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Genetic testing for hereditary breast cancer is an integral part of individualized care in the new era of precision medicine.
The accuracy of an assay is reliant on not only the technology and bioinformatics analysis utilized but also the experience and
infrastructure required to correctly classify genetic variants as disease-causing. Interpreting the clinical significance of germline
variants identified by hereditary cancer testing is complex and has a significant impact on the management of patients who are at
increased cancer risk. In this review we give an overview of our clinical laboratory’s integrated approach to variant assessment. We
discuss some of the nuances that should be considered in the assessment of genomic variants. In addition, we highlight lines of
evidence such as functional assays and structural analysis that can be useful in the assessment of rare and complex variants.

1. Introduction

The landscape of genetic testing for hereditary breast cancer
susceptibility has changed drastically with the application of
massively parallel sequencing based tests in clinical diag-
nostics. Clinical genomic laboratories are performing an
increasing number of massively parallel sequencing assays
for cancer predisposition genes [1], which has led to an
intensified application of these assays in clinical and research
settings [2]. Breast cancer gene panels and exome sequencing
generate vast amounts of genetic alteration data, thereby
presenting a significant challenge to determine which vari-
ants are responsible for the disease or phenotype. Multigene
breast cancer panels in particular have gained in popularity
over the past few years and are now routinely ordered by
genetics, oncology, and breast surgical clinics. These tests
allow for simultaneous analysis of numerous cancer genes
that, when mutated, can have a significant impact on cancer
risk stratification and management [3]. A major component
of clinical molecular diagnostic testing is accurate assessment
and interpretation of genetic variants.

Ambry Genetics’ BreastNext Cancer panel analyzes 17
genes (ATM, BARDI, BRCAIL BRCA2, BRIP1, CDHI, CHEK?2,

MREIIA, MUTYH, NBN, NFI, PALB2, PTEN, RAD5O0,
RAD5IC, RADS5ID, and TP53) by massively parallel sequenc-
ing of all coding exons and a minimum of 5 base pairs into the
flanking 5’ and 3’ ends of all introns and untranslated regions.
In addition, clinically significant intronic mutations beyond
5 base pairs and the promoter region of PTEN (c.-1300 to c.-
745) are always sequenced and reported. Sequencing is con-
ducted on the Illumina HiSeq2500 or NextSeq using 150 bp
paired-end conditions as described in the manufacturer’s
standard workflow (Illumina). After initial data processing,
all clinical samples had to pass minimum thresholds to
be included in the analysis. The three parameters were as
follows: mean base calling quality score is greater than 30,
the percentage of passes that reached over 30 had to be
75% overall, and the percentage of perfectly matched indexes
needed to be greater than 85%. For each gene, a minimum
coverage of 20x is required for candidate variants to be called.

In an effort to help standardize the interpretation and
reporting of genetic testing results, organizations such as
the American College of Medical Genetics and Genomics
(ACMG), Association for Molecular Pathology (AMP), and
the International Agency for Research and Cancer (IARC)
have proposed criteria for the interpretation and reporting of
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sequence variants [7-9]. These criteria weigh multiple lines of
evidence to categorize variants under a five-tier classification
algorithm using terms such as pathogenic (P), variant, likely
pathogenic (VLP), variant of unknown significance (VUS),
variant, likely benign (VLB), and benign (B) to indicate the
likelihood of association with disease. Per ACMG guidelines,
the term “likely” refers to a classification tier that equates to a
>90% likelihood of a variant being disease-causing or benign
[7, 8]. Recently the clinical utility of the ACMG guidelines
was demonstrated in a cohort of individuals undergoing
sequencing for inherited cancer risk [10].

While the ACMG guidelines provide a basic framework
for variant assessment, gene and syndrome-specific factors
such as penetrance, prevalence, inheritance pattern, disease
mechanism, and protein structure and function need to be
considered. In addition, when considering the phenotype of
the patients in which a variant is identified, one must take into
account the prevalence of the disease and how the patients
are ascertained to account for potential phenocopies. For
example, many genes on hereditary breast cancer panels are
considered to be moderate penetrance and are associated
with a 2- to 5-fold increased breast cancer risk. Given the
relatively high prevalence of breast cancer (1/8 women in
the US), traditional segregation methods are confounded by
phenocopies and are even more difficult to employ with genes
that have reduced penetrance. These confounders indicate
that these genes require large numbers of segregation events
to provide meaningful results. Consideration should also be
given to gene-specific factors such as frequency of germline
and somatic de novo alterations, additional tests in tumors
such as loss of heterozygosity studies, variation in nonsense-
mediated decay, and alternate splicing. For example, in genes
such as TP53 and PTEN, germline de novo variants are known
to be a relatively common cause of disease [11, 12]. However,
with breast cancer genes such as ATM, CHEK?2, and PALB2,
the de novo rate is unknown. This is confounded by the fact
that breast cancer is a common disease and one cannot infer
if the de novo event in these genes directly correlates with
disease or occurred by chance. In addition, although somatic
de novo data is available for some genes [13] its incorporation
into germline variant analysis has yet to be standardized and
will need to be performed on a gene-by-gene basis.

Consortia such as the Evidence Based Network for
the Interpretation of Germline Mutant Alleles (ENIGMA)
have demonstrated the power of a collaborative approach
to variant assessment and have made great strides in the
reclassification of VUS in breast cancer genes as pathogenic
or benign. However even these groups are limited by the rate
at which data is accumulated. Open-access databases such
as ClinVar and the Leiden Open (source) Variant Database
(LOVD) can be useful in identifying additional cases or
publications related to a variant. These databases have also
helped standardize the interpretation of variants between
laboratories by identifying discrepancies in classifications.
Collaborative efforts by clinical laboratories including Ambry
Genetics, GeneDx, University of Chicago, and Laboratory
for Molecular Medicine have resulted in the sharing of
internal data consisting of segregation and cooccurrences
with mutations in the same gene or other genes and de novo
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observations have led to the resolution of 78% of clinically
actionable differences (VUS versus VLP/mutation) and 92%
of VUS versus likely benign/benign differences (internal
data). Despite these efforts, one of the challenges faced by
molecular laboratories and clinicians is that many genetic
variants are very rare and do not have enough published data
to be classified beyond VUS. We present here our laboratory’s
integrated approach to variant assessment and review tools
used to assess the impact of variants on protein function.

2. Integrated Approach to Variant Assessment

Ambry Genetics has developed and implemented an inte-
grated approach to variant assessment (Table 1) that encom-
passes a five-tier variant classification algorithm similar to
those presented by ACMG and IARC. Although the founda-
tion of Ambry Genetics’ classification algorithm is based on
the ACMG guidelines, we have adopted stringent thresholds
similar to those proposed by the IARC, where “likely” refers
to a >95% confidence of a variant being disease-causing or
benign [9]. In this algorithm, both pathogenic and likely
pathogenic variants are interpreted as clinically actionable
with recommendations for medical management and family
member testing.

Ambry Genetics algorithm incorporates multiple lines of
evidence aimed at assessing both the impact of the variant on
the protein and the pathogenicity of the variant in relation
to a disease phenotype (Figure 1 and Table 2). These lines of
evidence are weighted as stand-alone (categories A and F),
strong (categories B and D), or supportive (categories C and
E) and when combined as described in Table 1, they can lead
to a classification of likely benign, benign, likely pathogenic,
or pathogenic. When the evidence is limited or conflicting,
the variants remain classified as VUS. Lines of evidence such
as its location, structure-function, and functional and RNA
studies reflect the functional impact on the mRNA or protein.
Evolutionary conservation, in silico models such as Polyphen
and SIFT, and general population frequency reflect fitness,
that is, reproductive success and survival as measured by a
lack of allelic diversity. The observed phenotype in variant
carriers and the cosegregation of the variant with disease and
the cooccurrence with other pathogenic variants reflect the
pathogenicity of the variant (Figure 1). Some of this evidence
is readily available via databases such as allele frequency
data in the Exome Aggregation Consortium (ExAC) or the
data in published literature [14]. However published literature
generally contains data for common variants and the data
supporting pathogenicity for rare variants is scarce and
frequently only available internally.

For most genes on breast cancer panels, computational
data from in silico models, evolutionary conservation, and
protein structural analysis are readily available. Population
frequency data has been accumulating at a fast pace due
to major contributions from 1000 Genomes, NHLBI Exome
Sequencing Project (ESP), and ExAC. These data have had
a significant impact on the identification of benign variants
at high frequencies that are too frequent to be pathogenic
based on disease incidence alone, particularly for historically
understudied ethnic groups. For breast cancer genes, this
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FIGURE 1: An integrated approach for variant classification. Lines of evidence such as structural function, RNA studies, and functional studies
assess the functional impact on the mRNA and protein. Cooccurrence, segregation, case-control studies, and the observed phenotype in
variant carriers reflect the pathogenicity of a variant. Population frequency, in silico models, and evolutionary conservation assess fitness of

the amino acid or nucleotide position.

threshold has been conservatively set at an allele frequency
of 1% in large population cohorts if used as a stand-alone line
of evidence supporting benign classification (Table 1, category
F). Careful consideration of population cohort size is needed
to attain a high confidence (lower 95% CI is above 1% with
p value <0.05) that the frequency is above 1%. For example,
with a cohort of 60,000 alleles, an allele frequency of 1.08%
is sufficient (lower 95% CI = 1.01%; p = 0.0244) whereas for
a cohort of 1000 alleles, an allele frequency of 1.70% (lower
95% CI = 1.15%; p = 0.013) is needed to be 95% confident;
the allele frequency is above 1%.

Although patient phenotype, cooccurrence, and cosegre-
gation data can be found in the published literature, many
laboratories also curate internal data for use in variant classi-
fication. A patient’s clinical and family history can be difficult
to use as a line of evidence in a clinical laboratory setting
due to ascertainment bias. However, when a variant in a gene
associated with a rare disorder (less than 1/2000) is identified
in multiple individuals meeting classic clinical criteria and
never in large control populations or population cohorts
these data can be used as evidence towards pathogenicity.
This is most informative in patients who have undergone
genetic testing on large multigene panel tests in which all
the known genes associated with a disorder have been ruled
out. However, when defining classic clinical criteria we use
very strict guidelines and exclude common diseases such as

breast cancer. For example, when assessing a TP53 variant,
the phenotype is considered strong if the patient meets classic
Li-Fraumeni syndrome criteria: a proband with sarcoma
diagnosed before 45 years, a first-degree relative with any
cancer before 45 years, and a second-degree relative with any
cancer before age 45 years or a sarcoma at any age [15]. For
common diseases and moderate penetrance genes Bayesian
analyses that require larger phenotype data sets are used [16].
Historically, in vitro studies were predominantly found in the
published literature. However due to the rapid accumulation
of rare variants, clinical laboratories such as Ambry Genetics
are implementing validated internal functional studies such
as splicing and homology-directed DNA break repair (HDR)
assays that can be incorporated into variant classification
algorithms.

3. Functional Lab

Many variants are classified as VUS because their functional
impact either is poorly understood or has not yet been
investigated. These variants include missense and splicing
alterations in tumor suppressor genes that require loss of
function to manifest a disease [7]. Clinical genomic labora-
tories have traditionally relied on evidence from published
literature to establish the impact of a variant on gene expres-
sion or protein function [7]. There are several limitations
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TaBLE 2: Experimental structures of genes linked to breast cancer”.

Gene Length PDBs Coverage (%)
ATM 3056 0 0.0
BARDI1 777 5 42.1
BRCALl 1863 27 17.6
BRCA2 3418 2 1.6
BRIP1 1249 3 1.9
CDH1 882 12 26.2
CHEK2 543 38 86.4
MRE1LA 708 1 58.1
MUTYH 549 2 77.3
NBN 754 0 0.0
NF1 2839 6 22.1
PALB2 1186 2 29.7
PTEN 403 6 92.8
RAD50 1312 0 0.0
RADS5IC 376 0 0.0
RADS5ID 328 1 25.3
TP53 393 142 100.0

“Gene lengths and coverage are tabulated from the Universal Protein
Resource (Uniprot) [4] and the Research Collaboratory for Structural
Bioinformatics (RCSB) [5] databases. The list of genes is taken from the
BreastNext panel.

to this approach, including publication bias, difficulties with
promptly obtaining additional information about results and
protocols, and lack of published evidence for a specific
alteration. One potential solution is for clinical genomic
laboratories to implement a “functional lab” that can generate
assays with high sensitivity and specificity (>99%) and pro-
vide unbiased molecular evidence to elucidate the functional
impact of a VUS (Figure 2). As an example of a convincingly
validated assay, Guidugli and colleagues determined the

sensitivity of their homology-directed DNA break repair
(HDR) functional assay to be 100% (95% confidence interval
(CI): 75.3%-100%) and the specificity to be 100% (95% CI:
81.5%-100%) [17].

3.1. RNA Studies for Splicing VUS. While some splicing vari-
ants, such as canonical +1 or 2 splice sites, are often assumed
to disrupt gene function by leading to the reduced expression
of the abnormal allele due to nonsense-mediated decay
(NMD) [18] or abnormal protein truncations [19], compre-
hensive evaluation of splicing alterations is essential for accu-
rate clinical interpretation. For canonical splice site +1 and 2
variants, one must also consider the possibility of an in-frame
deletion/insertion, which could retain the critical regions of
the protein and hence lead to a mild, neutral, or gain-of-
function effect. In addition, variants that are predicted to
impact splicing but that are not located at the canonical sites
(1 and 2) require additional strong evidence (see details in
Section 2) to be classified as pathogenic or benign [7]. Bioin-
formatics software has been developed to predict putative
splice sites [20]. In general, these in silico tools are more sen-
sitive (~90-100%) than being specific (~60-80%) when pre-
dicting the impact of a variant on splicing [21, 22]. However,
by nature in silico tools can only provide supporting evidence
which restricts their use [7]. Consequently, data from RNA
splicing assays, designed to provide quantitative and qualita-
tive characterization of transcripts, are usually necessary to
evaluate the pathogenicity of these variants. Since published
RNA data is not available for every variant, clinical genomic
laboratories can more accurately classify splicing alterations
by implementing their own RNA protocols and assays to
provide accurate classification of splicing alterations.
Reliability, in which an assay yields the same results in
repeated trials, is a key issue when implementing mRNA
assays in a clinical functional lab for evaluation of VUS.



To improve reliability, the ENIGMA consortium conducted
a multicenter investigation to compare mRNA splicing assay
protocols used by its members [23]. The consortium pro-
vided several recommendations for best practices in clinical
testing of splicing alterations, including the standardization
of protocols and the use of analytically sensitive detection
methods [23]. Of the detection methods evaluated, capillary
electrophoresis (CE) was shown to yield the highest analytic
sensitivity. However, a major limitation of CE is its inability
to harvest and subsequently perform sequence analysis of the
RT-PCR product. In order to perform sequence analysis and
full characterization of alternatively spliced transcripts, the
consortium concluded that cloning single PCR products into
a vector system is a useful alternative for isolating single tran-
scripts for sequencing, which improves sensitivity over band
excision and sequencing alone. Even in cases that appear
straightforward, the consortium recommends using in vivo,
in vitro, and clinical analysis to predict with 99% likelihood
that a variant is benign or pathogenic [23]. For example,
although most canonical splice site variants are considered a
priorito be at least likely pathogenic, the presence of naturally
occurring alternative splicing that mimics a pathogenic
alteration and results in a similar impact on splicing (e.g.,
exon skipping) needs to be carefully evaluated, as it may
result in diminished pathogenicity. Care must be taken to
determine whether a transcript is present in normal controls.
As the functional lab obtains more data on each gene, a more
accurate picture of splicing patterns will emerge, thereby
leading to improved classification of splice site variations.

3.2. Functional Assays for Missense VUS. Missense alterations
with no impact on splicing can be evaluated by utilizing wet
lab assays or experimental structure data. While functional
studies can be a powerful tool in support of pathogenicity, not
all functional studies accurately predict impacts on gene or
protein function. For this reason ACMG/AMP provides rec-
ommendations for assessing the validity of functional assays,
in order to confirm that the functional assay accurately mea-
sures a function that leads to disease [7]. One must consider
how closely the functional assay reflects the biological envi-
ronment. This is important when deciding whether to test
patient samples or to perform in vitro assays. It is important to
consider the known biological functions of the protein, while
also examining whether those functions actually contribute
to tumorigenicity. For example, many functional assays have
been developed to interrogate BRCAI VUS [24]. Some assays
focus on the known DNA repair functions of BRCAI, such
as the HDR assay [25, 26] and the radiation resistance assay
[27]. Others examine BRCA1 localization [28, 29] and the
ability of cells with BRCAI variants to generate Rad51 foci
[30, 31] in the presence of DNA damage as surrogates for
BRCAL function. Additional assays focus on one functional
component of BRCAlinstead of the full protein, including the
transcription activation assay, which employs the C-terminal
BRCT domains, and the ubiquitin ligase assay, which utilizes
the N-terminal region [32-35]. These two assays are limited
by their inability to account for effects of the entire protein,
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and others have noted that certain variants that lost ubiquitin
ligase activity were not classified as pathogenic by genetic
studies [36, 37]. Similarly, protein or peptide binding assays
may resolve the ability of a variant to bind to a protein target
in vitro, but these data should be incorporated into a mul-
tifactorial model that takes into account other functional in
vivo data [38, 39]. In addition, validation data that assess the
analytical performance of the assay and account for specimen
integrity are important factors to consider when implement-
ing functional assays in a functional clinical genomic labora-
tory and in using these results in classification of variants [7].

To investigate the effect of missense variants on BRCA1
function, Lu et al. tested 68 missense variants using an in vitro
HDR assay [26]. The analysis showed that the HDR defective
or partial defective missense variants from the BRCT domain
are positioned either in the center of the structure or on
the surface responsible for protein-protein interactions, while
the HDR-WT variants from the BRCT domain were surface
exposed or partially surface exposed variants [26]. This
highlights the complexity of interpreting missense germline
variants, indicating that an integrated approach, by compiling
the results of functional assays, structure evaluation, and
analysis of clinical parameters, should identify the most
functionally and clinically relevant alterations.

3.3. Analysis of Insertion Breakpoints for Gross Duplications.
Most gross deletions in high-risk cancer genes, larger than 3~
5 megabases, fall within microarray reporting guidelines and
are reported as deleterious [38, 39]; however, without break-
point information gross duplications are mostly reported
as VUS. While array comparative genomic hybridization
(aCGH) is a method used in cancer research for the detec-
tion of gross chromosomal aberrations in cancer genes, it
cannot accurately determine the exact genomic breakpoints
of the amplification [40-43]. To map the exact insertion
breakpoints, paired-end high throughput sequencing can be
used. Gross genomic amplifications may occur as a tandem
duplication within the cancer gene itself, resulting in a novel
function, or as a nontandem duplication inserted in a novel
location of the genome. Therefore, identifying the exact
breakpoints of tandem duplications in high-risk cancer genes
can lead to VUS being reclassified as likely pathogenic or
likely benign.

To identify the exact breakpoints of tandem duplica-
tions, Ambry Genetics is currently utilizing the paired-end
sequencing method to further characterize gross duplica-
tions. Probe sets are designed to capture the target regions
with the suggested breakpoints identified by aCGH. Captured
DNA is then sequenced by paired-end massively parallel
sequencing and mapped to the human genome. The Ambry
Genetics pipeline identifies read pairs that are in the wrong
orientation, indicating a tandem duplication (Figure 3(a)).
Clusters of read pairs with soft clipping that span breakpoints
can indicate rearrangement breakpoints down to the exact
coordinates (Figure 3(b)). As an example, an exon 11 duplica-
tion in BRCAI previously classified as VUS can be reclassified
as likely pathogenic if the breakpoint is identified to cause a
frameshift in the gene (Figure 3).
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FIGURE 3: Identification of tandem duplication insertion breakpoints spanning BRCAI exon 11, using paired-end sequencing. (a) Mapped
read pairs in the wrong orientation indicate a tandem duplication. (b) Ambry’s breakpoint detection tools can identify clusters of read pairs

with soft clipping which indicate rearrangement breakpoints.

4. Computational Structural Analysis

Computational structural algorithms offer a unique solution
for assessing a variant’s impact on protein function in that
they are faster than experimental studies and often use data
from many scientific disciplines [44]. However, the quality of
the information provided by computational analyses varies
depending on the information source. For instance, primary
sequence analyses using evolutionary tools can identify the
likely impact of a variant. By comparing an altered human
sequence to proteins with a similar primary sequence or
related structural shape, the fitness of the variant can be
predicted based on the variability of that position and other
aspects such as the chemical similarity of the wild type and
variant amino acids. Ambry Genetics relies on multiple tools,
including the “Sorting Intolerant from Tolerant” (SIFT) and
Polyphen2 programs [40]. We use the consensus of two
programs, usually SIFT and Polyphen2 where applicable, and
consider only concordant results as a line of evidence. If
only one program is applicable such as Provean [45] with
indels we incorporate predictions from the single program
with conservative thresholds determined by analysis of our
internal data. Alternatively, analyses of the secondary and ter-
tiary structures of the protein increase the reliability of inter-
pretation. The most reliable computational algorithms focus
on biophysics methods which are more oriented towards
direct simulation of the physical processes occurring in a
protein [46-48]. In many regards, computational methods
are the most diverse in the range of properties that they can
quantify; however, they come at the expense of computational
requirements and speed with which accurate properties can
be derived. One of the most common and easily identified

sources of disruption induced by a variant is the influence
on protein stability [46, 47, 49-51]. Protein stability can be
affected in multiple ways, such as misfolding or unfolding of
the protein structure, which commonly results in either loss
of function or premature degradation and haploinsufficiency.
As an example, protein stability has been used by Karchin et
al. to generate a predictive tool for the likelihood of the effect
of an alteration in the breast cancer gene BRCA2 [52]. There
are other significant ways that variants exert their pathogenic
effect which can be described through structure. For instance,
avariant may not significantly affect the resting state structure
of the protein but rather affect the movement of the protein
in the course of its function. It may impact its binding
with other target proteins or substrates or it may induce
aggregation [47, 48]. Detailed understanding of biophysical
principles illuminated through structure is crucial to evaluate
and interpret the impact of alterations.

5. Tertiary and Quaternary Sequence of
Breast Cancer Genes

The use of biophysical methods to predict the impact of a vari-
ant on a protein often requires the availability of structures for
the target gene or benefits significantly from it. Among the 17
genes represented in the BreastNext Cancer panel, there are a
total of 247 experimentally derived structures, tabulated per
gene in the PDBs (Protein DataBank files) column of Table 2,
using either Nuclear Magnetic Resonance Imaging (NMR)
or X-ray crystallographic methods [5, 53]. The coverage
described above corresponds to the total range of residues
covered by all experimental measurements divided by the
total length of the protein. While there are notable exceptions



where no experimental structures have been determined, the
majority of the genes have been partially and in the case
of TP53 completely elucidated experimentally. The structure
of TP53 is highly ordered throughout the protein, allowing
for complete measurement of one low-energy form; however
some proteins in this set such as BRCAI and BRCA2 are com-
posed of regions which have no characteristic fixed structure.
The ordered regions within the structured protein, such as
in the N (Really Interesting New Gene, i.e., RING, domain)
and C terminus (BRCAl C Terminus, i.e., BRCT, repeats)
of BRCAI, offer higher quality means to define domain
boundaries. These can be analyzed as a folded functional unit
rather than through conservation techniques that are used in
the Protein Families (Pfam) database [54] or using meta pre-
dictors such as InterPro [55]. The structural coverage for the
genes in Table 2 does not take into account that long stretches
of some proteins have little intrinsic globular structure, so
the numbers can be seen as a very conservative estimate of
the range of available residues covered. In addition, there
remain some proteins, such as ATM or NBN, where no or low-
resolution structures have been experimentally measured [5,
6]. For these systems, structural analysis incorporates the use
of homology models built on the structures of known related
proteins. This significantly increases the effective range of
structural coverage and the insights available.

Disruption in the folding of a domain in a protein by
a missense pathogenic variant is well known to result in a
loss of function. The clinically observed alteration ¢.5509T>G
(p-Trpl837Gly) (ClinVar: SCV000077040) represents a case
where structural features explain the disruption of the BRCT
repeat region in BRCAI The C-terminal portion of BRCAI
contains a pair of BRCT repeat domains, BRCT1 and BRCT?2,
which are described in atomic detail, including the arrange-
ment of amino acids that make up these domains, by 26
different crystal structures [56-59]. The side chain of amino
acid Trp 1837 (W1837; magenta stick) is buried in the core
of the BRCT2 domain surrounded by hydrophobic amino
acids (green sticks), while the backbone participates in a helix
involved in binding BACHI (Figure 4) [56]. The alteration
W1837 to G1837 (W1837G) would result in the loss of the
large stabilizing hydrophobic side chain and is anticipated
to be very destabilizing. The instability introduced by this
alteration has been quantitatively calculated by computa-
tional folding algorithms which indicate it to be very desta-
bilizing [5]. Indeed, E. coli expressed with in vitro mutants
of pW1837G produce an unfolded protein that was present
only in inclusion bodies which could not be refolded [60].
In another set of biochemical and cell-based transcriptional
experiments, this alteration resulted in compromised prote-
olysis and phosphopeptide-binding [39, 58, 59, 61]. Together,
these functional data support the qualitative and quantitative
structural observation that the variant would create a very
unfavorable cavity within this domain, thereby disrupting
folding and protein function. This example demonstrates how
detailed structural analysis on publically available data can
facilitate the understanding and interpretation of alterations
on the function of a protein and can be supported by both
computational and experimental observations.
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p.WI1837G

y BRCA1-BRCT2

FIGURE 4: The structure of BRCAI p.Trpl837 (shown in magenta
with sticks) in the BRCA-BRCT domain (PDB: 1T15 [6]). Nearby
hydrophobic amino acids sidechains from residue 1837 are shown as
sticks. Bound BACHI peptide is shown as teal stick.

6. Conclusion

Although cancer genetic testing has traditionally been limited
to highly penetrant and well-characterized susceptibility
genes, the application of multigene panels using massively
parallel sequencing is steadily becoming more common in
genetic cancer risk assessment due to reduced costs and
increased efficiency. Multigene panels, in turn, tend to result
in the identification of more variants per individual, the
clinical significance of which needs to be assessed using
multiple lines of weighted evidence. We present an integrated
approach for assessing variants observed on hereditary breast
cancer panels and believe that this improves the clinical
management of patients with personal and family histories
of breast cancer due to more accurate variant classification.
Comprehensive variant assessment programs that integrate
multiple lines of evidence aimed at assessing a variants
impact on protein function, fitness, and pathogenicity facili-
tate high-quality and efficient variant classification, providing
increased benefit and reliability for patients.
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