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Abstract

Numerous intrinsic currents are known to collectively shape neuronal membrane potential 

dynamics, or neuronal signatures. Although how sets of currents shape specific signatures such as 

spiking characteristics or oscillations has been studied individually, it is less clear how a neuron’s 

suite of currents jointly shape its entire set of signatures. Biophysical conductance based models of 

neurons represent a viable tool to address this important question. We hypothesized that currents 

are grouped into distinct modules that shape specific neuronal characteristics or signatures, such as 

resting potential, sub-threshold oscillations, and spiking waveforms, for several classes of neurons. 

For such a grouping to occur, the currents within one module should have minimal functional 

interference with currents belonging to other modules. This condition is satisfied if the gating 

functions of currents in the same module are grouped together on the voltage axis; in contrast, 

such functions are segregated along the voltage axis for currents belonging to different modules. 

We tested this hypothesis using four published example case models and found it to be valid for 

these classes of neurons. This insight into the neurobiological organization of currents also 

suggests an intuitive, systematic, and robust methodology to develop biophysical single cell 

models with multiple biological characteristics applicable for both hand- and automated- tuning 

approaches. We illustrate the methodology using two example case rodent pyramidal neurons, 

from the lateral amygdala and the hippocampus. The methodology also helped reveal that a single 

core compartment model could capture multiple neuronal properties. Such biophysical single 

compartment models have potential to improve the fidelity of large network models.
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INTRODUCTION

Box 1

Overview of segregation procedure for modeling biophysical single 
neurons

• Neuronal signatures: Select the neuronal signatures to be modeled, e.g., 

passive properties, current injection responses, and oscillatory 

potentials, if any, such as low- and high-threshold oscillations.

• Intrinsic currents: Determine the currents reported for the neuron. Find 

the ranges of maximal conductance densities for each current.

• Zones of operation for each neuronal signature: The gating kinetics 

may be available as experimental or mathematical curves. Using a plot 

of the activation functions of the currents as a function of voltage, 

estimate the zones of operation for each neuronal signature. For 

instance, the passive module is below −75 mV, etc. (see description of 

‘zones of operation’ in results). This will reveal the currents 

participating in each module (Fig. 1B).

• Activation functions and ranges for parameters V1/2 and k (see 

illustration in appendix Fig. A2): Using biological data for ranges for 

the half-activation voltages of activation functions (e.g., Fig. 2B 

adapted from Izhikevich, 2007), find the ranges that minimize overlap 

between the modules (Figs. 1 and 2). The activation functions for 

currents within the module start at the beginning of the zone for that 

module. Activation functions of the Boltzmann type will require 

reshaping the ‘tails’ to avoid overlap, as shown in Fig. A1 (also see 

appendix A2). Experimental activation curves typically have such sharp 

cut off already and so these or similar mathematical curves can be used 

directly. The parameters V1/2 and k for each current are then restricted 

to these ranges, defining their parameter spaces.

• With the information above, a hand- or, in some cases, an automated- 

tuning approach can search over the parameter space of activation 

kinetics (V1/2 and k) and maximal conductance densities, or can fix the 

activation kinetics (as in most automated schemes) and search only 

over the space of maximal conductance densities. As a more efficient 

alternative of this approach, one could tune the segregated modules 

sequentially, starting with the one furthermost to the left on the voltage 

axis, and then progress (right) to more depolarized levels. For instance, 

in the case of the LA neuron, such an alternative approach would 

follow the sequence: passive module, LTO module, spiking/adaptation 

module, and HTO module.
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Interplay among intrinsic currents in a neuron can give rise to a rich repertoire of membrane 

potential dynamics or neuronal signatures, such as unique spiking patterns, and low- and 

high-threshold oscillations. Computational models have been used to study the role of 

intrinsic currents in shaping these membrane potential dynamics, starting with the original 

Hodgkin-Huxley formulation (Hodgkin and Huxley, 1952). Remarkable progress has been 

made in understanding the key computations performed by single neurons in the context of 

their role in networks (Herz et al., 2006, Brunel et al., 2014), using connectionist (Dayan and 

Abbott, 2005), integrate-and-fire (Vogels and Abbott, 2005, Brette, 2006, Rudolph-Lilith et 

al., 2012), Izhikevich (Izhikevich, 2007, Izhikevich and Edelman, 2008, Hummos et al., 

2014) and biophysical (Dayan and Abbott, 2005) model formulations. Although mechanistic 

underpinnings of how some of the intrinsic currents help shape individual signatures of a 

single neuron have been reported (e.g., Bennett et al., 2000, Wilson, 2005, Barraza et al., 

2009, Sciamanna and Wilson, 2011), functional insights into how they might jointly shape 

all the signatures simultaneously are not fully understood. Biophysical models represent a 

class of models that explicitly incorporate channel and synaptic neurophysiology and so are 

well suited to investigate the important question we address here: how might intrinsic 

currents interact to shape not just one, but all the diverse neuronal signatures 

simultaneously? A second related question we address is whether insights from intrinsic 

currents shaping membrane dynamics can be used for developing improved biophysical 

single compartment models for network applications.

Rapid advances in electrophysiological measurement techniques have resulted in rich and 

reliable data being generated characterizing neurophysiology of current channels, synapses, 

dendritic functions and plasticity (Stuart and Spruston, 2015). In parallel, such data are 

being incorporated into increasingly realistic biophysical conductance-based models of 

neurons. This has resulted in the development of single cell models of varying complexities 

ranging from 1 to 5 compartments to investigate network-level issues (Davison et al., 2000, 

Dyhrfjeld-Johnsen et al., 2007, Schneider et al., 2012, Kim et al., 2013a, Neymotin et al., 

2015), to over 1000 compartments with numerous current channels to investigate details of 

single cell dynamics (De Schutter and Bower, 1994, Stuart and Spruston, 1998, Roth and 

Hausser, 2001). Single cell biophysical models are increasingly being sought by researchers 

modeling large networks containing possibly more than a million neurons (Schneider et al., 

2012). The present paper focuses on a particular biophysical formulation of a single cell for 

use in network applications. Researchers have proposed different approaches to develop 

simplified biophysical models (Stratford et al., 1989, Rall, 1990, Traub et al., 1991, Bush 

and Sejnowski, 1993, Pinsky and Rinzel, 1994, Destexhe, 2001, Traub et al., 2004, 

Hendrickson et al., 2011). These have been formalized and several hand-tuning to automated 

search algorithms have been proposed (Prinz et al., 2003, Rubin and Cleland, 2006, Hemond 

et al., 2008, Pospischil et al., 2008). Automated searches have also been used successfully in 

conjunction with large databases of model neurons to select parameter sets that replicate a 

range of neuronal properties (Prinz et al., 2003, Gunay et al., 2008), by typically varying the 

maximal conductance densities, and have helped enhance the model development process 

considerably. These researchers have also found that some of the properties are controlled by 

specific currents. For instance, Gunay et al. (2008) found that the hyperpolarization activated 

cation current H controlled sag at hyperpolarized levels, while the persistent sodium Nap, 
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and M-type potassium current KM were primarily responsible for spontaneous firing (other 

than the H current, these two currents have half-activation voltages more negative than the 

rest; V1/2s were much to the right for the other currents which primarily controlled spiking 

features). In the present study, we ask whether the other currents in the neuron also have 

similar functional roles, i.e., what functional insights can we gain about the simultaneous 

interactions of all currents in a neuron. Alternatively, how might the currents in a neuron be 

organized to affect multiple neuronal signatures in a robust manner. These signatures include 

passive properties (input resistance, time constant, resting potential), subthreshold 

oscillations, spiking patterns with varying degrees of adaptation, and high-threshold 

oscillations. Furthermore, can such insights related to intrinsic currents then be translated 

into a procedure to enhance the development of biophysical single compartment neuron 

models for network applications, for certain classes of neurons? The present paper addresses 

these questions.

The output of a given neuron type is largely determined by the makeup and characteristics of 

the voltage-gated ion channels inserted into the membrane at a given time. In a previous 

modeling study, we found that the underlying oscillation of a class of slow-wave bursting 

cell had three phases: generation, maintenance, and termination and that different modules 

of currents preserve the characteristics of each phase, and the currents in the modules might 

be ‘co-regulated’ to preserve function (Ball et al., 2010, Franklin et al., 2010). Generation is 

the phase during which the underlying oscillation is initiated by either a synaptic pulse or 

occurs endogenously. The peak and duration of the oscillation are controlled during the 

maintenance phase. Termination (or repolarization) is the phase during which the underlying 

oscillation ends and the membrane potential is brought back to its resting value. A key 

prediction from the study was that distinct modules of ionic currents are responsible for the 

different phases of generation, maintenance (of peak value and duration), and termination of 

the underlying oscillation and that their covariation also preserves the cellular 

characteristics. The finding that distinct currents were responsible for the different phases for 

the slow underlying oscillation was fortuitous, and we did not investigate whether the 

concept of modules held for all features of the membrane potential dynamics, including 

spiking. Also, it was not clear what specific properties of individual currents enabled them to 

participate in separate modules. All this led us to explore in the present study whether all 

neuronal membrane potential signatures might be implemented using distinct modules of 

currents, and if so via what specific kinetic properties of the individual currents.

Here we hypothesize that, in single neurons, there are distinct modules of currents which are 

segregated by gating functions into different voltage ranges, with each current module 

shaping different cellular functions such as resting potential, low threshold oscillations 

(LTOs), and spiking. This is depicted schematically in Fig. 1. Specifically, the currents that 

determine LTOs, for instance, would have activation functions that start on the voltage axis 

at more depolarized levels (to the right on the voltage axis) compared to the module that 

implements passive properties. Each module would thus have distinct zones of operation on 

the voltage axis, and the current module on the right will have activation functions that do 

not extend into the zone of the module on the left. In the conceptual cartoon schematic 

shown in Fig. 1, for instance, the zones are: < −70 mV for the passive module, −70 to −57.5 

mV for the LTO module, and above −57.5 mV for the spiking module.
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We tested this segregation hypothesis using four biophysical models reported in the 

literature and found support for the hypothesis in all four cases. For this testing, as 

elaborated in methods, we first identified the different current modules and their zones of 

operation, and then edited the activation functions to limit the tails and consequently avoid 

overlap among adjacent modules. In the following, this elimination of overlap is termed 

segregation. The finding that currents can be segregated into distinct modules is then shown 

to lead to an intuitive and systematic methodology for the development of biophysical single 

cell models of neurons that permits simultaneous matching of biological characteristics such 

as passive properties (e.g., input resistance, resting membrane potential, and time constant), 

responses to current injections, and oscillatory potentials at both low- and high- thresholds. 

This is accomplished by segregating the intrinsic currents into logical units that implement 

each characteristic separately. The resulting models have a high degree of robustness in the 

sense that changes made to the maximal conductance densities of currents belonging to one 

module have little or no impact on properties controlled by the other modules. This insight 

related to segregation of currents also helped reveal that a single core compartment could 

capture multiple neuronal properties and this higher fidelity might be an attractive feature for 

applications involving large networks. The model development process, applicable to hand- 

and in some cases to automated- tuning procedures, is illustrated using two rodent pyramidal 

cell types, one from the hippocampal CA3b region (Hemond et al., 2008) and the other from 

the lateral amygdala (LA; which exhibits both low- and high- threshold oscillations (Pape et 

al., 1998)). Finally, we illustrate how single cell models with a single core compartment can 

be integrated into networks and compare the predictive and run-time performance for one of 

the example cases using a 100-cell network where the cells were connected via dual-

component excitatory (e.g., glutamatergic AMPA/NMDA) and inhibitory (e.g., GABA) 

synapses and transmission delays.

METHODS

Biological data used to constrain a biophysical neuronal model include morphology, known 

current channel types and their maximal conductance densities, passive properties of the cell 

(e.g., input resistance, time constant, resting potential), and responses to current injections. It 

is also important to preserve synaptic integration characteristics, an area that is not well 

understood presently (Stuart et al., 2008). These properties are determined from the 

literature for the particular neuron prior to developing the model equations using the 

formulation described next.

The equation for the single compartment followed the Hodgkin-Huxley formulation (Byrne 

and Roberts, 2009) in eqn. 1,

(1)

where V is the membrane potential (mV),  and  are the intrinsic and synaptic 

currents, Iinj is the electrode current applied to the soma, Cm is the membrane capacitance, 

and gL is the conductance of leak channel. The intrinsic current  was modeled as 
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, where gcur is its maximal conductance, m its 

activation variable (with exponent p), h its inactivation variable (with exponent q), and Ecur 

its reversal potential (a similar equation is used for the synaptic current  but without m 
and h). The kinetic equation for each of the gating functions x (m or h) takes the form

(2)

where x∞ is the steady state gating voltage- and/or Ca2+- dependent gating variable and τx is 

the voltage- and/or Ca2+- dependent time constant. We describe next the procedure used to 

test the segregation hypothesis, using four published models from the literature, including a 

listing of relevant biological data for each case. This is followed by descriptions of the 

biological data for the two single cell example cases used to illustrate the proposed modeling 

methodology.

Biological data for four published single cell example cases

We validated the hypothesis using four published example case models from the literature: 

example case 1: hippocampal CA3b pyramidal neurons (Hemond et al., 2008); example case 

2: cortical/thalamic neurons (Pospischil et al., 2008); example case 3: rodent mitral cells of 

the olfactory bulb (Rubin and Cleland, 2006); and example case 4: rodent lateral amygdala 

pyramidal neurons (Alturki et al., 2015). The biological data related to these single cell 

models include passive properties (input resistance, resting potential, time constant), 

oscillatory potentials if any, and current injection responses including spiking/adaptation 

properties; details related to the data including numbers can be found in Appendix A1. 

These data are used to identify the current modules operational in the models, and highlight 

the fact that segregation may be common among single cell neuron models in general.

Furthermore, the proposed methodology to develop biophysical single cells models using 

insights related to current modules is illustrated using two of the four cited example cases, 1 

and 4. Additional data are provided for these two cases to support the modeling procedure 

and to facilitate replication of reported results by other researchers.

Validation of hypothesis using neuronal models from literature

To test the hypothesis related to segregation of currents in single neurons, we analyzed the 

activation/inactivation kinetics of individual currents in four published neuronal models and 

asked whether distinct current modules implemented characteristics such as resting 

potential, low threshold oscillations, spiking/adaptation/bursting, and high threshold 

oscillations in these model cells. Specifically, we investigated the gating kinetics of currents 

along the voltage axis and categorized them into logical modules that might implement 

specific characteristics, as depicted in cartoon form in Fig.1A for a hypothetical neuron; the 

corresponding gating functions are shown in Fig.1B. In Fig. 1A, for instance, leak and the 

hyperpolarization activated cation current H are responsible for passive properties; leak, 

persistent sodium Nap, and M-type potassium current KM control low-threshold oscillations; 

and transient sodium Nat and delayed rectifier Kdr currents control spiking. As cited, the 
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cartoon schematic shown in Fig. 1B shows three modules of currents, segregated into the 

following zones: < −70 mV for the passive module, −70 to −57.5 mV for the LTO module, 

and above −57.5 mV for spiking. Note that the activation functions for each module start on 

the voltage axis only after the zone of action of the module to its left.

This procedure to segregate the currents into modules is illustrated in cartoon form in Fig. 

2A that shows two modules in a hypothetical neuron: passive properties module and a 

spiking module. As a first step, the right extent of the zone of activation of the passive 

module is selected to be between the resting potential and the spike threshold (e.g., 3 mV 

above the resting potential was found adequate for some of the example cases as discussed 

later). In the next step, the currents are segregated. As can be seen, original activation curves 

have significant overlap, and this was eliminated with the proposed segregation. We 

highlight the fact that the activation functions used in the segregated model have sharper cut-

off at the ends to minimize overlap, but preserve the other features of the original functions. 

It is known that activation function parameters such as half-activation voltage V1/2, are 

known to vary, as illustrated in Fig. 2B (adapted from Izhikevich, 2007; variations have been 

reported in slope factor k and time constant also, not shown here). The activation function 

for a model current can thus be ‘shifted’ along the voltage axis if it facilitates grouping into 

modules, provided they are within reported bounds as in Fig. 2B.

In the four published model neurons considered, we implemented ‘segregation’ along the 

voltage axis for the activation functions by limiting them to be within non-overlapping 

voltage ranges as illustrated in Fig. 2A (without changing their half-activation voltage V1/2 

or slope factor k), and then checking whether this caused any change in the particular 

characteristic of the cell. In our analyses, we also found that the gating functions related to 

inactivation dynamics did not play any role in the interactions, possibly due to their slower 

kinetics. In some of the cases below, the segregation described above necessitated a retuning 

of the maximal conductances (only) to restore original characteristics. Descriptions of the 

biological details related to the four published example case single cell models are provided 

in Appendix A1.

Incorporating single cell models into a network

For the present study, the soma and axon are combined into one compartment, and we 

consider this core compartment as performing the function of integration for the neuron. 

Dendrites exhibit a rich repertoire of behaviors, and have been shown to have active 

channels (Magee and Johnston, 2005, Sun et al., 2011), and the role of dendritic channels in 

information processing is continuing to be unraveled (Stuart et al., 2008). Our focus on a 

single compartment model necessarily precludes incorporation of several such features, and 

we consider only two dendritic processing functions that shape the EPSP from the synapse 

to the soma, namely time delay and gain, and suggest how to scale synaptic gains to 

approximate the dendrite in a one-compartment model case. Other filtering characteristics 

such as changes in rise and decay times between the synapse and soma can also be 

incorporated if reliable information is available.

For the illustrative 100-cell model with single compartment cells, we used dual-component 

excitatory AMPA/NMDA synapses, and inhibitory GABAA synapses as in our prior models 

Alturki et al. Page 7

Neuroscience. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Kim et al., 2013a, Kim et al., 2015). All reported models were developed using the 

NEURON modeling package (Carnevale and Hines, 2006). The codes will be made available 

upon publication via the ModelDB public database (http://senselab.med.yale.edu/

ModelDB/).

RESULTS

We first discuss results from testing the hypothesis related to functional segregation of 

current modules in single neurons, using four models from the literature. We then show how 

the hypothesis leads to a systematic procedure for modeling single-compartmental neurons 

that consist of soma combined with axon, using two example case pyramidal cells. Such a 

systematic procedure facilitates hand-tuning and automated search approaches for 

developing models of single neurons. Finally, we illustrate how the single cell models 

developed using such an approach can be incorporated into networks, using a 100-cell 

example case network. Each of these results is discussed in separate sections below.

Different neuronal characteristics are implemented by distinct current modules

Building on the inadvertent finding in our previous study (Franklin et al., 2010), here we 

hypothesized that all currents in a neuron are organized into functional modules that are 

segregated into voltage ranges with different modules implementing cellular functions such 

as resting potential, low threshold oscillations, and spiking/adaptation/bursting. Segregation 

implies that the set of currents responsible for a particular cellular characteristic (e.g., 

passive properties) would have activation functions that have minimal overlap along the 

voltage axis with the set responsible for a different property (e.g., spiking).

Validation using published example cases—The first published example case tested 

deals with three types (burst-firing, adapting, and weakly-adapting) of hippocampal model 

cells (Hemond et al., 2008). A ‘passive properties module’, and a ‘spiking/adaptation/

bursting module’ were identified with clear separation between them (case #1 in Fig. 3A). 

We remind the reader that all that was changed in this test was to limit the appropriate gating 

functions to within segregated voltage ranges for each module, without changing the 

functions themselves. As detailed in methods, this involved retuning the maximal 

conductances for a few currents in some cases, and that was the only parameter that was 

changed, if at all, for a current. The original and segregated models matched well as seen in 

figures 3 and 4. For passive properties, Vrest matched to within 7% for all cell types, while 

Rin and τm were within 15% and 13% respectively for the burst-firing cell, and within 26% 

and 33%, respectively for the adapting and weakly-adapting neurons (see Fig. 3, B-D). 

Considering the spiking/bursting/ adaptation module, the numbers of spikes elicited in the 

proposed versions were identical to that reported for burst-firing and weakly-adapting cells, 

and was lower by 25% for adapting cells (see Fig. 3E). It is noted that only maximal 

conductances were considered in this retuning; inclusion of half-activation voltages as 

another free parameter would result in reduced differences, but since our aim here is to 

illustrate the procedure, it was not considered. The membrane potential waveforms for the 

original and segregated cases matched very well as shown in figure 4.
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The second example case considers single cell models of the main classes of mammalian 

cortical and thalamic neurons (Pospischil et al., 2008). For this case, there were two sets of 

current modules for each cell type, the ‘passive properties module’ and the ‘spiking/

adaptation/bursting module’. When we segregated the gating functions of these modules as 

described and compared the passive properties between the published model types and our 

modifications, the average deviation for all cell types (RS, FS, IB, and LTS) in Vrest, Rin, 

and τm was minimal, being 1%, 3%, and 6%, respectively (see Fig. 3, B-D). For the 

spiking /adaptation/bursting module, the numbers of current injection-induced spikes 

matched exactly with those in the original models for FS, IB and LTS neuron models, and 

was off by 20% for the RS model (see Fig. 3E). It is noted that the segregated models of 

both RS and FS cells replicated the frequency-current (F/I) relation of the corresponding 

original cell models presented in Pospischil et al. 2008 (data not shown). Interestingly, no 

changes in maximal conductance densities from the published models were required for any 

of the currents, in this case. The membrane potential waveforms for the original and 

segregated cases in panel A of figure A3 also indicate very good match.

The third example case tested involved a model of rodent mitral cell (Rubin and Cleland, 

2006) which had endogenous sub-threshold oscillations. Hence this case has a ‘low-

threshold oscillations module’ and a ‘spiking/bursting module’. The frequency of 

subthreshold oscillations in the proposed single cell model was within 4% of reported values 

(Fig. 3F). Depolarization via constant current injection resulted in the number of spikes and 

inter-burst interval in the segregated case (with minor retuning – see appendix A1) being 

within 8% of the published data, and very good match between the membrane potential 

waveforms (Fig. A3, panel B).

The fourth example case considered single cell models of rodent lateral amygdala pyramidal 

cells (Alturki et al., 2015) and data for passive properties, low-threshold oscillations (Fig. 

5A), spiking/adaptation (Fig. 5B), and high-threshold oscillations (Fig. 5C). Implementation 

of the segregation method (by limiting gating functions to restricted zones on the voltage 

axis) in this model had little effect on Vrest, Rin and τm and resulted deviations from values 

of the original model by only 1%, 8%, and 3%; respectively (see Fig. 3, B-D). Current 

evoked spike numbers differed by a maximum of 14% compared to the original model (see 

Fig. 3E). The frequency of the high-threshold oscillation (~ 18 Hz) was not affected after 

implementing the segregation idea, even prior to additional tuning. However, the segregation 

method abolished the LTOs, possibly because of the sensitivity of the currents underlying 

this oscillation. Persistent sodium current which is the source of excitatory drive of the 

oscillation is a very small current in such neurons, with a magnitude typically 0.25% of the 

maximum transient sodium current (Alzheimer et al., 1993, Vera et al., 2015). This makes 

the Nap current highly sensitive to any change in the other currents, i.e., if an activation 

function of a current from another module, such as Kdr, overlaps significantly with this LTO 

module, Nap becomes ineffective. Retuning some of the maximal conductances restored the 

LTOs in the segregated model, including with a frequency within 1% of that in the original 

model (see Fig. 3F). Pape and Driesang (1998) found that Ca2+ was the depolarizing 

mechanism in HTOs, but were unable to determine which potassium currents underlie the 

hyperpolarizing mechanism. Our model predicts that KM and Kdr provide the 

hyperpolarizing mechanism, and this prediction could be tested in experiments.
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The segregation technique was also found to be applicable, with some adjustments, to the 

Ca2+-activated potassium currents for all the example cases. For instance, in example case 4 

(LA neuron), the half-activation voltage for the Ca2+ current is −30 mV, and so the 

segregation technique used a value of −57.5 mV as the cut-off to edit this current, which 

belongs to the spiking/adaptation module. Below −57.5 mV, the calcium current was very 

small, and so its contribution to the calcium-pool that controls the calcium-activated 

potassium currents was consequently small. So, the calcium-activated potassium current to 

be activated at the same boundary as for the module containing the Ca2+ current. In some 

cases, the cut-off may need to be moved to more hyper-polarized voltages. Accordingly, we 

set the activation curve for KC and K_AHP to zero at the boundary itself (−52.5 mV) for 

example case 1, while for example case #4, we set the activation curve for KsAHP to zero 

below −65 mV. So, such an adjustment to the segregation method for the calcium-activated 

potassium currents worked for all the models we investigated that had this current (example 

cases 1, 3 and 4). A similar approach also worked for the Ca2+−activated Ca2+ current used 

in example case 2, i.e., the activation curve for I_CaL was set to zero below −60 mV.

As part of our analysis, we found that the gating function related to inactivation did not need 

to be considered in the segregation process, i.e., it did not affect the results, and we 

investigated the causes. The module controlling passive properties in all four example cases 

did not have any inactivation functions. This is because this module consisted primarily of 

leak and H currents. It is noted that leak is assumed to include all non-voltage gated 

channels including Na, K and chloride types. Interestingly, the module controlling low-

threshold oscillations either had large inactivation time constants making them of an almost 

persistent type (e.g., mitral cell case in Rubin and Cleland, 2006) or did not have inactivation 

(e.g., LA neuron in Alturki et al., 2015). Considering the spiking/bursting module, the Na 

current has both activation and inactivation, while the Kdr current typically does not. 

Changes to the half-activation voltage for the activation function of the Na current change 

the spike initiation threshold while changes to the inactivation function have little effect. It is 

noted that the Hemond et al. (2008) study shifted both activation and inactivation of a group 

of currents, such as Na, KM, and Kdr, by +24 mV to match biological firing patterns. This 

suggests that, in the segregation approach we propose, the inactivation function should be 

moved the same amount as the activation one for currents that have inactivation, and so does 

not need to be considered separately. Finally, we noticed that among the currents responsible 

for HTOs in the LA neuron case, only Ca2+ has an inactivation function but that has a large 

time constant of 420 ms, making it persistent in the time scale of the HTOs; it needs to be 

explored whether this fact holds in general trend for currents implementing HTOs in other 

cells. The observations above suggest that the segregation process could focus on activation 

functions, and shift the inactivation functions by the same amount as the activation functions 

as in Hemond et al. (2008).

In summary, the results discussed above for the four published model neuron cases (Figs. 4, 

5 and appendix Fig. A3) provide validation for our hypothesis related to segregation of the 

current modules based on functional characteristics (Fig. 1). The hypothesis suggests that, 

for instance, currents implementing the functional characteristic of spiking have activation 

functions that start on the voltage axis to the right (more depolarized) of the activation 

functions for currents that implement LTOs, and so on. Each module thus has a distinct zone 
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of operation on the voltage axis (Fig. 3A), and the current module on the right will have 

gating functions that do not extend into the zone of the module on the left. For instance, the 

zones of operation of the current modules in the LA neuron case were as follows: the passive 
properties zone of operation ranged from the hyperpolarized side up to −67.5 mV (2.5 mV 

above rest). The LTO zone ranged between −67.5 to −57.5 mV, with bounds being about 2.5 

mV above rest and 2.5 mV below spiking threshold. The spiking/adaptation zone began at 

−57.5 mV, about 2.5 mV below spiking threshold and through all depolarized levels. Finally, 

the HTO zone that involves interaction of already activated currents (KM, Kdr, Ca, and 

sAHP) ranged between −40 and −30 mV. As mentioned earlier, another finding was that the 

zone of operation for the gating functions related to inactivation did not affect the functional 

characteristics. Next, we investigated whether such a segregation does indeed simplify the 

tuning process.

Segregation facilitates the tuning process—A question that arises is whether this 

segregation, i.e., limiting the gating functions of the different current ‘modules’ to within 

specific voltage ranges in the manner cited above, does indeed simplify the tuning process. 

To investigate this, we considered the same four cases discussed above, in two different 

ways.

(i) In the first approach, we noted that the half-activation voltages for all the current modules 

were well segregated for all the four example cases. This suggests that the process used to 

optimize the four models had naturally segregated the current modules by half-activation 

voltages. This is an important observation in itself that appears to not have been highlighted 

in previous reports. The second item investigated was whether the overlap in the ‘tails’ of 

the gating functions across the modules causes any significant interaction among the 

properties they control. As cited in the previous section, some of the maximal conductance 

densities had to be re-tuned after the segregation to restore original values of characteristics. 

We asked whether the match with the original properties would still be close if the 

conductances had not been re-tuned after segregation. In three of the four cases, prior to 

retuning some of the conductances, the differences were indeed significant. For instance for 

the case of mitral cells (Rubin and Cleland, 2006), the subthreshold oscillations could not be 

sustained beyond a few cycles prior to re-tuning, and the spiking behavior was abolished 

completely. Similarly, for the CA3b burst-firing neuron (Hemond et al. 2008), the bursting 

was converted to tonic spiking, and the values for Rin and τm differed by 25% and 30%. For 

the LA pyramidal cells case (Alturki et al. 2015), the values for Rin and τm differed by 23% 

and 16%; and current injection responses increased by around 40-100% for all three cell 

types. Importantly, low threshold oscillations were completely abolished with the change, 

and the highly-adaptive type A cell was converted to an endogenous spiker. These studies 

revealed that the properties of a particular module are affected significantly by overlap of 

activation functions of currents from other modules. From our own experience in tuning the 

LA model neurons, this overlap makes the tuning process very difficult; removal of the 

overlap, on the other hand, simplified the development of LA models considerably, and we 

believe the same would hold for the other example cases. It is important to note that 

matching all properties (passive, LTO, spiking/adaptation, and HTO) simultaneously in the 

LA neuron was possible only in the segregated case. Interestingly, the differences between 
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original and segregated models for the Pospischil et al. (2008) example case were minimal 

without re-tuning, indicating that the advanced automated search process they used seemed 

to have found a solution that minimized overlap among the modules, the key idea we 

propose in the present paper. It is noteworthy that the authors were unaware of this 

additional dimension of optimality in their solution.

(ii) In a second approach to check whether segregation does indeed facilitate the tuning 

process, we changed the parameter values for currents in one of the modules in the same 

published models and investigated the effect on the properties controlled by other modules. 

Our hypothesis is that tuning would be made easier because making changes to one module 

would have a negligible impact on the others. We investigated this for four model cases 

below.

CA3b models (Example case 1): Increasing the maximal conductance density of KM even 

10-fold in the segregated model resulted in no change (0%) in Vrest and Rin. However, for 

the original (non-segregated) model, a change to KM by 2.7-fold was sufficient to drop Vrest 

by 1.5 mV and decrease Rin by 7 MΩ (> 12% change), compared to the baseline case. 

Similarly, changing the conductance of KA even 10-fold made no change in Vrest and Rin in 

the segregated model (0% change), but a 2.5-fold change in KA in the original model 

dropped Vrest by 2.4 mV and decreased Rin by 10.6 MΩ (18% change).

Cortical/thalamic (Example case 2) and Mitral cell models (Example case 3): The 

current modules, as noted, were well segregated in the Pospischil et al. (2008) case, and so 

changes made to conductance densities of any current in one module had negligible effect on 

the others. For instance, the intrinsically bursting (IB) cell had a resting potential around −85 

mV and had two modules: passive properties module governed by leak and the spiking/

adaptation/ bursting module controlled by Na, Kdr, KM, and L-type Ca currents. As shown in 

table 3, the half-activation voltages of Na, Kdr, KM, and L-type Ca at −29, −28.8, −35 and 

−33 mV, respectively, are considerably above the resting potential of −85 mV, achieving 

robust segregation between the modules. In particular, the tails of the activation functions for 

currents shaping the spiking/bursting module were less than 0.01 at −82 mV (3 mV above 

rest). A 2.5-fold increase in either KM, Na, Ca or Kdr conductance had no effect on Vrest and 

Rin (changes were <1%) indicating that the currents are well segregated.

In the mitral cell model (Rubin and Cleland 2006), the authors used a two-step semi-

automated process that starts first by varying the conductance values of the four currents 

responsible for the subthreshold oscillations (Nap, H, KA, and Kca) over a parameter space 

that produced ~ 60,000 possible combinations. Each parameter set was then simulated in 

NEURON and data of all the ~ 60,000 trials were then analyzed using MATLAB to obtain a 

best-fit solution in terms of voltage-dependent frequency of subthreshold oscillations in 

comparison with reported experimental data. A second step then involved tuning the 

remaining higher-threshold active currents (Nat, Kdr, and Ca) using a similar parametrization 

technique to that of the first step, to match spiking/bursting properties. The above two-step 

fitting method the authors used has similarities to our segregation idea, but was not fully 

developed. For instance, the authors reported that they shifted the activation curve of Nap 

left by 7-10 mV (i.e., made it more negative; towards the left of the range for half-activation 
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voltages for Nap shown in Fig. 2B adapted from Izhikevich 2007) to that of the spiking 

sodium current Nat. This allowed Nap to activate at the lower-threshold STOs levels (~−64 

mV), with an activation gating value being at 0.05 compared to 0.003 for Nat. This shifting 

is one of the key points we suggest in the proposed segregation idea. Additionally, the 

authors implemented an experimental curve for the activation function for the delayed 

rectifier potassium currents (both fast and slow), and these were activated positive to −40 

mV, i.e., much above the STO levels, making the ‘tails’ zero at STO levels. This implies that 

the authors used the higher range of half-activation voltage for Kdr (see Fig. 2B) to possibly 

minimize interference with the currents implementing STOs. Indeed, this segregation made 

STOs robust to variations in high-threshold activation currents, such as Nat, Kdr, and Ca 

which in turn controlled the spiking/bursting properties. Nap and KA which were main 

contributors to the STOs had half-activation voltages at −48.7 and −42 mV, respectively, 

with activation gating values at STOs levels of 0.05 and 0.18, respectively. On the other 

hand, the half-activation voltages of Nat, Kdr, and Ca which were involved in the bursting 

activities were segregated being at a relatively higher-threshold, −29, −12.9, and 3.2 mV, 

respectively, with activation gating values at STOs levels of much smaller values than those 

of Nap and KA, at 0.003, 0, and 0.0001, respectively. This segregation in half-activation 

voltages among currents responsible for tuning the two different modules, in addition to 

limiting the extended tails of activation functions, created a mitral cell model that is well 

segregated and robust.

LA neuron models (Example case 4): A similar comparison using the LA type B model 

cell revealed that even a 10-fold increase in the maximal conductance density of KM in the 

segregated model resulted in no change (0%) in Vrest and Rin, but a much smaller 2.5-fold 

change in the original (non-segregated) case dropped Vrest by 2.5 mV and decreased Rin by 

26 MΩ (> 15% change). In another comparison we varied the conductance value of Nap 

involved in the LTO module. A 0.8-fold increase in Nap conductance in the non-segregated 

model was enough to increase Vrest and Rin by 3.5 mV and 35 MΩ (22%) respectively, 

compared to no change at all in Vrest and Rin with even a 10-fold change in Nap 

conductance in the segregated model. Also, a 10-fold decrease in Nat conductance or a 10-

fold increase in Ca conductance had no effect on LTOs in the segregated model, but even a 

0.5-fold decrease in Nat conductance or a 0.3-fold increase in Ca conductance was enough 

to abolish the LTOs in the original model. Another important observation was that tuning 

only the spiking/adaptation module in the segregated case easily generated the A, B and C 

cell types, without affecting their passive properties or LTO characteristics. However, 

unintended interactions among the current modules made a similar tuning with the original 

models much more demanding and not feasible without compromising on the properties of 

the other modules. Also, as shown in a later section, we were not able to tune the original 

model to exhibit HTOs, but tuning the segregated model to exhibit HTOs was easy and 

efficient. This supports the idea of segregation of currents along the voltage axis into non-

interacting modules for neurons with multiple signatures.

With this insight about distinct current modules shaping different characteristics, we propose 

an intuitive methodology in the next section to model biophysical single neurons using two 
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published example cases. Finally, we illustrate how the single cell models can be integrated 

into networks using an example case.

Potential caveats of the proposed segregation hypothesis—The proposed 

segregation scheme for single compartmental models has been demonstrated for certain 

classes of neurons described above; their applicability to other classes requires further 

research. For instance, the original squid model reported by Hodgkin and Huxley (1952) has 

three currents, transient sodium Nat, delayed rectifier Kdr, and leak, implementing two 

functions, resting and spiking. Considering the activation curves, Kdr is found to contribute 

several millivolts to the resting potential and so segregating both currents from rest caused 

Vrest to be significantly depolarized. A potential explanation for this might be the fact that 

cells with limited sets of currents (e.g., squid) may not have functional segregation among 

the currents. Also, if the focus is on spiking patterns rather than spiking waveforms, 

segregation schemes may work for such cases also and requires further study.

The class of globus pallidus neurons studied by Gunay et al. (2008) has currents with gating 

functions organized into modules that exhibit overlap. In their carefully developed models, 

H is shown to control the sag at hyperpolarized levels, and the current pair Nap and KM are 

noted as being primarily responsible for spontaneous firing. The same current pair of Nap 

and KM was responsible for low-threshold oscillations in the LA example case discussed 

earlier. However, different from the LA example case, the gating functions for Nap and KM 

were found to extend significantly left into the rest module, suggesting a non-modular 

arrangement. Interestingly, a closer investigation of the dynamics revealed that Nap and KM 

in the Gunay et al. model had time courses that were significantly different from the currents 

active at rest, enabling them to be the primary currents involved in spontaneous firing. This 

in turn suggests that functional segregation among modules could also be accomplished via 

different time courses among the module currents, even though their gating functions may 

overlap, and this interplay between time constants and gating functions has not been 

investigated here, but is an important topic of future study. The other currents in their model, 

Naf, Kdr, KA, Ca, and Ca-activated AHP K controlled (in addition to KM) spiking and 

adaptation, and had half-activation parameters that were significantly larger than those of the 

rest and spontaneous firing (Nap and KM) modules.

The spiking and HTO modules had interactions in the LA neuron case and this can be 

explained by the fact that HTOs, as cited earlier, are revealed in LA neurons only with block 

of Nat with TTX (Pape et al., 1998). So, interestingly, the interaction between the modules 

in this case is a characteristic of the biological neuron, and does not violate the key finding 

of a neurobiological organization of currents into modules. Neuromodulation is known to 

change the current kinetics and impact circuit function (Marder et al., 2015). Although not 

considered in our study, neuromodulation effects can be included without compromising on 

the segregation idea if the kinetics they impact are known. Although the segregation 

approach was applicable to the calcium-activated potassium and calcium currents in all the 

example cases, applicability to other types of such calcium-activated currents should be 

investigated. Finally, the reported findings are limited to single compartmental models which 

precludes incorporation of the functions known to be implemented by dendrites. 

Nevertheless, the present study is a significant first step towards understanding the 

Alturki et al. Page 14

Neuroscience. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



underlying principles of how various neuronal signatures may be implemented by the suite 

of currents in a neuron in a robust manner. Also, the methodology for developing neuronal 

models using the segregation approach will be useful in applications involving large 

networks where spiking patterns, rather than the waveforms or detailed biophysics, are more 

important.

Application of finding - Single compartment model can capture salient neuronal dynamics

The finding that currents may be neurobiologically organized into distinct modules in a 

neuron suggest a methodology to capture its salient dynamics in a single core (soma+axon) 

compartment, as summarized in Box 1. This efficient and robust procedure is applicable to 

hand-tuned, and to some extent, to automated- search approaches, for developing single 

model neurons. We illustrate the proposed methodology below with two specific example 

cases; details related to these can be found in Appendices A1 and A2.

Modeling Single Cells: Hippocampal CA3b pyramidal neurons of example 
case 1—The first example case to illustrate the proposed scheme uses a published 135-

compartment CA3b single pyramidal cell model from the hippocampus (Hemond et al., 

2008). We investigated whether a 1-compartment version could reproduce all the 

characteristics reported for the multi-compartmental version. The equivalent single 

compartmental model preserved the total surface area of the detailed model, and had both 

diameter and length of 96.87 μm. The maximal conductance densities for each current were 

obtained by averaging across all compartments. We then tuned around these values (max 

deviation from original values were ~30%) to obtain the match with biological data. Since 

the parameter values are on a per unit area basis, any value of neuronal area would work in 

general for all properties except input resistance.

Passive properties: Currents active at rest were leak and the two hyperpolarization activated 

currents: H and KD; all other currents were segregated to be active only above rest. So, the 

tuning process (see Box 1 and Appendix) to match biological data for Vrest, Rin, and τm 

involved conductances for H, KD and leak, the reversal potential for leak, and the membrane 

capacitance. The parameters for the gating functions were unchanged. The resulting values 

for Vrest, Rin, and τm for the burst-firing, adapting, and weakly-adapting proposed models 

matched biological values (Hemond et al., 2008) closely: Vrest: −57 mV, −59 mV, and −64 

mV, matching to within 3% for all types; Rin: 58 MΩ, 74 MΩ, and 56 MΩ, matching to 

within 2, 1 and 18%; and τm: 21 ms, 34 ms, and 31.5 ms, matching to within 5, 0 and 30%.

Spiking properties: The spiking module in this model consisted of Nat, Kdr, KA, L-type Ca, 

and KM, in addition to KD which was active in the previous module. The activation functions 

of these currents were non-zero just above Vrest, beginning at −52.5 mV, producing a good 

match with biological data (Hemond et al., 2008). The number of current-evoked spikes 

matched data reported in the paper: 1.53 nA for 400 ms elicited a burst of 4 spikes in both 

for the burst-firing case,1.37 nA elicited 8 spikes in both for the adapting case, and 0.58 nA 

caused 3 spikes in both for the weakly-adapting case. The spiking behaviors of both 

proposed and original models of the three different cell types presented in Hemond et al. 
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2008 are shown in Fig. 4. The maximal conductance densities for the currents after tuning 

are shown in table 1.

Modeling Single Cells: Lateral amygdala principal cells of example case 4—In 

the second example case to illustrate the methodology, we consider the LA pyramidal cell. 

Following the procedure listed in the previous section, we begin with a one-compartmental 

model to represent soma and axon. The diameter and length of the compartment were 

selected as 24.75 μm and 25 μ m, respectively.

Passive properties: A plot of the gating functions revealed four currents to be active at rest 

(Kim et al., 2013a): Nap, KM, H, and leak. Since LA neurons exhibit LTOs caused by Nap 

and KM, we set these currents to zero when tuning passive properties, i.e., only H and leak 

currents were active. Leak reversal potential was set to −72 mV. H and leak conductance 

values were tuned and yielded passive properties that matched biological data very well: 

Vrest was −70.4 mV (empirically measured mean of −69.5 mV (Washburn and Moises, 

1992)), input resistance (Rin) was ~ 154 MΩ (measured 150 MΩ (Faber et al., 2001)), and 

τm was ~ 31.5 ms (measured 29 ms (Faber et al., 2001)).

Low-threshold oscillations: We activated Nap and KM currents immediately above rest, at 

−67.5 mV, and segregated the H current to be active only below −67.5 mV, i.e., it was not 

active in the voltage range of LTOs. The half activation voltage (V1/2) and slope factor (k) 

for Nap and KM were adjusted to ensure that the LTOs occurred around ~ −59 mV. The time 

constant curve parameters were then adjusted so that the depolarizing current was faster (by 

a factor of 7) compared to the hyperpolarizing one in this voltage range. We then iteratively 

tuned the maximal conductance for KM so that it dominated leak. Upon membrane 

depolarization (via current injection) to −59 mV, the single cell model replicated biological 

data: LTOs occurred at a frequency of 4 Hz and had an amplitude of 1.5 mV, compared to 

biological ranges of 0.5-9 Hz and 2-6 mV (Pape and Driesang, 1998). Furthermore, blocking 

either Nap or KM abolished the oscillations as noted in experiments (Pape and Driesang, 

1998).

Spiking/adaptation properties: Nat, Kdr, and Ca currents were activated just above LTOs 

levels, starting at −57.5 mV, but below spiking threshold of −56 mV (Washburn and Moises, 

1992). The calcium-activated sAHP current should be active while tuning the spiking 

properties since it controls spike frequency adaptation in LA neurons; hence it was activated 

at −65 mV.

High-threshold oscillations: Both Nap and Nat were blocked to abolish LTOs and spiking. 

In LA principal cells, HTOs occur around ~ −40 mV, with depolarization by a group of 

calcium currents and hyperpolarization by a combination of delayed rectifier, calcium 

dependent potassium and other voltage dependent potassium currents (Pape and Driesang, 

1998). The model used a fast calcium current with a very slow inactivation as a depolarizing 

current and both KM and Kdr currents for hyperpolarization. As in the case of LTOs, Kdr and 

KM were slower than the depolarizing Ca current around HTO levels. Maximal conductance 

values of KM and Kdr were tuned such that leak was not dominant, else it precluded 

oscillations. A strong KM current was found to prevent membrane depolarization to HTO 
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levels when sodium channels are blocked. Also, since KM affects LTOs and Ca and Kdr 

affect spiking, tuning this module involved iteration with properties of LTO and spiking/

adaptation modules since the HTO module did not have unique currents of its own. After 

such a tuning, the model had HTOs at 16.7 Hz, with an amplitude of 17 mV. As cited earlier, 

despite considerable tuning, we were unable to incorporate HTOs in the original model, 

highlighting the importance of segregation.

Remarkably, a 1-compartmental model with the parameters listed in tables 2 and A2 was 

able to match the biological passive properties and current injection responses of LA 

principal cells, including the three spike frequency adaptation types (A-C), LTOs and HTOs 

(Fig. 5). To our knowledge, this is the first report where all these properties are captured in a 

biophysical single cell model.

Integrating segregation ideas into automated schemes—Two important 

characteristics of automated parameter search techniques are its objectivity in the 

exploration of the parameter space, and its relative ease of use once developed. The findings 

we report related to segregation of currents into modules using functional insights has the 

potential to make such automated searches more efficient and robust for the classes of 

neurons cited above. The methodology we propose involves segregating the half-activation 

voltages (V1/2) and slope factors (k) of the gating functions, and eliminating overlap by 

removing the ‘tails’ appropriately (see text). Both V1/2 and k are typically not known 

precisely, and are known to vary with factors such as neuromodulation, (e.g., Harris-Warrick 

et al., 1995, Heys and Hasselmo, 2012). If the ranges of variation of such parameters are 

known (e.g., Fig. 2B), these ranges, together with the ranges for the maximal conductances 

can be provided to the automation schemes. Thus, the only change to the automation scheme 

is limiting the gating parameters to be within certain voltage ranges (zones) using insights 

related to the neuronal signatures. It is noted that most of the automation schemes seem to 

search only over the maximal conductance space, after fixing the parameters involved in the 

current kinetics. In either case, with or without searching over the activation kinetics, one 

has to ensure that the overlap of activation functions is minimized (see appendix for details, 

including figures).

Performance of single cell models in a neuronal network

We illustrate the application of single cell models developed using the proposed segregation 

technique in a network application. A 100-cell network model of the rodent lateral amygdala 

is adapted from a recently reported model from our group (Kim et al., 2013a, Kim et al., 

2015, Feng et al., 2016) where dendritic processing was largely limited to shaping the PSP 

from the synapse to the soma. Specifically, the performance of the one-compartmental 

model developed using the proposed approach is compared with that of a 3-compartmental 

model in Kim et al. (2013a). Briefly, in the Kim et al. study, the authors (i) developed three 

types of pyramidal 3-compartmental single cells with high (type A), intermediate (B), or low 

(C) spike frequency adaptation, to reproduce the biologically reported continuum of spike 

frequency adaptation due to the differential expression of a Ca2+-dependent K+ current. The 

three types of pyramidal and one inhibitory interneuron single cell models also reproduced 

biological in vitro properties, including passive (input resistance, resting potential and time 
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constant) and current injection (three values) responses; and (ii) integrated the single cell 

models into a network model, subjected the model to a Pavlovian fear conditioning protocol, 

and showed how the network could reproduce the reported conditioning-induced formation 

of ‘plastic’ cells with enhanced tone responses (Repa et al., 2001). The auditory fear-

conditioning protocol (see Fig. 1 above) included three phases (habituation, conditioning 

and extinction), comprised of 8, 16 and 20 trials, respectively. Each trial featured a 0.5-s 

tone CS followed by a 3.5s gap. Only during conditioning, a shock (100 Hz) was 

administered 100 ms prior to the end of the tone, so that they co-terminated. The entire 

protocol lasted 276 seconds. Details can be found in Kim et al. (2013a).

We used a 100-cell version of the network and first tuned the network model with 3-

compartmental cells from Kim et al. (2013a) and recorded all its outputs including spiking 

times of all 100 cells throughout the fear conditioning protocol. We then investigated how 

well the 1-compartment version could reproduce all features of the outputs. To test this, we 

replaced the 3-compartment single cell model in the 100-cell network with its one-

compartment equivalent. The excitatory and inhibitory synaptic gains in the 3-compartment 

case were scaled using ratios dependent on the appropriate areas. The ratio of the total area 

of the 3-compartmental neuron to the somatic area of the 1-compartmental case was 4.7, and 

so the GABAergic synapses were scaled down by this number. For the glutamatergic 

synapses, the area along the path from the soma to the dendrite having the synapse was used, 

instead of the total area, and this number was divided by the somatic area to get the ratio of 

1.24 which was used to scale excitatory synapses. These ratios provide reasonable starting 

points for tuning. In our case, we had to tune only the glutamatergic synapses, with the ratio 

for GABAergic synapses being unchanged. No other changes were made to the model, i.e., 

no adjustments to any other parameters such as learning rates or thresholds were made. To 

compare the network output with 3- and 1-compartment cell models, we recorded the 

spiking responses of all 100-cells throughout the 276 second protocol, and computed their 

tone responses (i.e., spikes within first 300-ms of tone onset) for the three types of pyramidal 

cells (Kim et al., 2013a).

In addition to very good comparisons between 3- and 1-compartment LA models at the 

single cell level, their predictive capabilities when incorporated into the 100-cell network 

model also compared well, using the following measures: (i) the conditioning induced 

numbers of plastic cells were 30% and 28%, respectively, of the total; (ii) the profiles of 

conditioning for the pyramidal cell types were similar to that in biology and in Kim et al. 

(2013a). Moreover, types B and C conditioned in much larger proportions than type A as in 

Kim et al. (2013a); and (iii) the average tone responses of the 1- comp case during 

conditioning and extinction phases compared very well with the 3-comp case (Fig. 6). The 

maximum difference was 14% during the first block of conditioning, and 6% during the last 

block of extinction, which is well within the biological variability of ~20% in Repa et al. 

(2001). Note that with more than 2000 free network parameters, such models cannot be 

tuned to achieve preferred outputs, and so differences within biological limits are acceptable. 

Importantly, we believe that the higher tone responses for 1-compartment case during 

habituation and early conditioning can be attributed to its higher fidelity due to the inclusion 

of low- and high-threshold oscillations, since the 3-compartment model was not designed to 

include oscillations. This comparison demonstrates that the proposed approach to develop 
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single compartment models and the scaling approach used for synapses successfully 

captures the salient intrinsic and synaptic integration properties for this application.

DISCUSSION AND CONCLUSIONS

Neurons typically have numerous current channels and exhibit a diversity of neuronal 

signatures ranging from low threshold oscillations to complex spiking waveforms, and to 

high threshold oscillations (Izhikevich, 2007, Byrne and Roberts, 2009). Although several 

reports have delineated how a few currents regulate one specific signature/property, it is not 

clear how the entire set of currents interact to implement the suite of signatures for a neuron. 

We report novel insights related to the role of distinct current modules in shaping the 

dynamics of the various membrane potential features of model neurons. This insight into the 

neurobiological grouping of intrinsic currents in a neuron is in turn shown to lead naturally 

to a systematic, efficient and robust methodology to develop biophysical single cell models 

for certain classes of neurons, with potential for automated tuning in certain cases.

Neuronal signatures are controlled by distinct modules of currents

Our hypothesis that distinct current modules might implement different neuronal signatures, 

with minimal interactions across modules, was found to hold for four published biophysical 

single cell model classes that differ in type and functional characteristics. This finding also 

suggests that some of the hand- and automated- schemes for tuning biophysical models have 

probably been converging onto solutions that segregated currents along voltage ranges, at 

least for these classes of neurons. Support for this also come from the fact that only the 

maximal conductances (and not current kinetics V1/2 and k also) needed to be tuned for all 

of the example cases reported. Interestingly, one of the example cases utilized a 

sophisticated automated approach for determining the ‘optimal’ current parameters to fit 

biological data (Pospischil et al., 2008). Our analysis revealed that this optimal model had 

the current modules segregated so well that the errors in functional characteristics were 

uniformly small when we confined the gating functions to be within non-overlapping voltage 

ranges, i.e., the segregation we highlight here seems to have been automatically 

accomplished by their search algorithm. Alternatively, this may be an inherent part of the 

biophysics of the neuron. The segregation approach becomes critical for neurons with 

multiple neuronal signatures such as the LA neuron example case, with passive properties, 

LTOs, HTOs, spiking and adaptation. This is highlighted in Fig. 5C by the missing plot for 

the ‘original’ case, since were not able to hand-tune the original LA neuron to exhibit HTOs, 

i.e., only after segregation could we model HTOs in these neurons. As cited in results, 

another important attribute of the segregation approach is its robustness, i.e., changes made 

to the parameters of currents in one module minimally impacted the characteristics 

controlled by currents of other modules, for all the example cases. The neurobiological 

insight related to segregation also provides predictive power: if a current has unknown 

kinetics, but is known to belong to a certain module, then its kinetics (V1/2 and k) should 

confine its activation curve to within the voltage zone of that module (Fig. 1, 2); on the other 

hand, if it is known to belong to a different module, the kinetics should be sufficiently 

segregated.
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If currents can be grouped into distinct modules, can we further quantify how ‘close’ the 

activation functions of the currents within one module were on the voltage axis, and how 

‘far’ they were from other modules. Such a quantification was possible considering an 

average of the half-activation values, V1/2, of the currents within a module (see table 3 and 

appendix for values for all example cases). For the passive modules, V1/2 for the H currents 

ranged between −84 and −73 mV, all below Vrest. In the example cases with LTOs (#3 and 

#4; Tables A1 and A2), the differences between V1/2 values for the two LTO currents in both 

cases were less than 7 mV. In contrast, the distance of the LTO module (taking average of 

V1/2 values for currents in that module) from a similar grouping for the passive module was 

35 mV, and, in turn, the distance from the LTO module to the spiking module was 24 mV. 

Therefore, the differences between V1/2 values for currents within the LTO module in both 

cases were considerably smaller compared to differences across the modules. As expected, 

the currents in the spiking module had the largest separation in V1/2 between the 

depolarizing and hyperpolarizing currents with an average of 17 mV across all four 

examples. HTOs were seen only in one example case (#4) and since this module did not 

have its unique currents, no quantification was considered. So, a further prediction from 

these models is that currents within a module should have V1/2 values close to each other. 

Future studies should consider such quantification issues in more detail.

Effective biophysical models for network simulations – the big picture

Simplified computational models of neurons (Bush and Sejnowski, 1993, Pinsky and Rinzel, 

1994, Destexhe, 2001, Tobin et al., 2006), including as point processes, are popular in 

theoretical neuroscience research (Herz et al., 2006, Brunel et al., 2014) and have provided 

valuable insights into numerous analytical issues including stability and oscillations. 

Advances in recording techniques over the past decades have led to the development of 

viable biophysical models that include channel and synaptic neurophysiology, and more 

realistic morphologies, with some including dendritic processing (Stuart et al., 2008), and 

neuromodulation (Marder et al., 2015). Such models have to also accommodate large 

naturally occurring variations in maximal conductances in putative identical cells (Schulz et 

al., 2006), and possible variations in the activation kinetics of currents (Fig. 2B; Izhikevich 

2007). Our emerging understanding of additional functions such as intrinsic and synaptic 

compensation (Marder, 2011, Turrigiano, 2011), and the role of cellular and synaptic 

parameters in the growing area of network oscillations (Skinner, 2012, Krook-Magnuson et 

al., 2015) will be aided by biophysical models that incorporate neurophysiology to represent 

such phenomena adequately.

In addition to the presence of more than 10 parameters in the Hodgkin-Huxley formulation 

for each current, it is also known that channel and synaptic conductances (e.g., Marder, 

2011), as well as half-activation voltages and time constants vary (e.g. Fig. 2B) over ranges, 

due possibly to several factors including state dependent neuromodulation (e.g., Marder et 

al. 2015). Possibly for these reasons, systematic methods for the development of biophysical 

single cell models do not seem to be reported in the literature, with present methods ranging 

from hand tuning to several types of automated search algorithms (Bhalla and Bower, 1993, 

Prinz et al., 2003, Druckmann et al., 2007, Hemond et al., 2008, Pospischil et al., 2008, 

Marder and Taylor, 2011, Bahl et al., 2012, Forren et al., 2012).
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Using the finding related to the distinct current modules cited in the previous section and its 

predictive power, we suggest a systematic methodology to develop biophysical single cell 

models using the Hodgkin-Huxley formulation. In this scheme, the activation functions for 

currents in each module on the right are segregated such that they do not extend into the 

voltage zone of the module on the left (see Figs. 1 and 2). For the four example cases we 

considered, such a segregation approach was found to result in similar time courses for 

membrane potential dynamics (Figs. 4, 5 and A3). The segregation process provides bounds 

for the activation kinetics for the currents and these bounds can then be utilized effectively in 

hand- or automated- tuning approaches. The search could occur simultaneously over the 

activation kinetics and maximal conductance densities of all currents, or only over the 

maximal conductance densities if the activation kinetics are pre-determined and held fixed. 

The methodology was illustrated using two model neurons from the literature.

The proposed methodology and related findings for developing single compartment models 

for specific classes of neurons are attractive for large network applications. The significance 

of these findings for classes of neurons can be summarized as follows: (1) automated 

parameter search techniques for neuronal models could potentially incorporate consideration 

of functional characteristics for certain classes of neurons. The method we propose (Box 1 

and appendix A2) is based on recognizing the role of current modules in shaping neuronal 

signatures; it makes the tuning process easier and converges on a solution rapidly since it 

precludes unintended interactions between different currents. We highlight that it is the tails 

of the gating functions in the Boltzmann equation (Byrne and Roberts, 2009) that cause 

unintended interactions among currents of different modules, and so we suggest using gating 

functions with sharper cut-off to implement segregation, including specific splines or hand-

tuned curves with sharp cut-off (e.g., experimental curve for Kdr with sharp cut-off in Rubin 

and Cleland 2006). Although at the cost of matching spike patterns only rather than the spike 

waveform itself, usage of the method results in models that are robust in the sense that the 

currents within one module minimally impact the properties controlled by other modules, 

making the matching of multiple properties considerably easier and efficient; (2) usage of 

the modules idea led to the finding that a single core compartment representing the soma and 

axon had the capability to capture multiple neuronal properties; (3) improved understanding 

of the effects of synaptic and intrinsic neurophysiology on phenomena such as oscillations is 

becoming very important in rapidly growing application areas such as non-invasive brain 

stimulation (Krook-Magnuson et al., 2015). Biophysical single cell models with increasing 

fidelity at finer neurophysiological levels, including incorporation of LTOs and HTOs, will 

be sought for such applications. As cited in results, the relevance of the proposed 

methodology come to the fore for cases where multiple neuronal signatures have to be 

modeled simultaneously, as in the LA neuron example case. Adding the segregation idea to 

automated searches could enhance their efficiency in some cases, particularly if the scheme 

is limited to only a few neuronal properties; (4) the idea of segregating currents led to the 

finding that KM and Kdr may provide the hyperpolarizing mechanism for high-threshold 

oscillations reported in experiments for the LA neuron case (Pape et al., 1998), a prediction 

that could be tested in biology. The approach will facilitate discovery of similar functional 

characteristics for other cells; and (5) large variations in baseline parameters for identical 

neuron types has led researchers to advocate development of families of biophysical models 
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for neurons, rather than a nominal model (Marder and Taylor, 2011). For instance, intrinsic 

compensation mechanisms are thought to co-regulate specific sets of conductances to 

preserve output (Schulz et al., 2007, Temporal et al., 2014). Using the proposed scheme, a 

family of models with specified variations in one or more dynamic characteristics can be 

generated easily and efficiently by adjustments to parameters of currents restricted to the 

specific modules responsible for those properties.
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APPENDIX

A1. Biological data related to the four published example case models.

While details about the biological data for the four example cases (1-4) can be found in 

appropriate references, the pertinent information required to follow the development 

reported in the present paper are provided in this section. More elaboration is provided for 

two of the example cases (1 and 4) since these two are used to illustrate the development of a 

single cell model using our proposed segregation scheme.

Example case 1. Pyramidal neurons in the hippocampal area CA3b (Hemond et al., 2008)

Characteristics of hippocampal neurons have also been reported extensively in the literature 

(see (Cutsuridis V et al., 2010) for a review). The principal cells in the CA3b region exhibit 

three distinct types of firing patterns: adapting (regular firing), weakly adapting, and burst 

firing. Accordingly, Hemond et al. created single compartmental models for these three 

distinct neurons using over 20 million combinations of conductance densities ranging from 

0, 0.25, 0.5, 1, 2, to 4 times the values in a baseline model. The 135-compartment single cell 

models (soma, axon, 52 dendrites and 81 apical dendrites) had the following morphology: 

soma area of 548 μm2, total area of 30,090 μm2, and axon length of 100 μm. The following 

currents were modeled: Na, Kdr, KA, three types of Ca2+ (N, L and T), two types of Ca-

dependent K (KC and KAHP), and H in both soma and dendrites; in addition, soma had KM 

and KD. The axon had three currents: Na, Kdr, and KA (Hemond et al., 2008). The resting 

potential Vrest was − 60.5 ± 5.4 mV, and spiking threshold was 20 mV above rest. 

Membrane time constant τ and input resistance Rin were 61.4 ± 4 ms, and 126 ± 8 MΩ 
respectively. Spiking behaviors were as in Fig. 4A. Mean latency for the late firing neuron 

type was 340 ms. Passive properties used: τ =35 ms, Rm=25 kΩ.cm2, Ra=150 Ω.cm, 

Cm=1.41 μF/cm2. Maximal conductance densities are provided in table 1.

Analyzing the Hemond et al. (2008) model from ModelDB (https://senselab.med.yale.edu/ 

ModelDB/), we found that ionic currents could be segregated into two distinct modules. The 

passive properties (i.e., resting potential Vrest, input resistance Rin, and membrane time 

constant τm) module involved H, slowly-inactivating potassium KD and leak and so all the 

other currents were segregated to be above −52.5 mV (rest was −57 mV) using the 

procedure described earlier. The spiking/adaptation/bursting module involved Nat, Kdr, KA, 

L-type Ca, KCa, KAHP, and KM, which were activated only above −52.5 mV. Also, H current 
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is limited to be within −52.5 mV, i.e., set to zero above this voltage. So, this neuron had two 

zones, one below −52.5 mV for the passive module, and one above it for the spiking module. 

The maximal conductance values of the currents Kdr, KM, H, KD, and KA had to be adjusted 

in the process, with the average change being 34% from published values. The maximal 

current densities of the original and segregated models are listed in table 1. Table A1 lists the 

expressions for the gating functions.

Example case 2. Models of cortical and thalamic neurons (Pospischil et al., 2008)

Pospischil and group reported models of cortical and thalamic neurons with passive 

properties (resting potential, input resistance), bursting, spiking, as well as spike frequency 

adaptation. The four cell types were tuned differently by the authors. Regular spiking (RS) 

and fast spiking (FS) neurons models used an automated search to explore the parameter 

space that included maximum conductance densities, voltage shift of activation and 

inactivation functions, and a time constant scaling factor. Hand-tuning was used for the other 

two cells (intrinsically bursting, IB and low-threshold spiking, LTS) due to difficulties in 

evaluating the error functions needed for the automatic-fitting search. Our segregation 

analysis suggested that these neuron models exhibit only two modules: passive as well as 

spiking/adaptation/bursting. All active currents were found to minimally contribute at rest. 

The activation functions for all voltage-gated currents (Na, Kdr, KM, L-type and T-type Ca) 

were segregated to be only above −65 mV (rest at −70 mV), and below this value only leak 

was present. The five active currents listed shaped the spiking/adaptation/bursting module. 

So, this neuron also had two zones, one below −65 mV for the passive module and one 

above it for the spiking module. Interestingly, no changes had to be made to the values of the 

maximal current densities for any current for any of the four model types.

Example case 3. Rodent mitral cells of the olfactory bulb (Rubin and Cleland, 2006)

These cells exhibited endogenous subthreshold oscillations as well as intrinsic bursting 

properties. We segregated the currents in this published 4-compartmental model into two 

sets implementing two distinct modules: resting/subthreshold oscillation and spiking/

bursting. The model did not report passive properties, such as input resistance, and hence 

those were not considered. The subthreshold oscillations module included the following set 

of currents: Nap, KA, KCa, and H. All other currents were segregated by setting their 

activations to zero below −60 mV (reported rest level is −64 mV). The spiking/bursting 

module was controlled by Nat, KA, KCa, Ca, and Kdr currents as highlighted in the paper. 

The activation function for H was segregated to be below −55 mV (involved some iteration) 

making it inactive in the operation range of this spiking/bursting module, however currents 

trace (results not shown) still show that the H current is involved in the spike initiation 

process before its activation function is terminated at −55 mV. So, the two zones in this case 

were one below −60 mV and the other above it.

No changes were made to gating kinetics, such as half-activation voltage and slope factor to 

implement the segregation hypothesis on the original models cited above. Tuning only the 

maximal conductance density of H (increased by 25%), among the many, was sufficient to 

restore properties.
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Example case 4. Pyramidal neurons of the lateral amygdala (Alturki et al., 2015)

Amygdala has been the focus of intensive studies related to Pavlovian fear conditioning in 

rodents (see (Tovote et al., 2015) for a recent review). This has resulted in a rich biological 

literature characterizing neurons in the lateral amygdala, including passive properties (e.g., 

Washburn and Moises, 1992, Faber et al., 2001); voltage responses to intracellular current 

injection (e.g., Faber et al., 2001) and low- and high- threshold oscillations (Pape and 

Driesang, 1998). Utilizing these biological data, biophysical models related to LA neurons 

have also been reported for different applications including from our group (e.g., Power et 

al., 2011, Kim et al., 2013b) which we draw upon for the LA models reported below.

A diversity of spike frequency adaptation is seen in principal LA neurons (Faber and Sah, 

2003), with three types of regular spiking principal cells, with high (type-A), intermediate 

(type-B), or low (type-C) spike frequency adaptation, due to the differential expression of a 

Ca2+-dependent K+ current. Current injection responses of the types A, B, and C cells were 

as follows: 0.4 nA for 400 ms elicited 3, 11, and 14 spikes; respectively, and decreasing it to 

0.3 nA resulted in 1, 5, and 7 spikes, respectively. Biological recordings report that LA 

neurons also exhibit slow-rhytmic deflections (LTOs) at depolarized levels positive to resting 

potential (positive to −60 mV (Pape et al., 1998)) that are below and near spiking threshold 

level. These LTOs were found to play a major role in synchronization and timing of synaptic 

inputs (Pape et al., 1998), and were found to be caused by an interplay between the fast 

amplifying persistent sodium and the slow resonating M-type potassium currents (Pape and 

Driesang, 1998). The frequency of this oscillation ranged from 0.5 to 9 Hz and amplitude 

was 2-6 mV (Pape and Driesang, 1998). Blockade of sodium currents in experiments using 

TTX to abolish LTOs and spiking revealed another type of oscillation at depolarized levels 

beyond −40 mV. This high-threshold oscillation (HTO) had a frequency from 1 to 7.5 Hz 

and an amplitude from 5 to 10 mV (Pape et al., 1998).

The current channels used in the LA pyramidal cell models were adapted from a 69-

compartment model (Power et al., 2011) that used several biological sources for data 

including from hippocampal pyramidal cells (Gasparini et al., 2004, Pape and Pare, 2010). 

Based on these biological reports, we included the following current channels in our LA 

single cell models: leak (IL), voltage-gated persistent muscarinic potassium (IKM), high-

voltage activated Ca2+ (ICa), persistent sodium (INap), spike-generating sodium (INat), 

potassium delayed rectifier (IKdr), a hyperpolarization-activated nonspecific cation (IH) 

currents and a slow apamin-insensitive, voltage-independent afterhyperpolarization current 

(IsAHP) (Power et al., 2011). The ranges for the parameters are as follows: capacitance 

1.0-4.0 μF/cm2, membrane resistance 20-100 KΩ-cm2; axial resistivity Ra 150-200 Ω-cm; 

resting membrane potential, Vrest from −66 to −75 mV; input resistance (Rin) of 150±10 MΩ 
and τm of 30±1 ms; sources provided in Kim et al. (2013a)

Our LA model exhibited four distinct signatures: passive properties, low-threshold 

oscillations, spiking/adaptation properties, and high-threshold oscillations. We limited the 

currents active at rest (~ −70 mV) to just H and leak, and these were capable of matching all 

passive properties, when the activation curves of all other currents were segregated to be 

active only above −67.5 mV. Low-threshold oscillation (LTO) module (at ~ −59 mV) 

required the activation of both Nap and KM right above rest, and we did that at −67.5 mV. 
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The activation function for H is limited to be active only below −67.5 mV, so that only Nap, 

KM, and leak are active at LTO levels. The spiking/adaptation module had Nat, sAHP, Ca, 

and Kdr channels, and all of these were activated starting −57.5 mV, except for sAHP which 

was activated at −65 mV. Note that unlike the other voltage-dependent currents in the LA 

case, sAHP is both voltage- and Ca-dependent current and the segregation can still be 

implemented on such type of currents. The last module implemented the high-threshold 

oscillations (HTOs) that are revealed in biology when sodium channels (Nap and Nat) are 

blocked and the membrane is depolarized to −40 mV (Pape and Driesang, 1998). Currents 

involved in this oscillation include Ca, KM and Kdr. So, there were four zones of operation 

for neuronal currents in this case: < −67.5 mV for the passive module, −67.5 to −57.5 mV 

for the LTO module, above −57.5 mV for the spiking module, and – 40 to −30 mV for the 

HTO module. This segregation process is shown in Fig. A1. Again, only minor changes to 

the maximal conductance densities of a few currents had to be made to segregate the 

modules, with the maximum change being <25%.

A2. Procedure for segregating currents and pre-processing modules for 

tuning schemes

The procedure below is suited to hand- and, in some cases, to automated- tuning processes 

involving a search over pre-determined ranges for V1/2 and maximal conductance densities 

of the currents. We remind the reader that the pre-determined ranges for V1/2 are selected 

such that the segregation of current modules is always maintained. The sequential tuning 

process, progressing with modules from left to right on the voltage axis, was found to be 

efficient and robust.

(i) Biological ranges for neuronal parameters, and pre-processing

Collect biological data for the neuron including ranges for morphological features such as 

dimensions of soma, axon and the major proximal dendrites; ranges for membrane 

capacitance and axial resistance; and ranges for the gating function parameters (e.g. V1/2, k, 

and time constant) and maximal conductance densities of all known currents. Decide on the 

neuronal signatures to be modeled and their biological ranges.

Zones of operation—Using the activation functions of currents in the soma and axon, 

and information in biology, determine the zones of operation along the voltage axis for each 

module (e.g., Fig. 1, 2; also see methods). For instance, the zone of operation of the passive 

module on the voltage axis is thus defined as being from negative potentials to any value 

between Vrest and the boundary of the next zone to the right (3 mV above Vrest in Fig. 1B). 

This process has to be performed off-line. The reader is reminded that the process of 

segregation is implemented by ensuring that the current module on the right has activation 

functions that do not extend into the zone of the module on the left (except for some currents 

involved in multiple modules).

Reshaping the activation functions—If the standard Boltzmann curve is used for an 

activation function, it should be re-shaped to prevent the ‘tail’ from extending to infinity. 

This can be implemented by limiting the curve to stay within the zone of operation 
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(determined in the previous step) by setting the tail of the activation function abruptly to 

zero at the edge of the zone. After the design parameters are finalized by the tuning process 

(see below), the sharp drop to zero can be smoothed if needed by using a straight line from 

the edge of the zone to the function over a span of ~ 2-3 mV, or with a pre-determined slope, 

e.g., of 2. Such a procedure was used for the LA neuron example case in Fig. A1, i.e., the 

tuning was performed using sharp cut-off, and the edges were smoothened after the set of 

parameters were finalized. A similar shaping can be used for experimental curves in case 

they have extended tails. No such re-shaping is required in the direction where the activation 

function approaches 1. For convenience, although both half-activation parameter V1/2 and 

slope factor k can be adjusted within biological limits (see Fig. 2B), the development below 

mentions changes in only V1/2. The steps below assum that the activation functions have 

been re-shaped in this manner.

We investigated whether editing the activation functions, as shown in Fig. A1 (for the LA 

neuron) with discontinuity in slope (not function), would introduce instability in membrane 

potential responses. Interestingly, we found no trace of instabilities even with realistic 

Poisson inputs up to 20 Hz, including when step-function discontinuous fits were used (Fig. 

A4-A). Moreover, realistic inputs mimicking those that a neuron would receive in the 100-

cell LA network did not reveal any instabilities either (Fig. A4-B). Two reasons for this may 

be that such fits are typically made at the ‘tails’ of these activation functions where the 

magnitudes are small, and that the activation functions are integrated in the code and never 

differentiated.

(ii) Passive module

Match biological values for rest potential Vrest, input resistance Rin, and membrane time 

constant τ. Adjustable parameters: membrane capacitance Cm, membrane resistance Rm, 

leak reversal potential Eleak, and half-activation parameter V1/2 for the relevant voltage-gated 

currents in this module, in addition to maximal conductance densities of all currents active 

in this module.

Determine the currents active at Vrest, typically leak and hyperpolarization activated 

currents, e.g., H current. From a functional perspective, these currents determine the passive 

properties to be matched. All other high-threshold currents should contribute minimally to 

Vrest, and so restrict the activation functions of these currents to start on the voltage axis 

above Vrest. As cited, the zone of operation of the passive module on the voltage axis is thus 

defined as being from negative potentials to any value between Vrest and the boundary of the 

next zone to the right (3 mV above Vrest in Fig. 1B). The V1/2 values in activation functions 

of all voltage-gated currents in the passive module should be selected, consistent with 

biological ranges (Fig. 2B), to ensure segregation of the modules as described above. This 

then determines the range for the activation parameter V1/2 to be used by the hand- or 

automated- parameter search algorithm.

Observations—Selection of the reversal potential of the leak current is somewhat 

arbitrary in the literature, due possibly to the fact that currents are typically not segregated 

clearly into distinct modules. Depending on the currents active at rest, select a leak reversal 
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potential such that the desired resting potential can be achieved. Input resistance Rin and 

time constant τ are tuned by injecting a negative current (e.g., −100 pA) and measuring the 

change in membrane potential ΔV.

(iii) Low threshold oscillations module

If applicable, match biological values for frequency and amplitude of the low-threshold 

oscillations (LTOs). Adjustable parameters: activation parameters: V1/2 and maximal 

conductance densities for the voltage-gated currents active in this module. LTOs, if present, 

occur at voltage levels below spiking threshold and are typically initiated and maintained by 

an interplay between two non- or very slowly-inactivating currents: a fast depolarizing 

current and another relatively slower hyperpolarizing one. The non-inactivating 

hyperpolarizing current should dominate leak for oscillations. Not being voltage-gated, leak 

linearly follows membrane potential fluctuations, and so does not play a major role in 

oscillations. All other voltage-gated currents that were zero at rest should still be zero here.

The activation curves for all the currents not involved in the LTO module (e.g., H) are set to 

zero above the boundary for the passive module. Begin the activation curves for the two LTO 

currents at the boundary so that the currents active at LTO potentials are limited to leak and 

the two LTO currents. Limit the half-activation voltage V1/2 of the activation curves of the 

LTO currents so that their interactions occur at potential levels below spike threshold. Thus 

the zone of operation of the LTO module is the narrow voltage range for the module (e.g., 

see Fig. A1).

Observations—The depolarizing current has to be faster than the hyperpolarizing current 

within the LTO voltage range, and so the time constant of the amplifying current (Nap in the 

LA neuron case) should be smaller than that for the resonant current (KM in the LA case). 

Once the membrane potential comes down, the fast depolarizing current should activate and 

depolarize the membrane again, continuing the oscillation.

(iv) Spiking/adaptation/bursting module

Match current-evoked biological responses including frequency-current and adaptation 

characteristics. Adjustable parameters: activation parameter V1/2 and maximal conductance 

density of all voltage-gated currents in the module.

Typical currents involved in spiking are transient sodium and delayed rectifier potassium. If 

the neuron exhibits bursting or spike frequency adaptation, determine and model the 

appropriate currents involved. Thus the zone of operation of the spiking module ranges from 

a value below spike threshold (3 mV was adequate for our example cases) and extending to 

the more depolarized voltage levels. It is noted that calcium-activated currents such as sAHP 

may need to be activated earlier, and so are handled differently as cited earlier.

Observations—The strength of adaptation can be controlled by adjusting the conductance 

value of the hyperpolarizing current that is responsible for terminating the spike train, such 

as the sAHP current in the LA neuron case. Also, increasing burst activity can be 

accomplished by increasing the conductance of depolarizing currents such as the high-

Alturki et al. Page 27

Neuroscience. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



threshold calcium current as in the case of the repetitive intrinsically bursting neuron in 

Pospischil et al. (2008).

(v) High-threshold oscillations module

Match biological values for frequency and amplitude of the HTOs, at reported membrane 

potential. Adjustable parameters: activation parameter V1/2 and maximal conductance 

densities for the voltage-gated currents active in the module. High-threshold oscillations 

occur at voltages more depolarized to spike threshold. For this reason, revealing HTOs in 

experiments requires that Na be blocked to abolish both LTOs and spiking, and the 

membrane then be depolarized to HTO levels, e.g., −40 mV (Pape and Driesang, 1998, Pape 

et al., 1998). From biological reports, determine the currents implicated in HTOs. The zone 

of operation of the HTO module on the voltage axis is thus defined according to the data 

reported in biology such that it starts immediately below the voltage at which such 

oscillation is triggered and ends at the voltage level where the oscillation is diminished. It is 

found in the LA neuron case that the zone of operation for the HTO module starts at −40 V 

and ends at −30 mV.

Observations—Similar to the case in LTOs, adjust the time constant curves such that the 

depolarizing currents are faster than the hyperpolarizing ones at HTO voltage levels. Also, 

ensure that the hyperpolarizing currents in HTOs dominate leak, else it precludes 

oscillations. Additionally, the hyperpolarization current should not be so strong as to prevent 

the membrane potential from getting to the HTO voltage range with Na blocked.

Note that if some currents participate in more than one module (e.g., KM , which is involved 

in both LTOs and HTOs for the LA neuron example case), iteration will be required between 

the tuning of these modules. It is also noted that the characteristics above are not 

comprehensive, and meant to be only a representative list. For instance, another module 

could be the set of currents that control up-down states in certain cortical neurons. All such 

modules need to be considered prior to initiating the modeling process.

Table A1

Gating function parameters of ion channels in Hemond et al. (2008) model

Current
Type

Gating
Variable α β x∞ τx(ms)

INa

p=3
−0.4 V + 6

exp − V + 6 7.2 − 1
0.124 V + 6

exp V + 6 7.2 − 1
α

α + β
0.4665
α + β

q=1
−0.03 V + 21

exp − V + 21 1.5 − 1
0.01 V + 21

exp V + 21 1.5 − 1
1

exp V + 26 4 + 1
0.4662
α + β

IKdr p=1 exp[−0.113(V − 37)] exp[−0.0791(V − 37)]
1

1 + α
50 ∗ β
1 + α

IH q=1 exp[0.0833(V + 75)] exp[0.0333(V + 75)]
1

exp V + 73 8 + 1
β

0.0149 1 + α

IKM p=1
0.016

exp − V + 52.7 23
0.016

exp − V + 52.7 18.8
1

exp V − 16 10 + 1 60 + β
0.003 1 + α
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Current
Type

Gating
Variable α β x∞ τx(ms)

IKA

p=1 exp −0.0564 V − 35 − 0.0376 V − 35
exp V + 16 5 + 1 exp −0.0315 V − 35 − 0.021 V − 35

exp V + 16 5 + 1
1

1 + α
3.405 ∗ β

1 + α

q=1 exp[0.113(V + 32)] —
1

1 + α 0.26 * (V + 26)

ICaL p=2
15.69 ∗ − V + 81.5

exp − V + 81.5 10 − 1 0.29 * exp [−V/10.86]
α

α + β
2 ∗ exp 0.00756 V − 4
1 + exp 0.0756 V − 4

IKD p=1 exp[0.113(V + 33)] exp[0.0791(V + 33)]
1

1 + α
100 ∗ β
1 + α

IKC p=1
0.28 ∗ Ca i

Ca i + 0.48e − 3 ∗ exp − 63.297 ∗ V

0.48

1 +
Ca i

0.13e − 6 ∗ exp − 75.354 ∗ V
α

α + β
1

α + β

IKahp p=1 1e8 * ([Ca]i)4 —
α

α + 0.005
1

3.348 α + 0.005

Table A2

Gating function parameters of ion channels in LA neuron models of Alturki et al. (2015)

Current
Type

Gating
Variable α β x∞ τx(ms)

INa

p=3
−0.4 V + 30

exp − V + 30 7.2 − 1
0.124 V + 30

exp V + 30 7.2 − 1
α

α + β
0.6156
α + β

q=1
−0.03 V + 45

exp − V + 45 1.5 − 1
0.01 V + 45

exp V + 45 1.5 − 1
1

exp V + 50 4 + 1
0.6156
α + β

IKdr p=1 exp[−0.1144(V + 15)] exp[−0.0801(V + 15)]
1

exp − V − 15 11 + 1
50 ∗ β
1 + α

IH q=1 exp[0.0832(V + 75)] exp[0.0333(V + 75)]
1

exp V + 81 8 + 1
β

0.0081 1 + α

IKM p=2
0.016

exp − V + 52.7 23
0.016

exp V + 52.7 18.8
1

exp − V − 52.7 10.3 + 1
1

α + β

ICa

p=2 — —
1

exp − V − 30 11 + 1
2.5

exp − V + 37.1
32.3 + exp V + 37.1

32.3

q=1 — —
1

exp V + 12.6 18.9 + 1 420

INap p=1 — —
1

exp − V − 48 5 + 1 2.5 + 14 * exp[−|V + 40|/10]

IsAHP p=1
0.0048

exp − 5log10 Ca i2 + 17.5
0.012

exp 2log10 Ca i2 + 20
α

α + β 48
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HIGHLIGHTS

• Currents may be grouped into distinct modules that shape various 

membrane potential dynamics of neurons

• Such groupings may be accomplished by segregating the activation 

functions of currents to minimize overlap across modules

• The hypothesis was found to be valid for four classes of single neuron 

models in the literature

• A single compartment model was found to be sufficient to capture 

multiple neuronal properties for two classes of neurons

• Suggest a method to develop single compartment models with multiple 

signatures for classes of neurons, for use in networks
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Figure 1. 
Current segregation hypothesis. (A) cartoon layout showing current sets involved in the three 

distinct modules that implement the neuronal characteristics for an illustrative neuron with 

the following modules: passive properties, low-threshold oscillations, and spiking. (B) 

Activation curves for gating functions of the currents belonging to the various modules.
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Figure 2. 
Illustration of the segregation idea. (A) Implementing the segregation on a cartoon model 

that has two current modules: passive and spiking, and includes three ionic currents: H, Nat, 

and Kdr. The corresponding activation functions (dotted lines) are reshaped using the 

segregation approach (solid lines) to eliminate overlap between modules. (B) Ranges of half-

activation voltages for several ionic currents (adapted from Fig. 2.21 of Izhikevich, 2007).
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Figure 3. 
Comparison of neurocomputational properties between original and segregated cases for the 

four published single cell models, as applicable: #1: CA3b burst-firing neuron (Hemond et 

al., 2008), #2: Cortical/thalamic regular spiking neuron (Pospischil et al., 2008), #3: 

Olfactory bulb mitral cell (Rubin and Cleland, 2006), #4: Type-B LA pyramidal neuron 

(Alturki et al., 2015). (A) Zones of operation for each case. Comparisons of input resistance 

and time constant values (B & C), resting potential and current-evoked number of spikes (D 
& E), and low-threshold oscillations (LTOs) (F). For (B) to (F), dark gray bars - original 

models; and light gray bars - segregated models.
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Figure 4. 
Responses to 400 ms duration current injections for both original and segregated models of 

the three distinct hippocampal CA3 cell types in example case 1 (Hemond et al. 2008). 

Upper trace is for the original model and lower one for the same model after segregation and 

minor re-tuning of some ionic conductances. Left: burst-firing neuron, 1.53 nA. Middle: 

adapting neuron, 1.37 nA. Right: weakly-adapting neuron, 0.583 nA.
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Figure 5. 
Comparisons of oscillatory potentials and spiking characteristics between the original (blue) 

and segregated (red) versions of the 1-comp LA model neuron. Arrows in the figures 

indicate start of current injection. (A) Membrane potential responses to a slow depolarizing 

current. The model starts oscillating at 4Hz around −59 mV (upper trace), due to an 

interplay between Nap and KM currents (lower trace) that were found to be responsible for 

LTOs; (B) Membrane potential responses of the three pyramidal cell types (A-C) to current 

injections of 400 pA for 600 ms. To prevent overlap, the segregated model is offset by 10 

mV; (C) The sodium channels (Nap and Nat) were blocked and the membrane potential 

raised to −40 mV, as in biology, to reveal HTOs (upper trace). The primary currents involved 

in HTOs are found to be Ca, KM, and Kdr (lower trace). Despite considerable tuning, we 

could not show HTOs in the original model, explaining the lack of blue traces in panel C.
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Figure 6. 
Comparison of tone response of 1- and 3-compartment single cell models in a 100-cell LA 

network model. Average tone response of plastic cells in the two network models were 

almost identical. Excitatory and inhibitory synaptic weights in the 1-compartment model 

case were rescaled according to the procedure described in “methods”.
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Figure A1. 
Illustration of the segregation approach to model development using the LA neuron example 

case. Original activation functions of ionic currents in the published models (A), and after 

implementing the segregation idea (B). Activation functions of leak and sAHP currents are 

not purely voltage-gated, and so not shown.
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Figure A2. 
Range of half-activation voltage. A cartoon illustration of determining the range for V1/2 to 

be considered in the parameter search such that overlap between modules is minimized. The 

“dashed” curve is bounded by two “solid” curves and is free to move within these 

boundaries during the search process.
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Figure A3. 
Responses to current injection for both original and segregated models for example cases 2 

and 3. Upper trace is for the original model and lower one for the same model after 

segregation and minor re-tuning of some ionic conductances. (A) RS cell of Pospischil et al. 

2008, 750 pA for 400 ms. (B) Mitral cell of Rubin and Cleland 2006, 200 pA for 1200 ms.
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Figure A4. 
Investigating whether edits to gating functions cause any instabilities in responses. (A): 

Membrane potential responses to Poisson stimuli at 5 Hz for example case 3 (mitral cell). 

The inset to the right compares a single action potential trace from the original and 

segregated cases on an expanded time scale. (B) Responses of the original and segregated 

models to realistic stimuli for example case 4 (LA cell). A conditioning trial with tone (~ 12 

Hz; step in panel) and shock (40 Hz; in red, 500 ms at end of tone), is shown; details in Kim 

et al. (2013a).

Alturki et al. Page 44

Neuroscience. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Alturki et al. Page 45

Ta
b

le
 1

M
ax

im
al

 c
on

du
ct

an
ce

 d
en

si
tie

s 
of

 c
ur

re
nt

s 
in

 th
e 

C
A

3b
 n

eu
ro

n 
m

od
el

s 
of

 H
em

on
d 

et
 a

l. 
(2

00
8)

, w
ith

 a
dj

us
tm

en
ts

 f
or

 th
e 

se
gr

eg
at

ed
 c

as
e,

 if
 a

ny
, s

ho
w

n 

af
te

r 
“/

”

C
on

du
ct

an
ce

 (
m

S/
cm

2 )
N

a
K

dr
K

M
H

C
al

K
D

K
A

K
ah

p
K

C
L

ea
k

τ 
C

a

B
ur

st
-f

ir
in

g 
ne

ur
on

22
5/

6
17

/1
9

.0
1/

.0
2

0.
01

-
20

0.
1

0.
05

0.
03

94
10

0

A
da

pt
in

g 
ne

ur
on

22
10

17
/1

8
0.

01
0.

01
-

20
-

-
0.

03
94

10
0

W
ea

kl
y-

ad
ap

ti
ng

 n
eu

ro
n

22
10

-
0.

01
0.

01
1.

1/
0.

55
20

-
-

0.
03

94
10

0

Neuroscience. Author manuscript; available in PMC 2017 October 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Alturki et al. Page 46

Ta
b

le
 2

M
ax

im
al

 c
on

du
ct

an
ce

 d
en

si
tie

s 
us

ed
 in

 m
od

el
 L

A
 n

eu
ro

ns
 (

A
ltu

rk
i e

t a
l.,

 2
01

5)

C
on

du
ct

an
ce

(m
S/

cm
2 )

N
a

K
dr

K
M

H
C

a
N

ap
K

A
sA

H
P

L
ea

k
τ 

C
a

T
yp

e-
A

27
1.

5
0.

6
0.

01
5

0.
55

0.
14

2
2

0.
3

0.
05

5
10

00
T

yp
e-

B
0.

15

T
yp

e-
C

0.
11

5

Neuroscience. Author manuscript; available in PMC 2017 October 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Alturki et al. Page 47

Ta
b

le
 3

A
ct

iv
at

io
n 

fu
nc

tio
n 

pa
ra

m
et

er
s 

fo
r 

th
e 

co
rt

ic
al

/th
al

am
ic

 a
nd

 m
itr

al
 m

od
el

 n
eu

ro
ns

.

A
ct

iv
at

io
n

ki
ne

ti
cs

C
or

tic
al

/th
al

am
ic

 n
eu

ro
ns

(P
os

pi
sc

hi
l e

t a
l. 

20
08

)
M

itr
al

 c
el

l (
R

ub
in

 a
nd

 C
le

la
nd

, 2
00

6)

N
a

K
M

K
dr

C
aL

C
aT

H
N

ap
K

A
N

at
K

dr
*

C
a

V
1/

2 
(m

V
)

−
29

−
35

−
28

.8
−

33
−

57
−

84
.1

−
48

.7
−

42
−

29
−

12
.9

*
3.

2

Sl
op

e 
fa

ct
or

 (
k)

7.
4

10
11

4.
6

6.
2

−
10

.2
4.

4
13

7.
4

10
.1

*
7.

1

* T
he

 a
ct

iv
at

io
n 

ki
ne

tic
s 

of
 K

dr
 f

ol
lo

w
ed

 e
xp

er
im

en
ta

l d
at

a 
th

at
 s

ta
rt

ed
 a

ct
iv

at
io

n 
at

 −
40

 m
V

. P
ar

am
et

er
s 

w
er

e 
ex

tr
ac

te
d 

fr
om

 th
e 

m
od

el
 u

si
ng

 th
e 

M
A

T
L

A
B

 c
ur

ve
 f

itt
in

g 
to

ol
.

Neuroscience. Author manuscript; available in PMC 2017 October 15.


	Abstract
	INTRODUCTION
	METHODS
	Biological data for four published single cell example cases
	Validation of hypothesis using neuronal models from literature
	Incorporating single cell models into a network

	RESULTS
	Different neuronal characteristics are implemented by distinct current modules
	Validation using published example cases
	Segregation facilitates the tuning process
	CA3b models (Example case 1)
	Cortical/thalamic (Example case 2) and Mitral cell models (Example case 3)
	LA neuron models (Example case 4)

	Potential caveats of the proposed segregation hypothesis

	Application of finding - Single compartment model can capture salient neuronal dynamics
	Modeling Single Cells: Hippocampal CA3b pyramidal neurons of example case 1
	Passive properties
	Spiking properties

	Modeling Single Cells: Lateral amygdala principal cells of example case 4
	Passive properties
	Low-threshold oscillations
	Spiking/adaptation properties
	High-threshold oscillations

	Integrating segregation ideas into automated schemes

	Performance of single cell models in a neuronal network

	DISCUSSION AND CONCLUSIONS
	Neuronal signatures are controlled by distinct modules of currents
	Effective biophysical models for network simulations – the big picture

	APPENDIXA1. Biological data related to the four published example case models.While details about the biological data for the four example cases (1-4) can be found in appropriate references, the pertinent information required to follow the development reported in the present paper are provided in this section. More elaboration is provided for two of the example cases (1 and 4) since these two are used to illustrate the development of a single cell model using our proposed segregation scheme.Example case 1. Pyramidal neurons in the hippocampal area CA3b (Hemond et al., 2008)Characteristics of hippocampal neurons have also been reported extensively in the literature (see (Cutsuridis V et al., 2010) for a review). The principal cells in the CA3b region exhibit three distinct types of firing patterns: adapting (regular firing), weakly adapting, and burst firing. Accordingly, Hemond et al. created single compartmental models for these three distinct neurons using over 20 million combinations of conductance densities ranging from 0, 0.25, 0.5, 1, 2, to 4 times the values in a baseline model. The 135-compartment single cell models (soma, axon, 52 dendrites and 81 apical dendrites) had the following morphology: soma area of 548 μm2, total area of 30,090 μm2, and axon length of 100 μm. The following currents were modeled: Na, Kdr, KA, three types of Ca2+ (N, L and T), two types of Ca-dependent K (KC and KAHP), and H in both soma and dendrites; in addition, soma had KM and KD. The axon had three currents: Na, Kdr, and KA (Hemond et al., 2008). The resting potential Vrest was − 60.5 ± 5.4 mV, and spiking threshold was 20 mV above rest. Membrane time constant τ and input resistance Rin were 61.4 ± 4 ms, and 126 ± 8 MΩ respectively. Spiking behaviors were as in Fig. 4A. Mean latency for the late firing neuron type was 340 ms. Passive properties used: τ =35 ms, Rm=25 kΩ.cm2, Ra=150 Ω.cm, Cm=1.41 μF/cm2. Maximal conductance densities are provided in table 1.Analyzing the Hemond et al. (2008) model from ModelDB (https://senselab.med.yale.edu/ ModelDB/), we found that ionic currents could be segregated into two distinct modules. The passive properties (i.e., resting potential Vrest, input resistance Rin, and membrane time constant τm) module involved H, slowly-inactivating potassium KD and leak and so all the other currents were segregated to be above −52.5 mV (rest was −57 mV) using the procedure described earlier. The spiking/adaptation/bursting module involved Nat, Kdr, KA, L-type Ca, KCa, KAHP, and KM, which were activated only above −52.5 mV. Also, H current is limited to be within −52.5 mV, i.e., set to zero above this voltage. So, this neuron had two zones, one below −52.5 mV for the passive module, and one above it for the spiking module. The maximal conductance values of the currents Kdr, KM, H, KD, and KA had to be adjusted in the process, with the average change being 34% from published values. The maximal current densities of the original and segregated models are listed in table 1. Table A1 lists the expressions for the gating functions.Example case 2. Models of cortical and thalamic neurons (Pospischil et al., 2008)Pospischil and group reported models of cortical and thalamic neurons with passive properties (resting potential, input resistance), bursting, spiking, as well as spike frequency adaptation. The four cell types were tuned differently by the authors. Regular spiking (RS) and fast spiking (FS) neurons models used an automated search to explore the parameter space that included maximum conductance densities, voltage shift of activation and inactivation functions, and a time constant scaling factor. Hand-tuning was used for the other two cells (intrinsically bursting, IB and low-threshold spiking, LTS) due to difficulties in evaluating the error functions needed for the automatic-fitting search. Our segregation analysis suggested that these neuron models exhibit only two modules: passive as well as spiking/adaptation/bursting. All active currents were found to minimally contribute at rest. The activation functions for all voltage-gated currents (Na, Kdr, KM, L-type and T-type Ca) were segregated to be only above −65 mV (rest at −70 mV), and below this value only leak was present. The five active currents listed shaped the spiking/adaptation/bursting module. So, this neuron also had two zones, one below −65 mV for the passive module and one above it for the spiking module. Interestingly, no changes had to be made to the values of the maximal current densities for any current for any of the four model types.Example case 3. Rodent mitral cells of the olfactory bulb (Rubin and Cleland, 2006)These cells exhibited endogenous subthreshold oscillations as well as intrinsic bursting properties. We segregated the currents in this published 4-compartmental model into two sets implementing two distinct modules: resting/subthreshold oscillation and spiking/bursting. The model did not report passive properties, such as input resistance, and hence those were not considered. The subthreshold oscillations module included the following set of currents: Nap, KA, KCa, and H. All other currents were segregated by setting their activations to zero below −60 mV (reported rest level is −64 mV). The spiking/bursting module was controlled by Nat, KA, KCa, Ca, and Kdr currents as highlighted in the paper. The activation function for H was segregated to be below −55 mV (involved some iteration) making it inactive in the operation range of this spiking/bursting module, however currents trace (results not shown) still show that the H current is involved in the spike initiation process before its activation function is terminated at −55 mV. So, the two zones in this case were one below −60 mV and the other above it.No changes were made to gating kinetics, such as half-activation voltage and slope factor to implement the segregation hypothesis on the original models cited above. Tuning only the maximal conductance density of H (increased by 25%), among the many, was sufficient to restore properties.Example case 4. Pyramidal neurons of the lateral amygdala (Alturki et al., 2015)Amygdala has been the focus of intensive studies related to Pavlovian fear conditioning in rodents (see (Tovote et al., 2015) for a recent review). This has resulted in a rich biological literature characterizing neurons in the lateral amygdala, including passive properties (e.g., Washburn and Moises, 1992, Faber et al., 2001); voltage responses to intracellular current injection (e.g., Faber et al., 2001) and low- and high- threshold oscillations (Pape and Driesang, 1998). Utilizing these biological data, biophysical models related to LA neurons have also been reported for different applications including from our group (e.g., Power et al., 2011, Kim et al., 2013b) which we draw upon for the LA models reported below.A diversity of spike frequency adaptation is seen in principal LA neurons (Faber and Sah, 2003), with three types of regular spiking principal cells, with high (type-A), intermediate (type-B), or low (type-C) spike frequency adaptation, due to the differential expression of a Ca2+-dependent K+ current. Current injection responses of the types A, B, and C cells were as follows: 0.4 nA for 400 ms elicited 3, 11, and 14 spikes; respectively, and decreasing it to 0.3 nA resulted in 1, 5, and 7 spikes, respectively. Biological recordings report that LA neurons also exhibit slow-rhytmic deflections (LTOs) at depolarized levels positive to resting potential (positive to −60 mV (Pape et al., 1998)) that are below and near spiking threshold level. These LTOs were found to play a major role in synchronization and timing of synaptic inputs (Pape et al., 1998), and were found to be caused by an interplay between the fast amplifying persistent sodium and the slow resonating M-type potassium currents (Pape and Driesang, 1998). The frequency of this oscillation ranged from 0.5 to 9 Hz and amplitude was 2-6 mV (Pape and Driesang, 1998). Blockade of sodium currents in experiments using TTX to abolish LTOs and spiking revealed another type of oscillation at depolarized levels beyond −40 mV. This high-threshold oscillation (HTO) had a frequency from 1 to 7.5 Hz and an amplitude from 5 to 10 mV (Pape et al., 1998).The current channels used in the LA pyramidal cell models were adapted from a 69-compartment model (Power et al., 2011) that used several biological sources for data including from hippocampal pyramidal cells (Gasparini et al., 2004, Pape and Pare, 2010). Based on these biological reports, we included the following current channels in our LA single cell models: leak (IL), voltage-gated persistent muscarinic potassium (IKM), high-voltage activated Ca2+ (ICa), persistent sodium (INap), spike-generating sodium (INat), potassium delayed rectifier (IKdr), a hyperpolarization-activated nonspecific cation (IH) currents and a slow apamin-insensitive, voltage-independent afterhyperpolarization current (IsAHP) (Power et al., 2011). The ranges for the parameters are as follows: capacitance 1.0-4.0 μF/cm2, membrane resistance 20-100 KΩ-cm2; axial resistivity Ra 150-200 Ω-cm; resting membrane potential, Vrest from −66 to −75 mV; input resistance (Rin) of 150±10 MΩ and τm of 30±1 ms; sources provided in Kim et al. (2013a)Our LA model exhibited four distinct signatures: passive properties, low-threshold oscillations, spiking/adaptation properties, and high-threshold oscillations. We limited the currents active at rest (~ −70 mV) to just H and leak, and these were capable of matching all passive properties, when the activation curves of all other currents were segregated to be active only above −67.5 mV. Low-threshold oscillation (LTO) module (at ~ −59 mV) required the activation of both Nap and KM right above rest, and we did that at −67.5 mV. The activation function for H is limited to be active only below −67.5 mV, so that only Nap, KM, and leak are active at LTO levels. The spiking/adaptation module had Nat, sAHP, Ca, and Kdr channels, and all of these were activated starting −57.5 mV, except for sAHP which was activated at −65 mV. Note that unlike the other voltage-dependent currents in the LA case, sAHP is both voltage- and Ca-dependent current and the segregation can still be implemented on such type of currents. The last module implemented the high-threshold oscillations (HTOs) that are revealed in biology when sodium channels (Nap and Nat) are blocked and the membrane is depolarized to −40 mV (Pape and Driesang, 1998). Currents involved in this oscillation include Ca, KM and Kdr. So, there were four zones of operation for neuronal currents in this case: < −67.5 mV for the passive module, −67.5 to −57.5 mV for the LTO module, above −57.5 mV for the spiking module, and – 40 to −30 mV for the HTO module. This segregation process is shown in Fig. A1. Again, only minor changes to the maximal conductance densities of a few currents had to be made to segregate the modules, with the maximum change being <25%.A2. Procedure for segregating currents and pre-processing modules for tuning schemesThe procedure below is suited to hand- and, in some cases, to automated- tuning processes involving a search over pre-determined ranges for V1/2 and maximal conductance densities of the currents. We remind the reader that the pre-determined ranges for V1/2 are selected such that the segregation of current modules is always maintained. The sequential tuning process, progressing with modules from left to right on the voltage axis, was found to be efficient and robust.(i) Biological ranges for neuronal parameters, and pre-processingCollect biological data for the neuron including ranges for morphological features such as dimensions of soma, axon and the major proximal dendrites; ranges for membrane capacitance and axial resistance; and ranges for the gating function parameters (e.g. V1/2, k, and time constant) and maximal conductance densities of all known currents. Decide on the neuronal signatures to be modeled and their biological ranges.Zones of operation—Using the activation functions of currents in the soma and axon, and information in biology, determine the zones of operation along the voltage axis for each module (e.g., Fig. 1, 2; also see methods). For instance, the zone of operation of the passive module on the voltage axis is thus defined as being from negative potentials to any value between Vrest and the boundary of the next zone to the right (3 mV above Vrest in Fig. 1B). This process has to be performed off-line. The reader is reminded that the process of segregation is implemented by ensuring that the current module on the right has activation functions that do not extend into the zone of the module on the left (except for some currents involved in multiple modules).Reshaping the activation functions—If the standard Boltzmann curve is used for an activation function, it should be re-shaped to prevent the ‘tail’ from extending to infinity. This can be implemented by limiting the curve to stay within the zone of operation (determined in the previous step) by setting the tail of the activation function abruptly to zero at the edge of the zone. After the design parameters are finalized by the tuning process (see below), the sharp drop to zero can be smoothed if needed by using a straight line from the edge of the zone to the function over a span of ~ 2-3 mV, or with a pre-determined slope, e.g., of 2. Such a procedure was used for the LA neuron example case in Fig. A1, i.e., the tuning was performed using sharp cut-off, and the edges were smoothened after the set of parameters were finalized. A similar shaping can be used for experimental curves in case they have extended tails. No such re-shaping is required in the direction where the activation function approaches 1. For convenience, although both half-activation parameter V1/2 and slope factor k can be adjusted within biological limits (see Fig. 2B), the development below mentions changes in only V1/2. The steps below assum that the activation functions have been re-shaped in this manner.We investigated whether editing the activation functions, as shown in Fig. A1 (for the LA neuron) with discontinuity in slope (not function), would introduce instability in membrane potential responses. Interestingly, we found no trace of instabilities even with realistic Poisson inputs up to 20 Hz, including when step-function discontinuous fits were used (Fig. A4-A). Moreover, realistic inputs mimicking those that a neuron would receive in the 100-cell LA network did not reveal any instabilities either (Fig. A4-B). Two reasons for this may be that such fits are typically made at the ‘tails’ of these activation functions where the magnitudes are small, and that the activation functions are integrated in the code and never differentiated.(ii) Passive moduleMatch biological values for rest potential Vrest, input resistance Rin, and membrane time constant τ. Adjustable parameters: membrane capacitance Cm, membrane resistance Rm, leak reversal potential Eleak, and half-activation parameter V1/2 for the relevant voltage-gated currents in this module, in addition to maximal conductance densities of all currents active in this module.Determine the currents active at Vrest, typically leak and hyperpolarization activated currents, e.g., H current. From a functional perspective, these currents determine the passive properties to be matched. All other high-threshold currents should contribute minimally to Vrest, and so restrict the activation functions of these currents to start on the voltage axis above Vrest. As cited, the zone of operation of the passive module on the voltage axis is thus defined as being from negative potentials to any value between Vrest and the boundary of the next zone to the right (3 mV above Vrest in Fig. 1B). The V1/2 values in activation functions of all voltage-gated currents in the passive module should be selected, consistent with biological ranges (Fig. 2B), to ensure segregation of the modules as described above. This then determines the range for the activation parameter V1/2 to be used by the hand- or automated- parameter search algorithm.Observations—Selection of the reversal potential of the leak current is somewhat arbitrary in the literature, due possibly to the fact that currents are typically not segregated clearly into distinct modules. Depending on the currents active at rest, select a leak reversal potential such that the desired resting potential can be achieved. Input resistance Rin and time constant τ are tuned by injecting a negative current (e.g., −100 pA) and measuring the change in membrane potential ΔV.(iii) Low threshold oscillations moduleIf applicable, match biological values for frequency and amplitude of the low-threshold oscillations (LTOs). Adjustable parameters: activation parameters: V1/2 and maximal conductance densities for the voltage-gated currents active in this module. LTOs, if present, occur at voltage levels below spiking threshold and are typically initiated and maintained by an interplay between two non- or very slowly-inactivating currents: a fast depolarizing current and another relatively slower hyperpolarizing one. The non-inactivating hyperpolarizing current should dominate leak for oscillations. Not being voltage-gated, leak linearly follows membrane potential fluctuations, and so does not play a major role in oscillations. All other voltage-gated currents that were zero at rest should still be zero here.The activation curves for all the currents not involved in the LTO module (e.g., H) are set to zero above the boundary for the passive module. Begin the activation curves for the two LTO currents at the boundary so that the currents active at LTO potentials are limited to leak and the two LTO currents. Limit the half-activation voltage V1/2 of the activation curves of the LTO currents so that their interactions occur at potential levels below spike threshold. Thus the zone of operation of the LTO module is the narrow voltage range for the module (e.g., see Fig. A1).Observations—The depolarizing current has to be faster than the hyperpolarizing current within the LTO voltage range, and so the time constant of the amplifying current (Nap in the LA neuron case) should be smaller than that for the resonant current (KM in the LA case). Once the membrane potential comes down, the fast depolarizing current should activate and depolarize the membrane again, continuing the oscillation.(iv) Spiking/adaptation/bursting moduleMatch current-evoked biological responses including frequency-current and adaptation characteristics. Adjustable parameters: activation parameter V1/2 and maximal conductance density of all voltage-gated currents in the module.Typical currents involved in spiking are transient sodium and delayed rectifier potassium. If the neuron exhibits bursting or spike frequency adaptation, determine and model the appropriate currents involved. Thus the zone of operation of the spiking module ranges from a value below spike threshold (3 mV was adequate for our example cases) and extending to the more depolarized voltage levels. It is noted that calcium-activated currents such as sAHP may need to be activated earlier, and so are handled differently as cited earlier.Observations—The strength of adaptation can be controlled by adjusting the conductance value of the hyperpolarizing current that is responsible for terminating the spike train, such as the sAHP current in the LA neuron case. Also, increasing burst activity can be accomplished by increasing the conductance of depolarizing currents such as the high-threshold calcium current as in the case of the repetitive intrinsically bursting neuron in Pospischil et al. (2008).(v) High-threshold oscillations moduleMatch biological values for frequency and amplitude of the HTOs, at reported membrane potential. Adjustable parameters: activation parameter V1/2 and maximal conductance densities for the voltage-gated currents active in the module. High-threshold oscillations occur at voltages more depolarized to spike threshold. For this reason, revealing HTOs in experiments requires that Na be blocked to abolish both LTOs and spiking, and the membrane then be depolarized to HTO levels, e.g., −40 mV (Pape and Driesang, 1998, Pape et al., 1998). From biological reports, determine the currents implicated in HTOs. The zone of operation of the HTO module on the voltage axis is thus defined according to the data reported in biology such that it starts immediately below the voltage at which such oscillation is triggered and ends at the voltage level where the oscillation is diminished. It is found in the LA neuron case that the zone of operation for the HTO module starts at −40 V and ends at −30 mV.Observations—Similar to the case in LTOs, adjust the time constant curves such that the depolarizing currents are faster than the hyperpolarizing ones at HTO voltage levels. Also, ensure that the hyperpolarizing currents in HTOs dominate leak, else it precludes oscillations. Additionally, the hyperpolarization current should not be so strong as to prevent the membrane potential from getting to the HTO voltage range with Na blocked.Note that if some currents participate in more than one module (e.g., KM , which is involved in both LTOs and HTOs for the LA neuron example case), iteration will be required between the tuning of these modules. It is also noted that the characteristics above are not comprehensive, and meant to be only a representative list. For instance, another module could be the set of currents that control up-down states in certain cortical neurons. All such modules need to be considered prior to initiating the modeling process.Table A1Gating function parameters of ion channels in Hemond et al. (2008) modelCurrent
TypeGating
Variableαβx∞τx(ms)INap=3q=1IKdrp=1exp[−0.113(V − 37)]exp[−0.0791(V − 37)]IHq=1exp[0.0833(V + 75)]exp[0.0333(V + 75)]IKMp=1IKAp=1q=1exp[0.113(V + 32)]—0.26 * (V + 26)ICaLp=20.29 * exp [−V/10.86]IKDp=1exp[0.113(V + 33)]exp[0.0791(V + 33)]IKCp=1IKahpp=11e8 * ([Ca]i)4—Table A2Gating function parameters of ion channels in LA neuron models of Alturki et al. (2015)Current
TypeGating
Variableαβx∞τx(ms)INap=3q=1IKdrp=1exp[−0.1144(V + 15)]exp[−0.0801(V + 15)]IHq=1exp[0.0832(V + 75)]exp[0.0333(V + 75)]IKMp=2ICap=2——q=1——420INapp=1——2.5 + 14 * exp[−|V + 40|/10]IsAHPp=148
	Table A1
	Table A2
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure A1
	Figure A2
	Figure A3
	Figure A4
	Table 1
	Table 2
	Table 3

