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Abstract

Despite the success of highly active antiretroviral therapy (HAART) for inhibiting HIV replication 

and improving clinical outcomes, it fails to cure infection due to the existence of a stable latent 

proviral reservoir in memory CD4+ T cells. Because of the longevity of these cells harboring 

transcriptionally silent proviruses, devising strategies to induce viral gene expression so the host 

immune response can mediate clearance of the infected cells or the cells can undergo virus-

induced cell death, has been of considerable recent interest. Here, we review current knowledge of 

latency, and the challenges to virus induction and eradication. Novel strategies to reactivate HIV 

reservoirs more effectively, in combination with immunotherapy, could lead to better clearance of 

the latent HIV reservoir.

Introduction

Resting CD4+ memory T cells are the main reservoir harboring latent integrated HIV-1 

during highly active antiretroviral therapy (HAART) [1,2]. Because of their long lifespan 

and quiescent status, latently infected resting CD4+ T cells are particularly efficient at 

escaping immune surveillance and represent a major obstacle to curing HIV infection. 

Indeed, patients who have been on suppressive HAART for long periods rapidly demonstrate 

rebounds in viral load during treatment interruptions. Recent efforts have focused on 

reactivating the latent viral reservoirs in the setting of HAART with the hope that viral 

cytopathic effects or the cellular immune response will kill the infected cells [3,4]. However, 

current methods of activating latently integrated virus have not been proven to be effective at 

inducing virus expression to levels sufficient for inducing death of the infected cells, and the 

host immune response may be insufficiently activated to clear infection [5,6]. Furthermore, 

initial trials with agents to reverse latency have not demonstrated a reduction in the viral 

reservoir [7]. Thus, identifying a method to prime cells expressing reactivated virus to die 

more readily may be essential for eradicating the latent viral reservoir. Here, we provide an 

overview of HIV latency in CD4 T+ cells during HAART, review challenges to clearing the 
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latent reservoir, and discuss alternative approaches to the reactivation and eradication of 

latently infected cells.

HIV infection and latency

HIV latency refers to a highly stable and transcriptionally silent integrated proviral DNA 

reservoir within resting memory CD4+ T cells that can produce infectious virus when the 

host cell is reactivated by antigen or during interruptions in HAART [8]. Latency is likely 

established early during acute HIV-1 infection of the host [9] and as a result of the cellular 

tropism of HIV, which optimally replicates in activated CD4+ T cells.

Exposure to antigens leads to activation and expansion of antigen-specific effector T cells, 

most of which are removed by programmed cell death after the immune response subsides 

[10,11]. However, a small number of these antigen-specific T cells survive and develop into 

memory cells [12,13]. The selective retention of antigen-specific memory T cells and ability 

to revert to a resting state and persist after an immune response is crucial for the 

maintenance of long-term immunological memory [14,15]. However, this longevity and 

quiescence makes them a perfect host for perpetuating latently integrated proviruses [1]. 

With regulatory features highly adapted to the environment of T cells, HIV appears to 

capitalize on the process of memory T cell development for the establishment of latency. 

While most of the activated CD4+ T cells that become infected are rapidly killed, it is 

thought that the rare, activated CD4+ T cells that are infected as they transition to a resting 

memory state survive. In support of this idea, latent HIV has been found in resting memory 

CD4+ T cells but not naïve CD4+ T cells [16-19], and these cells account for only 1 in 106 of 

resting CD4+ T cells [18,19]. However, reactivation of these infected CD4+ T cells rekindles 

viral replication.

Persistence of the reservoir of latently infected cells

How the persistent HIV CD4+ T cell reservoir in the host is maintained remains 

incompletely understood. A number of past studies indicate that long-term HAART 

eventually halts viral evolution in the host, suggesting that viral replication is largely 

suppressed. Under these circumstances, the occasional blips in measurable plasma viremia 

may result from antigen activation of infected T cells. HIV DNA integrant frequencies 

remain stable over time and a large portion of the virus appears to be clonal in nature 

[20,21]. Indeed, two recent studies demonstrate that proliferation of latently HIV-infected 

CD4+ T cells may play a key role in maintaining this durable viral reservoir [22,23]. In both 

papers, the authors observed in well-suppressed patients clonal outgrowth of cells with HIV 

integrated in or near a small set of cellular genes. Interestingly, some of the genes are known 

to be involved in tumorigenesis or cell cycle control. In particular, BACH2 is a frequent site 

of integration [22-24]. BACH2 is involved in T cell development and cytokine production 

[25,26], suggesting that integration within this gene may influence regulation of 

proliferation. Importantly, these clonally expanded populations of CD4+ T cells with 

integrated provirus can produce infectious HIV [27].
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Other studies indicate the existence of sanctuary sites within the infected patient on HAART. 

As most earlier studies on genetic diversity of HIV during HAART have focused on blood 

derived variants, questions have remained about whether those results necessarily apply to 

other compartments within the body. Of particular interest are lymphoid tissues, where the 

frequency of infected cells is higher [28], and the intracellular concentration of antiretroviral 

drugs is relatively low [28a]. A recent study found that virus evolution may continue in 

lymphoid tissues of patients with undetectable levels of virus in blood [29], suggesting that 

improving antiretroviral drug penetration into lymphoid tissues may be necessary to halt 

viral replication and eliminate the viral reservoir. However, even if antiretroviral drug 

concentrations in lymph nodes can be increased, it is unclear how this would improve 

clearance of latently infected cells in this reservoir if homeostatic proliferation of latently 

infected cells contributes to maintaining the viral reservoir.

Latency Reactivation and Latency Reversing Agents

Although the mechanisms involved in latency in CD4+ T lymphocytes are incompletely 

understood, it is believed that multiple mechanisms act in concert to establish and maintain 

latency. Transcriptional interference by cellular genes at the site of integration contributes to 

latency [30,31]. Repressive chromatin makes an important contribution to latency (reviewed 

in [32]). Limiting levels of cellular transcription factors present in resting CD4+ T cells also 

make important contributions to latency, especially P-TEFb, a RNA Polymerase II (Pol II) 

transcription elongation factor involved in the viral Tat protein's function [33].

An active area of current HIV research is the development of small molecules, termed 

latency reversing agents or LRAs, which can selectively reactivate HIV, or “shock” HIV out 

of latency (Figure 1). This selective reactivation is an enormous challenge given that the Poll 

II transcriptional apparatus, which transcribes the HIV provirus, also transcribes all cellular 

protein coding genes. LRAs with ability to reactive HIV include histone deacetylase 

inhibitors (HDACi) [34,35], histone methyltransferase inhibitors [36], the anti-alcoholism 

drug disulfiram [37], protein kinase C (PKC) agonists [38-40], proteasome inhibitors [41], 

and Toll-like receptor 7 (TLR-7) agonist [42]. Of these LRAs, the PKC agonist, Ingenol 

3,20-dibenzoate, and a TLR-7 agonist, have demonstrated the most significant effects on 

reactivation of HIV and SIV, respectively.

It has become clear that a single LRA which targets a single mechanism involved in latency 

is unlikely to be effective in vivo. Rather, multiple LRAs will likely be required to reactivate 

latent viruses in vivo, such as a combination of LRAs that target repressive chromatin and 

act as PKC agonists to up-regulate transcription factors such as NF-κB and P-TEFb [43]. 

Additionally, many latent replication-competent proviruses are refractory to reactivation [5], 

and it is likely that effective reactivation of latent HIV may require multiple courses of LRA 

treatment. As all the initial LRAs being tested were developed for other therapeutic 

purposes, they may have dose-limiting toxicities for uninfected cells either alone or in 

combination. Development of novel generations of LRAs for inducing HIV expression may 

lead to greater latency reversal with higher specificity and without increasing the potential 

for adverse effects.
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Challenges to immune-mediated clearance of the latent reservoir

The failure of eradicating or even decreasing the size of HIV reservoirs by LRAs suggests 

that the reactivation of latent HIV does not leads to efficient activation of cytotoxic T celsl 

(CTLs) to kill infected cells. While it is of considerable interest to boost CTL responses 

against HIV in order to eliminate cells induced to express virus with a LRA, there are clear 

challenges to doing so. First, when HAART is initiated late after infection, CTL escape 

mutants dominate the latent viral reservoir [44]. Second, it is also becoming increasingly 

clear HIV may take advantage of immune-privileged sites such as B cell follicles of lymph 

nodes for persistence. Nonhuman primate studies with SIV have demonstrated that B cell 

follicles are inaccessible to virus-specific CD8+ T cells [45], and that continuous viral 

replication occurs in CD4+ follicular helper T cells of elite controller animals with effective 

SIV-specific CD8+ T cells [46]. Thus, broad CTL responses will need to be induced, but 

there will also need to be a way to temporarily overcome critical immune regulatory 

mechanisms meant to prevent immunopathology in sites vital to developing adaptive 

immune responses. Finally, an additional potential problem identified is that some LRAs 

(namely, histone deacetylase inhibitors romidepsin and panobinostat) used to reactivate 

latent HIV may also impair CTL responses against HIV-infected target cells [47].

Adoptive T cell therapy to enhance elimination of infected cells

Treatment with LRAs should lead to active viral production from at least a portion of the 

reservoir of latently infected cells. However, LRAs alone have not led to significant 

decreases in CD4+ T cell associated proviral DNA in HIV patients [7]. This suggests that the 

immune system has failed to kill the cells expressing viral antigens after stimulation by 

LRAs. Therefore, passively waiting for the development of HIV-specific CTL response after 

LRA treatment appears to be ineffective. It may be critical to develop an active T cell 

therapy approach for HIV [48]. A HIV patient's CTLs can be activated and expanded ex vivo 
with the patient's own antigen-presenting cells pulsed with dominant HIV epitopes. The 

activated CTLs can then be re-introduced back to the patient for adoptive T cell therapy in 

combination with LRA treatment (Figure 1). Although past studies did not demonstrate 

clearance of HIV infection by passive infusion of HIV Gag-specific CD8+ T cells, new 

approaches for ex vivo expansion of broadly-specific CTLs targeting multiple viral antigens 

from HIV patients have been shown to kill HIV reactivated from the latent reservoir [49,50]. 

This may be more efficient for decreasing HIV viral loads by killing a significant portion of 

the reactivated viral reservoir. Alternatively, therapeutic vaccination may be necessary to 

boost HIV CTL responses of the patient prior to treatment with LRAs in order to reduce 

virally infected cells [51].

Passive immunotherapy with broadly neutralizing antibodies

A handful of potent broadly neutralizing antibodies (bNAbs) against HIV have been 

identified in HIV-infected individuals. Several recent studies indicate that passive 

administration of cocktails of bNAbs may be effective at lowering plasma viremia and 

proviral DNA in peripheral blood and tissues of SHIV infected rhesus macaques [52,53]. In 

one of the studies, Gag-specific T cell responses demonstrated improved functionality after 
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bNAb administration, and some animals showed prolonged virological control even after 

waning of the infused antibodies. Interestingly, newborn rhesus macaques treated with 

neutralizing antibodies during acute infection with SHIV appeared to be free of virus 6 

months after exposure [54]. Finally, passive administration of bNAbs just prior to 

suppressive ART in SHIV-infected macaques resulted in a more rapid reduction in viremia 

and lower proviral DNA in lymph node CD4+ T cells than controls [55]. One advantage of 

using antibodies over CD8+ CTLs is they are not anatomically restricted from B cell 

follicles. Thus, passive immunotherapy with bNAbs may be a promising way to improve 

clearance of infected cells after latency reversal in the setting of HAART treated HIV 

patients (Figure 1).

Promoting death of infected memory CD4+ T cells

As there may be challenges to immune mediated clearance of infected CD4+ T cells and the 

cells appear to be resistant to dying after viral reactivation with a LRA, other strategies such 

as modulating cellular metabolism or cell survival pathways in order to enhance killing of 

HIV-infected cells after reactivation are attractive but underexplored strategies (Figure 1). 

Indeed, interfering with cellular metabolism alters both cell survival and virus production 

[56]. New studies also suggest that virus producing CD4+ T cells may be protected from 

undergoing apoptosis via viral protease-mediated cleavage of procaspase 8 and binding of 

the peptide fragment (Casp8p41) to the mitochondrial proapoptotic protein BAK. Following 

reactivation of viral gene expression, infected CD4+ T cells were more susceptible to the 

induction of cell death by a Bcl-2 antagonist [57]. Therefore, sensitizing latently infected 

cells with cell death inducing agents may help promote the eradication of latently infected 

CD4+ T cells after treatment with LRAs.

Conclusions

As latently infected CD4+ memory T cells appear to be relatively resistant to immune 

mediated and virus mediated cell killing after reactivation, it will be important to explore 

and identify new strategies to clear the persistent viral reservoir. Current LRAs are probably 

not effective in reactivating the entire HIV reservoir. Development of novel classes of LRAs 

and using them in combinations may be more effective for reversing latency and inducing 

the virus expressing cells to die. Use of adoptive T cell therapy and passive immunotherapy 

with broadly neutralizing antibodies in addition to LRAs may compensate for the 

inefficiencies of the immune system for better clearance of HIV reservoirs.
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Highlights

• Memory CD4+ T cells with latently integrated proviruses are a major 

barrier to curing HIV infection.

• Proviral integration within genes involved in cancer may contribute to 

clonal proliferation of latently infected CD4+ T cells.

• Challenges to clearing viral reservoirs within B cell follicles of lymph 

nodes.

• Immunotherapy shows promise for clearing HIV infection.

• Combination approaches may be necessary to cure HIV infection.
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Figure 1. 
Potential strategy for eradicating latently infected memory CD4+ T cells. Although 

antiretroviral therapy (ART) effectively controls HIV replication, the virus persists as a 

latently integrated proviral form in resting memory CD4+ T cells. As latency is an efficient 

immune evasion mechanism, it is of significant interest to devise ways to reactive virus 

expression in order for infected cells to be recognized by the host immune response and 

cleared, or for the cells to undergo virus-mediated cell death. However, neither process 

appears to readily occur following treatment with latency reversing agents. HIV cure 

strategies should therefore consider approaches to increase these activities. First, immune-

mediated clearance of the latently infected CD4+ T cells after reactivation of virus 

expression could be enhanced by adoptive T cell transfer of broadly specific anti-HIV CTLs 

and passive immunotherapy with broadly neutralizing antibodies (bNAbs). Second, virus-

induced cell killing may be enhanced by sensitizing the cells with small molecule drugs 

targeting cell survival pathways.
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