repeatability and reproducibility), timeliness (quick implementation), utility 

(flexibility and extensibility of methods to evolving settings and conditions), and value (low- 

or no-cost compared to accrued value) [17]. In devising SASD, we intended the criteria to be 

applied to aggregate-level data for surveillance purposes, rather than in a clinical setting for 

an individual patient. Unlike some published studies [14,18–24], we did not assume that our 

criteria or any other reference or validation method has perfect accuracy. We adapted 

appropriate analytical techniques to adjust for the misclassification bias due to imperfect 

verification and to estimate the true prevalence of sepsis, while we coherently incorporated 

all uncertainties regarding the unknown quantities in our inference [25,26]. Finally, we 
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illustrated the use of methods for surveillance using an imperfect diagnostic criterion and 

provided an open-source program code that can be readily adapted for surveillance of 

conditions of interest using administrative data or electronic health records.

Methods

Study setting and population

The study population included all inpatient stays for patients, who were 18 years of age or 

older, admitted to Barnes-Jewish Hospital (BJH), an academic tertiary-care center affiliated 

with Washington University School of Medicine in St. Louis, Missouri, between January 1, 

2008 and December 31, 2012. Administrative data and electronic health records containing 

clinical, pharmacy, and laboratory data for BJH were available from the BJC HealthCare’s 

Center for Clinical Excellence and the Center for Biomedical Informatics, a joint partnership 

between Washington University and BJC HealthCare. The study was approved by the 

Human Research Protection Office of Washington University School of Medicine, with a 

waiver of written informed consent.

Description of data

Data included patient information and discharge diagnosis of sepsis of any etiology, 

identified by the International Classification of Diseases, Ninth Revision, Clinical 
Modification (ICD-9-CM) diagnosis codes, 995.92 or 785.52, as per the third revision (i.e. 

Sepsis-3) of the sepsis consensus definition [5]. Other data obtained included all blood 

cultures performed as well as antibiotic administration during the course of hospitalization. 

Receipt of antibiotics was considered negative for antibiotic administration routes that are 

inconsistent with sepsis treatment such as topical ophthalmologic administration, oral rinse, 

or other topical antibiotics use.

Bayesian inference

We used Bayesian latent class models to estimate the true prevalence of sepsis and the 

diagnostic sensitivity and specificity of our SASD criteria based on cross-sectional sampling 

design. This analytical technique allows estimation of true prevalence, despite being 

unobserved, from observed data that are subject to misclassification [27]. For an overview 

on Bayesian methodology, see Christensen et al [28] or Gill [29]. Briefly, Bayesian inference 

about an unknown quantity (i.e. parameter) such as prevalence or a sensitivity starts by 

specifying a probability distribution, referred to as a prior, on the parameter of interest. The 

prior is often elicited from expert knowledge or past research, referred to as informative 
prior, or defined to be diffuse (i.e. less informative) or non-informative, which contains no 

information (i.e., every possible value of the parameter is equally likely). This prior 
information is then combined (i.e. updated) with the observed data to obtain a posterior 

distribution of the parameter, a process based on the Bayes’ theorem. The posterior 

distribution can be summarized with point estimates and probability intervals (i.e. quantiles) 

of the parameter of interest. There are several features of the Bayesian approach that are 

suited to prevalence estimation in the absence of a perfect verification. The Bayesian 

approach formally incorporates all uncertainties, for example from expert opinion, or 

certainties, for example from past research, regarding an unknown parameter through prior 
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specification. Priors also allow parameters to be estimable even when there are not enough 

degrees of freedom without the need to put additional constraints on the parameters [30]. 

Finally, the Bayesian framework directly provides probability intervals and do not need to 

rely on large sample approximation [28,29].

Model for data

We specified a multinomial model, described by Branscum et al [31] for the cross-classified 

results of the three criterions in the SASD criteria: sepsis-explicit discharge codes, an order 

for blood cultures, and antibiotic administration during the course of hospitalization. 

Multinomial sampling distribution is commonly used to model the frequencies 

corresponding to the cross-classified dichotomous diagnostic test outcomes [26,27,31–35]. 

For the SASD criteria, the data vector consists frequencies corresponding to the combination 

of outcomes for the three criteria, i.e. (+++, ++-, +-+, …, --+, ---), where (+++) is the 

number of patients with all criteria present and so forth. We followed the model 

parameterization of Dendukuri and Joseph [36] to allow conditional dependence (or 

correlations) between the results of each criterion [34,37]. Specifically, we allowed 

antibiotic administration and sepsis-explicit coding to be dependent criteria, conditional on 

true unknown sepsis status, and the order for blood cultures criterion to be independent. 

Briefly, the model assumes that the observed frequencies in the cross-classified table of 

SASD criteria results is a realization of data from a multinomial distribution with the 

corresponding probabilities that are functions of the true sepsis prevalence, sensitivities, 

specificities, and the conditional covariances between the sensitivities and specificities of the 

SASD criteria [32]. We emphasize that the diagnostic sensitivity and specificity of the blood 

cultures order to identify sepsis from administrative data are considered here, and these 

quantities should not be confused with the analytic sensitivity and specificity of the culture 

method [25]. Bayesian computations were performed in JAGS [38] version 4.0.1 through 

rjags [39] library in R [40] version 3.2.2, and the JAGS codes, adapted from Branscum et al 

[31], are provided in the Appendix. All inferences were based on 250 000 iterations thinned 

from 500 000 after a burn-in of 200 000 iterations. Lack of convergence were assessed using 

several numerical and graphical diagnostics including Geweke’s statistic, Heidelberger and 

Welch’s statistic, and Gelman-Rubin statistic using two chains with distinct initial values in 

addition to trace-plots available in R’s coda [41] library.

Priors

We specified beta probability distributions on true sepsis prevalence, sensitivities and 

specificities of the SASD criteria. We followed Suess et al [42] to construct informative beta 

priors. To incorporate current knowledge, it only makes sense to have experts think in terms 

of original data rather than in terms of the parameters of a probability distribution. Experts 

are often capable of asserting their best estimate/guess of the most likely value for a 

quantity, based on similar or previous data, and also a value that the truth is unlikely to be 

above (or below). Alternatively, these two quantities could be derived from past research or 

chosen to be non-informative. Suess et al [42] provided the exact derivation, which describes 

how these two inputs are considered as the mode and 5- or 95-th percentile of the 

corresponding elicited beta distribution. For example, we assumed that the sensitivity of the 

sepsis-explicit ICD-9-CM codes is most likely around 10% (for example, Iwashyna et al 
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[43] and Whittaker et al [22] reported 9.3% and 20.5% for sepsis, respectively), and we were 

95% certain that the sensitivity will not exceed 30%. These two quantities are corresponding 

to the Beta(2.56, 15.03) distribution that has a mean of 0.15 and variance of 0.01 [42]. 

Finally, we followed Dendukuri and Joseph [36] in specifying priors on the conditional 

covariances from uniform distributions that satisfy the possible range of the covariances.

Two additional sets of priors were considered for the sensitivity analysis (Table 1). The 

priors in the sensitivity analysis 1 were constructed similarly to the priors in the primary 

analysis, but it was specified to be either substantially more diffuse (i.e. less informative) or 

non-informative. The priors in the sensitivity analysis 2 were informative and elicited 

directly from estimates of the previous year, except for 2008 where the priors were identical 

to those in sensitivity analysis 1. The parameters of beta priors constructed from percentiles 

were computed using prevalence [44] library for R software.

Results

We examined a total of 273 126 hospitalizations. The apparent prevalence of sepsis 

hospitalizations based on explicit ICD-9-CM codes were 1.5% (808/53 291), 1.4% (783/54 

293), 1.6% (888/55 090), 2.2% (1182/54 284), and 2.5% (1422/56 168) from 2008–2012, 

respectively. Table 2 presents cross-classified results of the SASD criteria for the study 

period. Estimates of the true prevalence, sensitivities, and specificities of the SASD criteria 

are presented in Table 3. The results suggested that the true prevalence of sepsis remained 

relatively stable from 2008, 19.2% (95% credible interval [CI]: 17.9%, 22.9%), to 2012, 

17.8% (95% CI: 16.8%, 20.2%). The sensitivity of sepsis explicit codes, however, increased 

from 7.6% (95% CI: 6.4%, 8.4%) in 2008 to 13.8% (95% CI: 12.2%, 14.9%), whereas the 

specificity of the sepsis explicit code was almost perfect (i.e. 100%) during the same period 

(Table 3). The specificity of the antibiotic administration criterion was low, but slightly 

improved during the study period (Table 3). This is expected because in addition to sepsis, 

antibiotics are administered for many other infectious conditions.

Discussion

Our surveillance-aimed criteria estimated the true prevalence of sepsis to be about 18%, 

which remained stable during the study period at our institution. This study follows the 

results of two previous studies at the our institution that suggested an uptrend in the apparent 

prevalence of hospitalizations with a discharge diagnosis code for sepsis [15,16]. Our 

findings are similar to those from Iwashyna et al [43], who reported an apparent prevalence 

of sepsis to be 13.5% based on an alternative algorithm, referred to as the Angus 

implementation [45], in administrative data with 50.3% and 96.3% sensitivity and 

specificity, respectively. Using Rogan and Gladen’s formula to estimate true prevalence from 

apparent prevalence [46], we estimated the true prevalence of sepsis in Iwashyna et al [43] 

population to be about 21%, which is similar to our study population despite using different 

methodology. Our findings suggest that, despite the stable prevalence of sepsis, the 

sensitivity of explicit coding in administrative data almost doubled to about 14% during the 

5-year study period, but still remained very low. These findings are consistent with, for 

example, Iwashyna et al [43] among others [47], that reported the sensitivity of sepsis-
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explicit codes for sepsis (ICD-9-CM: 995.92 or 785.52) to be 9.3% (95% confidence 

interval: 0%, 19.3%), which was based on the medical records chart review of a sample of 

hospitalizations.

The estimates for the sensitivity of ICD-9-CM explicit codes for sepsis in our study are 

critical because several past studies that used large multi-center or national datasets to 

describe the epidemiology of sepsis did not adjust for the misclassification bias, imperfect 

accuracy of the verification method, and inaccuracy in ICD-9-CM codes for sepsis [6–

14,23,24,48]. Consequently, these studies provided a severely biased estimate of sepsis 

trends over time. The findings are also important because the AHRQ’s estimate [2] of $20.3 

billion for annual sepsis care aggregate hospital costs does not account for approximately 

85% of true sepsis hospitalizations that are missed in administrative data, based upon our 

study and those reported by Iwashyna et al [43].

Our aggregate-level prevalence study could not consider all of the factors that were 

associated with receiving a discharge diagnosis of sepsis for an individual patient. However, 

in a complementary study [16], we found an admission to the intensive care unit (ICU) and 

frequency of blood culture ordering during the course of hospitalization was associated with 

receiving a discharge diagnosis for sepsis. This is consistent with findings from other studies 

that suggested a higher sensitivity of sepsis-explicit codes in ICU hospitalizations [47]. 

Additionally, we previously quantified the changes in the probability of receiving a 

discharge diagnosis of sepsis for an individual patient, as a proxy for measuring the 

coinciding improvement in the clinical diagnosis of sepsis, its documentation in electronic 

health records, and its medical coding in administrative billing data [16]. Another limitation 

of our study is that it occurred in a single academic center. However, our modeling approach 

is very flexible and can readily be adapted to different settings such as a different time 

period where the accuracy of each individual criterion changes, or for example for 

community hospitals with lower probability of sepsis explicit coding or surgical patients 

with higher probability of receiving antibiotics by modifying the specified priors whenever 

appropriate.

Our analytical approach is distinct from previous studies that required sepsis-explicit codes 

along with blood culture orders, a positive blood culture, antibiotics use, vasopressor use, or 

other variables to create a pseudo-gold standard [10,14,23,24,48,49]. This method of 

combining several individual criterions is referred to as serial interpretation in diagnostic 

testing literature, which improves diagnostic specificity at the expense of reducing 

diagnostic sensitivity and consequently missing even more true sepsis cases [33]. These 

approaches that result in improved specificity are not suitable for surveillance purposes 

given that the specificity of sepsis-explicit codes is almost perfect (i.e. 100%) as suggested 

by our results and those provided by Iwashyna et al [43] among others. Moreover, these 

pseudo-gold standards remain subject to varying degrees of misclassification bias that result 

in severe underestimation of sepsis prevalence [26,50]. Instead, we modeled the three 

imperfect criteria simultaneously such that each contributed information to the estimation of 

true sepsis prevalence without the need to create a hypothetical perfect reference standard.
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Sepsis remains a critical public health concern. Our attempt to estimate the true prevalence 

of sepsis is important because it allows for comparing the changes in true prevalence over 

time or between different hospitals for surveillance purposes. Further, the methods are 

algorithm-independent and can be applied to different settings or conditions of interest.
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Appendix

Program codes to estimate the true prevalence and accuracy of surveillance-aimed sepsis 

detection criteria.

# JAGS 4.0.1; http://mcmc-jags.sourceforge.net/

# Adapted from Branscum et al. 2005; DOI:10.1016/j.prevetmed.2004.12.005

# T1: Sepsis explicit codes

# T2: Antibiotics administration

# T3: Blood culture order

# p[1]: T1+, T2+, T3+

# p[2]: T1+, T2−, T3+

# p[3]: T1+, T2+, T3−

# p[4]: T1+, T2−, T3−

# p[5]: T1−, T2+, T3+

# p[6]: T1−, T2-, T3+

# p[7]: T1−, T2+, T3−

# p[8]: T1−, T2−, T3−

model {

      x[1:8] ~ dmulti(p[1:8], n)

      p[1] <- prev*Se3*(Se1*Se2+covDp) + (1-prev)*(1-Sp3)*((1-Sp1)*(1-

Sp2)+covDn)

      p[2] <- prev*Se3*(Se1*(1-Se2)-covDp) + (1-prev)*(1-Sp3)*((1-Sp1)*Sp2-

covDn)

      p[3] <- prev*(1-Se3)*(Se1*Se2+covDp) + (1-prev)*Sp3*((1-Sp1)*(1-

Sp2)+covDn)

      p[4] <- prev*(1-Se3)*(Se1*(1-Se2)-covDp) + (1-prev)*Sp3*((1-Sp1)*Sp2-

covDn)

      p[5] <- prev*Se3*((1-Se1)*Se2-covDp) + (1-prev)*(1-Sp3)*(Sp1*(1-Sp2)-

covDn)

      p[6] <- prev*Se3*((1-Se1)*(1-Se2)+covDp) + (1-prev)*(1-

Sp3)*(Sp1*Sp2+covDn)

      p[7] <- prev*(1-Se3)*((1-Se1)*Se2-covDp) + (1-prev)*Sp3*(Sp1*(1-Sp2)-

covDn)

      p[8] <- prev*(1-Se3)*((1-Se1)*(1-Se2)+covDp) + (1-

prev)*Sp3*(Sp1*Sp2+covDn)

      ls <- (Se1-1)*(1-Se2)

      us <- min(Se1,Se2) - Se1*Se2

      lc <- (Sp1-1)*(1-Sp2)
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      uc <- min(Sp1,Sp2) - Sp1*Sp2

      rhoD <- covDp / sqrt(Se1*(1-Se1)*Se2*(1-Se2))

      rhoDc <- covDn / sqrt(Sp1*(1-Sp1)*Sp2*(1-Sp2))

      prev ~ dbeta(1.709702, 14.48435)

      Se1 ~ dbeta(2.55936, 15.03424)

      Sp1 ~ dbeta(21.20184, 2.063255)

      Se2 ~ dbeta(21.20184, 2.063255)

      Sp2 ~ dbeta(3.876141, 9.628424)

      Se3 ~ dbeta(15.03422, 2.559357)

      Sp3 ~ dbeta(15.03422, 2.559357)

      covDn ~ dunif(lc, uc)

      covDp ~ dunif(ls, us)

}

# R 3.2.2; https://www.r-project.org/

# ‘prevalence’ package; https://cran.r-project.org/web/packages/prevalence/

index.html library(prevalence)

# Prior for prev

betaExpert(best = 0.05, upper = 0.25)

# Prior for Se1

betaExpert(best = 0.10, upper = 0.30)

# Prior for Sp1

betaExpert(best = 0.95, lower = 0.80)

# Prior for Se2

betaExpert(best = 0.95, lower = 0.80)

# Prior for Sp2

betaExpert(best = 0.25, upper = 0.50)

# Prior for Se3

betaExpert(best = 0.90, lower = 0.70)

# Prior for Sp3

betaExpert(best = 0.90, lower = 0.70)

# Data for 2012

x <- c(1320, 13, 87, 2, 9187, 1473, 20911, 23175)

n <- sum(1320, 13, 87, 2, 9187, 1473, 20911, 23175)
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Table 1

Priors for the parameters of the multinomial model for surveillance-aimed sepsis detection criteria.

Criterion Parameter Description; Primary
Prior

Alternative Prior for
Sensitivity Analysis 1

Alternative Prior for
Sensitivity Analysis 2

True sepsis
prevalence

Prev Mode = 0.05, 95% sure
that mode < 0.25;
Beta(1.71, 14.48)

Non-informative;b
Beta(1, 1)

Identical to sensitivity
analysis 1 for 2008, and
elicited from previous year
afterwards

Sepsis explicit

codesa

Se Mode = 0.10, 95% sure
that mode < 0.30;
Beta(2.56, 15.03)

Non-informative;b
Beta(1, 1)

Same as above

Sp Mode = 0.95, 95% sure
that mode > 0.80;
Beta(21.20, 2.06)

Mode = 0.95, 95% sure
that mode > 0.50;
Beta(5.38, 1.49)

Same as above

Blood culture
order

Se Mode = 0.90, 95% sure
that mode > 0.70;
Beta(15.03, 2.56)

Mode = 0.95, 95% sure
that mode > 0.50;
Beta(5.38, 1.49)

Same as above

Sp Mode = 0.90, 95% sure
that mode > 0.70;
Beta(15.03, 2.56)

Mode = 0.95, 95% sure
that mode > 0.50;
Beta(5.38, 1.49)

Same as above

Antibiotics
administration

Se Mode = 0.95, 95% sure
that mode > 0.80;
Beta(21.20, 2.06)

Mode = 0.95, 95% sure
that mode > 0.50;
Beta(5.38, 1.49)

Same as above

Sp Mode = 0.25, 95% sure
that mode < 0.50;
Beta(3.88, 9.63)

Non-informative;b
Beta(1, 1)

Same as above

Prev = prevalence; Se = sensitivity; Sp = specificity.

a
International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis codes 995.92 or 785.52.

b
Every possible value of the parameter is equally likely.
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Table 2

Cross-classified results for surveillance-aimed sepsis detection criteria.

Year Sepsis Explicit Codesa Blood Culture Order Antibiotics Administration Frequency (%)

2008 53 291

+ + + 754 (1.41)

+ + − 4 (0.01)

+ − + 44 (0.08)

+ − − 6 (0.01)

− + + 10 649 (19.98)

− + − 1650 (3.10)

− − + 22 399 (42.03)

− − − 17 782 (33.37)

2009 54 293

+ + + 736 (1.36)

+ + − 8 (0.01)

+ − + 38 (0.07)

+ − − 1 (0.002)

− + + 10 191 (18.77)

− + − 1470 (2.71)

− − + 21 845 (40.24)

− − − 20 004 (36.84)

2010 55 090

+ + + 832 (1.51)

+ + − 2 (0.004)

+ − + 51 (0.09)

+ − − 3 (0.01)

− + + 9855 (17.89)

− + − 1375 (2.50)

− − + 21 205 (38.49)

− − − 21 767 (39.51)

2011 54 284

+ + + 1093 (2.01)

+ + − 4 (0.01)

+ − + 78 (0.14)

+ − − 7 (0.01)

− + + 9557 (17.61)

− + − 1409 (2.60)

− − + 20 407 (37.59)

− − − 21 729 (40.03)

2012 56 168

+ + + 1320 (2.35)

+ + − 13 (0.02)
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Year Sepsis Explicit Codesa Blood Culture Order Antibiotics Administration Frequency (%)

+ − + 87 (0.15)

+ − − 2 (0.004)

− + + 9187 (16.36)

− + − 1473 (2.62)

− − + 20 911 (37.23)

− − − 23 175 (41.26)

+ = criterion is present; − = criterion is absent.

a
International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis codes 995.92 or 785.52.
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Table 3

Estimates of true prevalence and accuracy of surveillance-aimed sepsis detection criteria.

Parameter Year Posterior Median (95%
CI) Using Primary

Priors

Posterior Median (95% CI)
Using Priors in Sensitivity

Analysis 1

Posterior Median (95% CI)
Using Priors in Sensitivity

Analysis 2

True sepsis prevalence

2008 0.192 (0.179, 0.229) 0.193 (0.178, 0.242) 0.193 (0.178, 0.242)

2009 0.187 (0.176, 0.214) 0.188 (0.175, 0.226) 0.182 (0.176, 0.190)

2010 0.185 (0.174, 0.210) 0.184 (0.172, 0.217) 0.183 (0.175, 0.192)

2011 0.189 (0.176, 0.215) 0.188 (0.175, 0.223) 0.195 (0.185, 0.205)

2012 0.178 (0.168, 0.202) 0.180 (0.167, 0.214) 0.186 (0.177, 0.195)

Sepsis explicit codesa
Se

2008 0.076 (0.064, 0.084) 0.076 (0.061, 0.084) 0.076 (0.061, 0.084)

2009 0.076 (0.066, 0.083) 0.075 (0.062, 0.083) 0.078 (0.073, 0.083)

2010 0.085 (0.074, 0.092) 0.085 (0.072, 0.093) 0.083 (0.078, 0.088)

2011 0.112 (0.098, 0.121) 0.112 (0.095, 0.121) 0.102 (0.096, 0.108)

2012 0.138 (0.122, 0.149) 0.138 (0.116, 0.149) 0.128 (0.122, 0.136)

Sepsis explicit codesa
Sp

2008 0.999 (0.999, 1.000) 0.999 (0.999, 1.000) 0.999 (0.999, 1.000)

2009 1.000 (0.999, 1.000) 1.000 (0.999, 1.000) 0.999 (0.999, 1.000)

2010 1.000 (0.999, 1.000) 1.000 (0.999, 1.000) 1.000 (0.999, 1.000)

2011 0.999 (0.998, 1.000) 0.999 (0.998, 1.000) 1.000 (0.999, 1.000)

2012 0.999 (0.998, 1.000) 0.999 (0.998, 1.000) 0.999 (0.999, 1.000)

Blood culture order
criterion Se

2008 0.960 (0.935, 0.989) 0.960 (0.935, 0.994) 0.960 (0.935, 0.994)

2009 0.965 (0.941, 0.990) 0.963 (0.940, 0.994) 0.961 (0.945, 0.978)

2010 0.959 (0.934, 0.989) 0.957 (0.932, 0.993) 0.961 (0.941, 0.979)

2011 0.954 (0.927, 0.988) 0.952 (0.925, 0.993) 0.954 (0.932, 0.975)

2012 0.957 (0.933, 0.989) 0.953 (0.930, 0.992) 0.950 (0.933, 0.970)

Blood culture order
criterion Sp

2008 0.925 (0.914, 0.966) 0.926 (0.913, 0.983) 0.926 (0.913, 0.983)

2009 0.940 (0.931, 0.971) 0.941 (0.930, 0.986) 0.934 (0.929, 0.941)

2010 0.949 (0.940, 0.977) 0.947 (0.939, 0.985) 0.946 (0.940, 0.955)

2011 0.947 (0.938, 0.977) 0.947 (0.938, 0.987) 0.955 (0.945, 0.964)

2012 0.948 (0.939, 0.975) 0.949 (0.939, 0.988) 0.955 (0.945, 0.964)

Antibiotics
administration criterion
Se

2008 0.978 (0.911, 0.999) 0.977 (0.891, 0.999) 0.977 (0.891, 0.999)

2009 0.978 (0.921, 0.998) 0.977 (0.896, 0.999) 0.992 (0.975, 0.999)

2010 0.979 (0.921, 0.999) 0.983 (0.908, 1.000) 0.984 (0.963, 0.998)
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Parameter Year Posterior Median (95%
CI) Using Primary

Priors

Posterior Median (95% CI)
Using Priors in Sensitivity

Analysis 1

Posterior Median (95% CI)
Using Priors in Sensitivity

Analysis 2

2011 0.978 (0.918, 0.999) 0.980 (0.901, 0.999) 0.961 (0.941, 0.985)

2012 0.978 (0.918, 0.998) 0.976 (0.894, 0.998) 0.960 (0.939, 0.985)

Antibiotics
administration criterion
Sp

2008 0.446 (0.440, 0.452) 0.446 (0.440, 0.452) 0.446 (0.440, 0.452)

2009 0.481 (0.476, 0.487) 0.482 (0.476, 0.487) 0.480 (0.475, 0.485)

2010 0.511 (0.505, 0.516) 0.511 (0.505, 0.517) 0.509 (0.504, 0.514)

2011 0.520 (0.514, 0.526) 0.520 (0.514, 0.527) 0.520 (0.515, 0.526)

2012 0.529 (0.523, 0.535) 0.530 (0.523, 0.536) 0.530 (0.525, 0.535)

CI = Credible interval; Se = sensitivity; Sp = specificity.

a
International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis codes 995.92 or 785.52.
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