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Abstract

Psychiatric diseases, notably major depression, are associated with imbalance of excitatory and 

inhibitory neurotransmission within the prefrontal cortex (PFC) and related limbic brain circuitry. 

In many cases these illnesses are precipitated or exacerbated by chronic stress, which also alters 

excitatory and inhibitory neurotransmitter systems. Notably, exposure to repeated uncontrollable 

stress causes persistent changes in the synaptic integrity and function of the principal 

glutamatergic excitatory neurons in the PFC, characterized by neuronal atrophy and loss of 

synaptic connections. This can lead to dysfunction of the PFC circuitry that is necessary for 

execution of adaptive behavioral responses. In addition, an emerging literature shows that chronic 

stress also causes extensive alteration of GABAergic inhibitory circuits in the PFC, leading to the 

hypothesis that inhibitory neurotransmitter deficits contribute to changes in PFC neuronal 

excitability and cognitive impairments. Here we review evidence in rodents and human, which 

point to the mechanisms underlying stress-induced alterations of GABA transmission in the PFC, 

and its relevance to circuit dysfunction in mood and stress related disorders. These findings 

suggest that alterations of GABA interneurons and inhibitory neurotransmission play a causal role 

in the development of stress-related neurobiological illness, and could identify a new line of 

GABA related therapeutic targets.

Introduction

The prefrontal cortex (PFC) plays a central role in stress adaptation (1, 2), and impaired 

circuitry and function of PFC subregions are pathological features of many psychiatric 

illnesses (3, 4). Clinical research has consistently reported that depression and other stress-

related illnesses are associated with decreased volume, neuronal atrophy, and altered 
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connectivity of PFC (5). These findings in humans are supported by rodent studies 

demonstrating that chronic stress exposure produces a number of alterations in the PFC, 

including dendritic atrophy and synapse loss (6–8), as well as loss of neurotrophic factor 

support. These core features of rodent stress studies have led to the hypothesis that 

reductions in neurotrophic factor expression result in neuronal and synaptic morphological 

deficits observed in human subjects (for review see (9)). A related hypothesis suggests that 

an imbalance in excitatory and inhibitory neurotransmission occurring directly through 

deficient GABAergic inhibitory signaling in the PFC could account for the outcomes 

observed in human subjects and rodent models.

In this paper, we review the literature and evidence demonstrating GABA dysfunction in 

human depression as well as in preclinical rodent stress studies. We then point to recent 

examples from studies in transgenic mice that shed light on how GABA interneuron 

subtypes can balance cortical transmission and ultimately shape top down control of 

depression- and anxiety-like behaviors. Finally, based on recent studies, we propose how 

intra-cortical GABA inhibition in the PFC can provide important therapeutic targets for the 

treatment of depression and other psychiatric illness.

GABAergic Neurotransmission in the PFC

The PFC is comprised of a heterogeneous population of neurons, including the 

glutamatergic principal excitatory neurons and GABAergic inhibitory interneurons. 

GABAergic interneurons comprise approximately 25% of the neurons within the neocortex 

(10), and are responsible for inhibitory control via activation of ionotropic GABAA 

receptors, which gate chloride entry into neurons (10). GABA transmission is also mediated 

through metabotropic GABAB receptors, which are generally thought to be active at higher 

GABA levels and can act as autoreceptors on presynaptic GABA terminals, as well as 

provide direct inhibition on principal neurons (11). GABAergic interneurons differ 

considerably in their morphology, electrophysiological properties, connectivity, and 

expression of neuropeptides and calcium-binding proteins (10). There are at least 20 

different subtypes of cortical GABAergic interneurons that can be differentiated by 

expression of various molecular markers, such as, parvalbumin (PV), somastostatin (SST), 

cholecystokinin (CCK), calbindin, calretinin, and vasoactive intestinal peptide (10). Recent 

advances in genetic manipulation are allowing subtype specific modification of GABAergic 

interneurons, as well as specific GABAA receptor subunits that provide insight into the 

function of GABA mediated inhibition in stress associated disease states. In the following 

sections, we will discuss how chronic stress and depression cause diverse deficits in 

GABAergic inhibitory neurotransmission within the PFC, including reduced PFC GABA 

bioavailability, reduced levels of GABA receptors, and impaired function of specific 

subtypes of GABA interneurons which potentially contribute to pathological conditions.

PFC GABA Dysfunction in Stress and Depression

Until recently, much of the work on stress, depression, and PFC function has focused on 

alteration of the principle excitatory glutamatergic neurons. However, accumulating 

evidence suggests that loss of intra-cortical GABAergic transmission and consequent 
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imbalances in excitatory and/or inhibitory neurotransmission in the PFC contribute to the 

etiology of stress-related psychiatric disorders (12). Clinical studies have reported reduced 

GABA levels in the frontal cortex of depressed individuals as compared to healthy humans. 

This includes a preliminary magnetic resonance spectroscopy study reporting that GABA 

levels are reduced in the occipital cortex of unmedicated depressed individuals (13). Further 

studies using the same approach demonstrated reduced GABA levels in PFC subregions, 

which are of greater relevance to depression and other psychiatric illnesses (14), and 

observed that remission was associated with normalization of GABA levels (15). Similarly, 

depressed patients that responded to repetitive transcranial magnetic stimulation also 

demonstrated an increase in GABA levels in the PFC that were absent in non-responders 

(16). Low plasma GABA levels were also reported to be predictive for the development of 

other psychiatric illness, such as, posttraumatic stress disorder (PTSD) (17), and 

maintenance of PTSD with comorbid depression (18).

Although, little is known about the regulation of GABA receptor subunits in psychiatric 

illness, accumulating evidence suggests that the GABA receptor expression is highly altered 

in depression. For example, reduced transcripts for GABAA subunits were observed in 

Brodmann areas 10 and 11, but not Brodmann 9 in depressed suicide victims (19). Subunit 

specific hypermethylation of GABAA promoters in suicide victims previously diagnosed 

with depression was also observed in Brodmann 10 providing support for transcriptional 

repression (20). GABAA subunit upregulation has also been observed most notably within 

the anterior cingulate region (Brodmann 24) (21, 22), which could represent a compensatory 

response to the reduced GABAergic tone. Reduced GABAA receptor binding has also been 

associated with PTSD (23). Similar studies in the frontal cortex of depressed patients are 

lacking but reduced GABAA receptor binding levels were observed in the parahippocampal 

and lateral temporal regions of depressed individuals (24).

Altered levels of other GABAergic markers have also been reported in depression and other 

psychiatric disorders. Postmortem brain samples of PFC subregions from unmedicated 

depressed individuals showed markedly decreased protein and mRNA levels of the GABA 

synthesizing enzyme glutamic acid decarboxylase (GAD) 67 that was not evident in subjects 

receiving treatment at the time of death (25). More recently, alterations in levels of specific 

GABAergic interneuron subtypes have been demonstrated. For example, reductions in the 

number and size of calbindin-positive neurons were reported in the dlPFC (26), as well as in 

occipital cortex (27) of depressed subjects. Transcript analyses of postmortem PFC from 

depressed patients also revealed a reduction in the expression of somastostatin (SST), a 

neuropeptide that is expressed in a subtype of GABA interneuron that makes up 

approximately 30% of all cortical GABA interneurons (28). Collectively, the literature 

summarized indicates that PFC GABAergic transmission is highly dysregulated in stress/

depression and related disorders; however, the link between the diminished GABAergic 

transmission and affective disorders is still unknown.

For the purpose of this focused review, we have concentrated on the PFC and related 

subregions. However, multiple labs have contributed to the understanding GABAergic 

regulation in other brain regions in depression and other related disorders (12, 29).
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GABA Deficits, PFC and Stress: Insights from Animal Models

Animal models of stress and depression are beginning to elucidate whether and how altered 

GABA transmission is causally linked to stress-related disorders. The strongest evidence 

lending support to this notion comes from studies using GABAA receptor mutant mice 

(mutant mice heterozygous for the γ2 subunit of the GABAA receptor, referred to as γ2+/−) 

(30, 31). These mice have reduced GABAA receptor binding, and the behavioral phenotype 

includes neophobia and behavioral inhibition (31), and anhedonia, which is a core symptom 

of depression (31). The γ2+/− mice also exhibit HPA axis hyperactivity (31), which is an 

endocrine hallmark of stress-related disorders. Increased anxiety- and depression-related 

behaviors have also been reported in mice lacking the α2 subunit of GABAA receptor that is 

highly expressed in the neocortex (12). Most recent evidence further indicates that γ2+/− 

mutant mice have significantly reduced cell surface expression of N-methyl-D-aspartate 

(NMDA)- and AMPA- type glutamate receptors along with deficits in density of functional 

glutamatergic markers in the PFC and hippocampus (32). Interestingly, these deficits in the 

PFC were normalized following a single dose of ketamine (a rapid-acting antidepressants) 

(32). These findings in GABAA mutant lines provide compelling evidence that loss of 

GABA function plays a casual role in the development of mood and cognitive disorders.

Experiments using chronic stress paradigms in rodents provide further evidence for GABA 

receptor dysregulation in mood disorders. For example, exposure to maternal separation 

stress during the first postnatal week decreased the expression of GABAA receptors in the 

frontal cortex and other stress-effected brain regions in adulthood (33). Other preclinical 

studies of chronic stress, such as, chronic cold (34), chronic foot shock (35), and social 

isolation (36), also report stress-induced decreases in GABAA receptor expression in cortical 

brain regions. However, it is important to note that the stress-induced changes in GABAA 

receptor expression are highly dependent on stressor modality, intensity, and brain regions 

analyzed. For example, chronic immobilization stress leads to increased GABAA receptor 

expression in the PFC (35). Collectively, the findings indicate that GABAergic system in the 

PFC is highly sensitive to stress.

Stress also reduces other markers of prefrontal GABA transmission. For instance, social 

isolation causes a 40% reduction in GABA transporter 1 immunolabeling in the PFC 

compared to socially housed littermate rats (37). A recent analysis of parvalbumin transcript 

levels and number of PV-positive cells in PFC following exposure to a chronic unpredictable 

mild stress paradigm revealed somewhat conflicting results (38). This is intriguing, and one 

possible explanation could be the sustained hypoactivity of SST interneurons. SST 

interneurons inhibit PV interneurons, and therefore, sustained SST interneuron loss of 

function could serve as a primary driver for the hyperactivity of PV interneurons. Further 

studies are required to test the link between SST and PV interneurons and output of 

excitatory neurons in the PFC. A similar phenomenon has been described in mouse motor 

cortex where it has been shown that SST interneurons provide an overall disinhibition signal 

to pyramidal neurons via inhibition of PV interneurons (39)

It has also been suggested that decreased GABA function could play a causative role in the 

reduction of excitatory synapses resulting from chronic unpredictable stress CUS (12). This 
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is supported by evidence that partial (30%) ablation of SST neurons results in compensatory, 

long-lasting reductions in cortico-cortical excitatory drive (40). Decreased GABA function 

could contribute to reduction in 5-HT stimulated cortico-cortical drive that is caused by CUS 

(41). Together, the above evidence indicates that changes in PFC GABAergic transmission 

increase the vulnerability to stress-related illness.

GABA interneuron subtypes and microcircuit characteristics

The SST and the PV are the two major subtypes of cortical GABAergic interneurons that 

differ substantially with respect to morphology, electrophysiological properties, firing rate 

and most importantly targeting of specific cellular domains of pyramidal neurons and other 

interneurons (Figure 1). Approximately 25% of cortical GABA interneurons express SST 

and 40% express PV. Subtype specific targetting using CRE recombinase under the control 

of SST or PV promoters has provided important advances in our knowledge of the functions 

of interneuron subtypes. The SST and PV subtypes have received the most attention in 

studies of stress-related disease and are therefore the focus of the current review (Figure 1). 

However, additional GABA interneuron subtypes may also play an important role in mood 

disorders.

The SST GABAergic interneurons extend projections that target the dendritic compartment 

of PFC principal excitatory neurons and are therefore positioned to regulate the effects of 

incoming signals to principal neurons. Additionally, SST neurons play a role in establishing 

a balance of excitation and inhibition by directly inhibiting other classes of interneurons, 

notably PV cells. This has important behavioral implications as putative SST interneuron 

inhibition of PV cells in the PFC has been demonstrated to govern fear expression (42). 

Interestingly, investigation of post-mortem human tissue has demonstrated a reduction in 

SST content in the PFC of individuals with MDD (43–45). The functional consequences of 

decreased SST have been examined in an elegant study of SST deletion mutant mice. These 

mice display several depression related phenotypes, including increased basal 

corticosterone, reduced BDNF transcript levels, and increased anxiety- and depression-like 

behaviors (46). These findings support the hypothesis that decreased SST expression 

contributes to the depression related endocrine, neurotrophic, and behavioral symptoms.

Other studies extend this work by testing the influence of chemogenetic inhibition of SST 

interneurons in the dorsal PFC. The results of these studies show that acute inhibition 

produces changes in behavior similar to deletion of SST knock-out, an acute increase in 

depression-like behaviors (47). However, 3 weeks of repeated SST inhibition or ablation 

SST interneurons in adult mice produced the opposite effects, producing antidepressant-

responses (47). One factor to consider, particularly with the acute studies is that analysis of 

behaviors during this period could be confounded by the acute inhibition of SST neurons 

and the resulting hyperexcitability of the principle neurons. Nevertheless, these findings 

demonstrate the complexity of modeling reduced GABAergic signaling in depression, but 

provide compelling evidence that SST interneurons may play a significant role in pathology 

of mood disorders.
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PV interneurons are a large component of the basket cell population that targets the soma of 

PFC principal neurons, and exhibit a phasic, fast spiking electrophysiological profile (10). 

Soma targeting places PV interneurons in a position to gate the output of principal neurons, 

as opposed to the SST cells that gate input to these neurons. Consistent with this, cell type 

specific manipulation of PV interneurons has demonstrated their importance in maintaining 

balance between excitation and inhibition, and relevance to numerous emotional behaviors. 

Optogenetic studies demonstrate that inhibition of PV interneurons in the dorsal PFC is 

critical for inhibition of fear expression during extinction (42). In addition, reduced 

excitatory drive onto PV neurons in the dorsal PFC was observed in mice after exposure to 

extreme footshock that produces learned helplessness behavior (48); in addition, mice that 

were identified as resilient could be rendered helpless by chemogenetic inhibition of PV 

neurons. Based on recent advances and emerging evidence, we have provided a conceptual 

framework of how SST and PV interneurons gate PFC activity to regulate behavior, and how 

they interact within the PFC microcircuit prior to, and following, stress (Figure 1), however 

a clearer and more detailed understanding of the function of these interneuron subtypes will 

help inform our knowledge of the mechanisms underlying stress associated diseases.

Role of GABA Interneurons in the Actions of Antidepressants

Further support for aberrant regulation of GABAergic tone comes from studies 

demonstrating normalization of GABA transmission after antidepressant treatment (12). 

Patients exposed to treatment with SSRIs (49), electroconvulsant therapy (50), and 

transcranial magnetic stimulation (16) showed normalization of GABA levels. Consistent 

with human studies, preclinical data obtained from GABA receptor mutant mice (γ2+/−) that 

exhibit anxiety and depressive behaviors show partial normalization following fluoxetine 

treatment (31). Chronic fluoxetine treatment also increases extracellular GABA levels in 

brain (51), suggesting that increased GABA contributes to antidepressant behavioral 

responses. GABA neurotransmission, including synapse formation is controlled by BDNF-

TrkB signaling (52) and it is possible that BDNF deficits caused by stress could contribute to 

deficits in GABA signaling. Conversely, up regulation of BDNF-TrkB signaling in response 

to antidepressant treatment could promote GABA synaptic activity (53).

Further evidence for GABA interneurons in the treatment of depression come from recent 

studies of rapid acting antidepressants, particularly ketamine. Clinical studies demonstrate 

that ketamine (NMDA receptor antagonist), produce rapid (within hours) antidepressant 

effects in treatment resistant patients (54, 55). This is particularly notable when compared 

with typical antidepressants that have a significant time lag (weeks to months) and modest 

efficacy. Interestingly, there is evidence that actions of ketamine include regulation of 

GABAergic signaling (29). Our previous studies reveal that ketamine rapidly increases 

synaptic connectivity, and reverses the neuronal atrophy and behavioral deficits caused by 

chronic stress (56, 57). These effects are activity dependent and are associated with a burst 

of glutamate in the PFC (58). NMDARs are expressed on interneurons as well as excitatory 

neurons and because interneurons are more active at resting state are more sensitive to the 

open channel blocker actions of ketamine. This is supported by evidence that ketamine 

administration leads to decreased spontaneous firing of GABA interneurons in the PFC and 

a delayed increase in the firing rate of pyramidal cells (29). Importantly, ketamine-induced 
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disinhibition would be dependent on the presence of ongoing GABAergic suppression of 

neocortical activity. The GABA interneurons are divided into different classes with different 

firing responses (the low threshold spiking SST neurons, fast spiking PV cells, and delayed 

spiking non PV and non SST interneurons). Out if these, the SST interneurons exhibit high 

basal firing rates and a > 10 fold higher firing frequency (59), indicating that the 

spontaneous activity of these GABAergic interneurons mediates the maintenance of a highly 

suppressed state of cortical synaptic transmission. Together, These findings support a 

disinhibition hypothesis for the activity dependent actions of ketamine.

Similar effects have been observed for another rapid acting agent, scopolamine, an 

acetylcholine muscarinic receptor antagonist. Consistent with this hypothesis, our recent 

study demonstrated that M1-acetylcholine receptor (M1-AchR) expression in the SST 

interneurons is required for the rapid antidepressant-like effects of scopolamine (60). We 

found that M1-AChR activation on SST interneurons stimulates the firing of these inhibitory 

neurons, and that knockdown of M1-AChR on SST neurons blocks the antidepressant 

behavioral actions of scopolamine. This finding indicates that reduced SST activity within 

the dendritic field of PFC principal neurons is a necessary component of the rapid 

antidepressant response.

GABA hypofunction in response to stress and in MDD appears to contradict the ketamine 

disinhibition mechanism, but there are several key issues to consider. Importantly, the 

disinhibition hypothesis describes the initial actions (~1 hr) of ketamine, blockade of NMDA 

receptors on GABA interneurons that triggers a glutamate burst; this initiates, but is distinct 

from the long-lasting (1–7 d) synaptic (57) and therapeutic actions of ketamine (54, 61). 

Thus, we propose that ketamine-induced disinhibition causes an adaptive response that 

restores the excitatory/inhibitory balances (Figure 2). According to this hypothesis, acute, 

transient suppression of PFC GABAergic interneurons would produce antidepressant 

behavioral effects. Experiments to test this hypothesis require selective activation and/or 

inihibition of specific interneuron populations (SST or PV) using a combination of GABA 

interneuron specific Cre recombinase mice and light or chemically driven manipulation of 

cell activity.

Conclusion

From early development to adulthood GABA interneurons play crucial role in assembling 

the microcircuitry and orchestrating the activity of the cerebral cortex. Impairments in the 

function of the cortical GABAergic transmission exert a strong influence on brain function, 

including cognitive, mood, learning and behavior. Here, we highlight recent findings that are 

beginning to delineate how changes in various components of the PFC GABAergic 

microcircuit are casually linked to stress and depression. Indeed, the studies of ketamine and 

scopolamine have generated considerable excitement, pointing to a key role of GABAergic 

transmission in the effects of rapid acting antidepressants, and in the development of next-

generation therapeutics (Figure 2).

Despite intensive research, we are left with a number of significant gaps in our 

understanding of GABA/glutamate balance in the pathophysiology of depression and other 
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stress related illnesses. One problem that has hindered the complete understanding of the 

underlying cause of depression is the lack of techniques to selectively manipulate each 

interneuron subtype. This is now being addressed with advances in optogenetics, 

chemogenetics, microendoscopy, and imaging technology; these approaches will allow 

studies to determine the influence of stress on the activity of GABA interneuron subtypes 

and the effects of activation or inhibition of specific GABA cell populations on neighboring 

GABA and principle neurons, as well as behavior. Moreover, analysis of sex specific 

differences in stress-induced effects on GABA interneuron populations are surprisingly 

incomplete, and could lead to improved treatments for women who experience higher rates 

of depression compared to men. Progress and new insights in these areas will help us to 

generate alternative and more efficacious therapeutic strategies and eventually prevention of 

stress related illnesses such as depression.
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Highlights

Chronic stress causes atrophy and decreased connectivity of excitatory 

neurons in PFC.

Stress causes disruption of GABAergic inhibitory neurons in the PFC.

GABA subtypes, somatostatin and parvalbumin, are dysregulated by stress.

Rapid acting antidepressants inhibit GABAergic interneurons.
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Figure 1. Impact of stress on local GABA interneuron activity and regulation of PFC 
microcircuitry
The PFC glutamatergic output neuron is under regulatory control of local GABA 

interneurons, predominantly somatostatin (SST) and parvalbumin (PV). SST provides 

inhibition of the dendritic compartment of excitatory pyramidal cells as well as to PV 

subtype GABA interneurons. PV interneurons provide peri-somatic inhibition to the 

pyramidal cells. The PFC projects to numerous subcortical and brainstem targets, such as the 

bed nucleus of the stria terminalis (BST), central nucleus of the amygdala (CeA), and dorsal 

raphe nucleus (DRn) that contribute to regulation of mood and emotion. Studies of MDD 

subjects and rodent stress models demonstrate reductions in levels of SST, GAD67/65, and 

calbindin, another marker of SST interneurons.
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Figure 2. Schematic representation of ketamine- and scopolamine- mediated disinhibition of 
mPFC pyramidal neurons via inhibition of local GABA interneurons
Ketamine triggers a burst of glutamate that is thought to occur via inhibition of GABA 

interneurons; the tonic firing of these GABA interneurons is driven by NMDA receptors, and 

the active, open-channel state allows ketamine to enter and block channel activity. The 

resulting glutamate burst stimulates AMPA receptors, which causes depolarization and 

activation of voltage-dependent Ca2+ channels (VDCC), leading to release of BDNF and 

stimulation of TrkB and Akt, which then activates mTORC1 signaling, leading to the 

increased synthesis of proteins that are required for synapse maturation and formation (i.e., 

GluA1 and PSD95). Scopolamine also causes a glutamate burst via blockade of 

acetylcholine muscarinic M1 (ACh-M1) receptors on GABA interneurons.
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