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Here, using ultrafast electron crystallography (UEC), we report the
observation of rippling dynamics in suspended monolayer gra-
phene, the prototypical and most-studied 2D material. The high
scattering cross-section for electron/matter interaction, the atomic-
scale spatial resolution, and the ultrafast temporal resolution of UEC
represent the key elements that make this technique a unique tool
for the dynamic investigation of 2D materials, and nanostructures
in general. We find that, at early time after the ultrafast optical
excitation, graphene undergoes a lattice expansion on a time scale
of 5 ps, which is due to the excitation of short-wavelength in-plane
acoustic phononmodes that stretch the graphene plane. On a longer
time scale, a slower thermal contraction with a time constant of
50 ps is observed and associated with the excitation of out-of-plane
phonon modes, which drive the lattice toward thermal equilibrium
with the well-known negative thermal expansion coefficient of
graphene. From our results and first-principles lattice dynamics and
out-of-equilibrium relaxation calculations, we quantitatively eluci-
date the deformation dynamics of the graphene unit cell.
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For a long time it was believed that 2D materials could not exist
in nature due to a crumpling effect induced by long-wavelength

thermal fluctuations (1–3). Recently, however, graphene was iso-
lated from graphite by Novoselov et al. using the simple Scotch
tape idea (4), and since then more and more 2D materials have
been produced from bulk layered crystals (5, 6). In a strict defi-
nition, so far no isolated 2D layers have been found to be perfectly
flat due to the presence of ripples, a microscopic roughening of the
2D plane, as observed in almost all cases (7, 8), apart from those in
perfect contact with a substrate (9). Accordingly, rippling can be
considered as an intrinsic feature of 2D materials, and is widely
accepted to be at the origin of their structural stability (7, 10, 11).
Graphene, as the first 2D material, has attracted enormous

interest due to extraordinary properties originating from the
quasi-relativistic character of its electronic band dispersion (12).
Most impressively, graphene’s excellent transport properties, such
as ultrahigh carrier mobility and electrical conductivity, have
found a wide range of applications in new generations of nano-
electronic devices (13, 14). Considering that ripples can strongly
affect the transport properties of graphene by inducing effective
magnetic fields (15–17) and changing local potentials (18, 19),
one of the remaining open questions is whether it is possible to
modulate the rippling such that active control of the transport
properties can be achieved. To address this issue, the main chal-
lenge lies in the ability to modulate ripples in a controlled manner
at the mesoscopic and microscopic length scales. Bao et al. (20)
have introduced a strain-engineering method to create periodic
ripples on suspended graphene. Their work undoubtedly provides
an improved understanding of suspended 2D layers and graphene
devices. However, the lateral size of the generated ripples is one
order of magnitude larger than the value generally reported for
intrinsic rippling (∼10 nm), which may have a different impact on
the transport. Theoretically, Smolyanitsky and Tewary (21) have

proposed a dynamic way to tune the ripples by using the excitation
of terahertz waves. They predicted that it is possible to signifi-
cantly flatten graphene exploiting the interplay between intrinsic
thermally induced and externally excited ripples.
In this work, we use femtosecond laser pulses to excite the

electronic states of a suspended graphene layer and modulate
the rippling structure via the excitations and the anharmonic
interactions of different phonon modes. To investigate the real-
time response of the atomic structure of the suspended graphene
to the ultrafast optical excitation, we used ultrafast electron crys-
tallography (UEC), which represents a unique tool for investigating
energy transport processes and structural dynamics of nano-
materials (22–24). Compared with other ultrafast optical and X-ray
time-resolved techniques, UEC offers not only a higher spatial
resolution, down to the atomic scale, but also a high sensitivity to
small material volumes, such as monoatomic layers, due to a higher
electron/matter scattering cross-section.
Following a femtosecond optical excitation, the temporal behavior

of graphene’s diffraction pattern is monitored as a function of the
delay time between laser pump and electron probe. An energy
evolution process from photocarrier excitation to thermal lattice
equilibration is well resolved and understood in the framework of
electron–phonon and phonon–phonon couplings. Here we support
the experimental observation with first-principles simulations of the
phonon dynamics via Boltzmann-transport equations. The excitation
of in-plane and out-of-plane phonon modes via anharmonic inter-
actions generates very specific structural dynamics. In particular, a
transient nonthermal expansion mediated by in-plane phonons takes
place on the 5-ps time scale, inducing an ultrafast attenuation of the
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ripples present in the graphene layer through the layer’s expansion.
This attenuation is followed by a slower thermal equilibrium con-
traction, caused by out-of-plane phonons with a time constant of 50
ps, which induces a long-term recovery or even enhancement of the
rippling structure. Because ripples are ubiquitous in 2Dmaterials, we
expect these results to be of general validity and of potential appli-
cations in ultrafast photoelectronics.

Intrinsic Rippling at Steady State
From a theoretical point of view, Landau and Lifshitz (1), Peierls
(2), and Mermin (3) showed that in the harmonic approximation,
long-wavelength thermal fluctuations are able to destroy the
long-range order of a perfect 2D lattice, resulting in melting at
finite temperature. Beyond the harmonic approximation, how-
ever, the interaction between bending and stretching phonon
modes could in principle suppress long-wavelength fluctuations
and thus stabilize the 2D lattice through an out-of-plane de-
formation with strong height modulations (11). In an elegant
transmission electron microscopy (TEM) experiment, Meyer
et al. (7) revealed that a suspended graphene sheet is not per-
fectly flat but exhibits pronounced out-of-plane corrugations
(ripples) with a lateral size of ∼10 nm and height up to 1 nm. The
ripples, whose formation results from the freezing of thermal out-
of-plane phonon modes (generally referred to as ZA modes),
would lead to a gain in elastic energy and thus a minimization
of the total free energy (10).
This 3D warping is able not only to stabilize the 2D lattice, but

also to influence the electronic structure and transport properties
of graphene. In particular, the bending of the graphene sheet will
induce two main effects (19): (i) a π–σ rehybridization between
nearest neighbors, which shifts the π-orbital energy, resulting in a
local potential variation; and (ii) a change in the nearest-neighbor

hopping integral, which introduces an effective vector potential.
As a result, due to the bending, the electrons are subject to a
potential depending on the local curvature of the graphene lattice
(12) and, therefore, Dirac fermions will be effectively scattered by
the ripples, providing an additional contribution to the electrical
resistivity. In fact, carrier mobilities higher than 200,000 cm2/Vs
have been calculated in the case of a perfect 2D lattice, whereas
one order of magnitude smaller values are experimentally reported
for monolayer graphene at low temperatures (25). Moreover, a
recent work has shown that periodic nanoscale ripples in graphene
can induce a significant bond stretching able to open up the band
gap by values as large as 0.13 eV (26). Therefore, the ability to
control in space and time the lattice distortion in graphene, which
allows modulation of the ripples, represents a powerful method-
ology for tuning graphene’s electronic and transport properties.

Rippling Dynamics Under Optical Excitation
Femtosecond laser pulses are able to perturb the anharmonic
coupling between bending and stretching modes, thus modulation
of the rippling structure might be expected. To monitor such
changes at the atomic scale, we adopt UEC. The UEC experiments
are schematically shown in Fig. 1A and detailed in Materials and
Methods. Briefly, a monolayer graphene, grown by chemical vapor
deposition (CVD) and characterized by Raman spectros-
copy, electron microscopy, and diffraction, is transferred via a
poly(methyl methacrylate) (PMMA) layer onto a TEM copper
grid. The diffraction pattern in Fig. 1 C and E and the Raman
spectrum in Fig. 1D exhibit the typical fingerprint of a single layer
of sp2 carbon atoms (27). Here, particular care has been taken to
remove the PMMA layer, and a very low amount of residue is
present on the graphene, as shown by the TEM image in Fig. 1B.
For comparison, a commercially available monolayer graphene

Fig. 1. Concepts of UEC probing of dynamics and sample characterization. (A) UEC experimental arrangement for the photon-pump/electron-probe mea-
surements of suspended monolayer graphene. (B) TEM image of monolayer graphene suspended on a 2000 mesh circular aperture TEM grid. (C) Static
electron diffraction pattern acquired within the UEC setup using an electron energy of 20 keV. (D) Background-free Raman spectrum at 514 nm for a
monolayer of graphene. (E) Plot of the diffraction intensity profile extracted along the line indicated by the arrows in the diffraction pattern shown in C.
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TEM grid (from Ted Pella, Inc.), which shows an increased amount
of PMMA residue, has also been investigated. The dynamics are
initiated by a 120-fs laser pulse (800 nm, 2 kHz) and probed by a
20-keV electron pulse as a function of the delay time between optical
pump and electron probe pulses. The evolution of the diffraction
pattern is quantitatively evaluated by measuring the temporal change
of the diffraction intensity and peak position of Bragg reflections.
Shown in Fig. 2A are the observed transients of the diffraction

intensity of the second-order Bragg reflections at two different
excitation fluences. Similar results are obtained for the first-order
spots, although with a smaller intensity change. Because the six
Bragg reflections associated with the same diffraction order show
the same behavior, the transients displayed in Fig. 2A have been
obtained by averaging over these six spots to improve the signal-
to-noise ratio. Within the time window of interest, the transients
can be well described by a single-exponential decay.
As shown in Fig. 2B, the magnitude of the intensity change as a

function of excitation fluence (i.e., the laser-induced temperature
rise) is quantitatively described by the in-plane Debye–Waller (DW)
factor [with in-plane Debye temperature θin = 2,100 K (28) or 2,300
K (29)], indicating that most of the absorbed energy has eventually
been converted into the thermal heating of the lattice. Here, the
temperature rise is estimated based on the absorbed laser energy with
the absorption of 2.3% per layer (30) and the heat capacity given in
ref. 31. Note that in the case of an electron beam at normal incidence,
as adopted here, the scattering vector lies in the graphene plane and
thus only in-plane atomic displacements contribute to the DW factor.
The decay of the diffraction intensity is, therefore, mainly associated
with the excitation of in-plane phonon modes, which would induce a
stretching of the graphene plane (32). The characteristic time con-
stant, obtained from a single-exponential fit of the experimental data,
varies from 7 to 18 ps with decreasing fluence (Fig. 2C). These values
are similar to the decay time of optical phonons (OPs) into thermal
acoustic phonons (via nonthermal acoustic phonons), reported for
graphite (33–35). The fluence dependence of the time constant is
mainly due to an increased phonon–phonon scattering under higher
excitation condition. To achieve a simple description of the decay
process, we adopt the single relaxation time approximation (36, 37)
and define an average relaxation time of the phonon modes τ as

τ∝ 1=ð1+ α ·TÞ, [1]

where T is the lattice temperature at equilibrium, α≈ ð2kB=ZωÞ,
kB is the Boltzmann constant, and Zω is the phonon energy. This

equation has been derived from the expression for the phonon
relaxation due to the anharmonic scattering processes (see
equation B2 of ref. 37 for more details), when the following sim-
plifications apply: (i) only decays from one high-energy phonon to
two low-energy ones are considered, whereas phonon reabsorp-
tion is neglected because of the lower occurrence probability; and
(ii) the Bose–Einstein distribution for the phonon density has
been expanded to a first order considering that Zω � kBT for
the acoustic phonons. As shown in Fig. 2C, Eq. 1 provides a
satisfactory fitting of the time constant as a function of the effec-
tive lattice temperature, from which a phonon energy Zω =
100 meV is obtained. This value is of the same order of magnitude
as the typical energies associated with in-plane acoustic phonons
and the in-plane Debye temperature in graphene.
It is worth mentioning that further increase of the excitation

fluence will damage the graphene sample. The highest equilib-
rium temperature reached is 2,400 K, which is close to the sta-
bility limit of suspended CVD graphene (38), thus further verifying
the validity of the estimated temperature.
As mentioned above, the intensity change in the transmission

geometry adopted can mainly probe in-plane atomic vibrations.
Nevertheless, out-of-plane deformation effectively modifies the
projected atomic position (or unit cell) in the basal plane. It is thus
possible to study out-of-plane fluctuations by monitoring the po-
sition change of Bragg reflections. To eliminate the effect of the
transient electric field (TEF) (39) on the peak position, we extract
the Brillouin zone area A, as schematically shown in Fig. 3A (Inset)
instead of the absolute peak position. This method is indeed
effective because the TEF shifts each Bragg reflection of the same
amount along the same direction in the detector plane. The
transient behavior of A can then be converted into the strain dy-
namics of the unit cell via «ðtÞ ’ −0.5 · ðAðtÞ=A0 − 1Þ, as shown in
Fig. 3A, where A0 is the zone area before optical excitation and «
is the in-plane strain. Differently from the case of the diffraction
intensity, the strain dynamics show a more unique behavior,
composed of an initial ultrafast expansion and a following slower
contraction.
The thermal contraction of graphene has been widely studied at

equilibrium and is attributed to the large negative thermal ex-
pansion coefficient due to thermal fluctuation of out-of-plane
(ZA) modes (20, 40). The relatively long-time contraction (time
constant of 50 ± 10 ps) observed here can thus be associated with
the gradual population of ZA modes. Because the out-of-plane
thermal fluctuations are believed to be at the origin of the intrinsic

Fig. 2. Temporal behavior of the diffraction intensity and fluence dependence. (A) Measured transient behavior of the second-order Bragg reflections for
two different excitation fluences. The solid lines are single-exponential fit of the experimental data. (B) Experimental (circles) and calculated (solid lines)
intensity change as a function of the excitation fluence (bottom axis), or equivalently, as a function the laser-induced temperature rise in graphene (top axis).
(C) Temperature dependence (bottom axis) and fluence dependence (top axis) of the decay time of the diffraction intensity. The solid line is a fitting curve
using Eq. 1. The blue and red circles indicate the homemade and commercial graphene TEM grids, respectively. Very similar dynamics for the intensity change
are observed in both cases (see text for details).
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rippling observed in graphene (11), the increased population of
ZA modes is responsible for an enhanced corrugation of the
graphene plane, as also attested by an increased contraction ob-
served under higher excitation fluence. Here, the temperature
range in which the thermal contraction persists is consistent with
the theoretical prediction of ref. 41.
Besides the slow contraction, we also observed an ultrafast

(5 ps) lattice expansion. This observation demonstrates the
transient atomic sensitivity of UEC, in contrast to previous in-
vestigations of the lattice deformation of suspended graphene,
which have been performed only under static or quasi-static con-
ditions (20, 40). Because the time scale of the lattice expansion is
similar to the value observed for the intensity change, which in-
volves in-plane phonon modes, and consistent with the lifetimes of
OPs (∼4–5 ps) as calculated by first-principles simulations (42, 43),
we attribute the expansion to the excitation of in-plane non-
thermal longitudinal and transverse acoustic phonons (LA and
TA) anharmonically decayed from OPs. In fact, the nonthermal
excitation of LA and TA modes would be able to induce a
stretching of the lattice plane, thus reducing the height of the
ripples intrinsically present in graphene.
We can thus describe the observed dynamics as a fast decay from

OPs to in-plane acoustic phonons, followed by a slower excitation
of ZA modes. The origin of these two characteristic relaxation
times can be traced back to: (i) the scattering selection rule (44),
and (ii) the conservation laws of energy and momentum. The re-
flection symmetry z→−z of graphene limits the possible scattering
processes such that only events containing an even number of out-
of-plane phonons are allowed, excluding several possible channels.
In addition, considering that the energy of ZA phonons is much
smaller than the energy of in-plane OPs, the constraint on energy
and crystal momentum conservation further suppresses the decay
from OPs to ZA phonons. These intuitive arguments are corrob-
orated by a detailed theoretical analysis of scattering rates by Singh
et al. (45).
It is worth noting that Gao and Huang (32) have theoretically

predicted that anharmonic interactions among in-plane phonon
modes could cause a linear and positive thermal expansion, as we
have observed here (Fig. 3B). Nevertheless, a conceptual differ-
ence still exists between the present data and their theoretical
results. In fact, in the present case the attenuation of the ripples at
the early time after the ultrafast excitation is due to the excitation
of only in-plane LA and TA modes, which cause the stretching of
graphene, while the lattice is still far from equilibrium. Out-of-
plane ZA modes take a much longer time to be populated, finally
leading the system to the thermal equilibrium. The cross-over

from positive to negative expansion is thus mainly due to a con-
sequential excitation of first in-plane and then out-of-plane
modes. In contrast, the theoretical simulations from Gao and
Huang (32) are performed at thermal equilibrium and would
predict a transition from negative to positive expansion with an
increased lattice temperature as caused by the competing effects
induced by in-plane and out-of-plane modes.

Graphene Dynamics Simulations
In this section we model from first-principles the lattice dynamics
of monolayer graphene following the optical excitation. An ideal,
yet computationally unfeasible, approach involves the descrip-
tion of the full excitation chain: photons exciting electrons, which
decay into phonons that eventually thermalize. Because the
electron relaxation occurs on a time scale much shorter than
that of the lattice dynamics (46), we simplify the problem by
neglecting this electron dynamical effect, and begin directly
exciting a nonequilibrium phonon population and study its re-
laxation to equilibrium. We thus suppose that the laser instan-
taneously introduces additional internal energy in the layer with
respect to the initial conditions, which means that the tempera-
ture of graphene is instantaneously brought from 300 K to a
higher value T.
The initial condition in the simulations of nonthermal phonon

populations is imposed by first considering that electron–phonon
couplings are much stronger for in-plane OPs. Therefore, we
suppose that the electronic relaxations have excited only these
phonons, while in-plane and out-of-plane (both acoustic and
optical) modes, which interact weakly with electrons, are left
populated according to the Bose–Einstein distribution at room
temperature. To excite the in-plane OPs, we assume that they
follow a Bose–Einstein distribution at an excited temperature Tp,
chosen such that the total energy of the initial configuration
matches the internal energy E of the system after the excitation:
E=

P
μZωμð�nμ + 1=2Þ, where �nμ is the Bose–Einstein distribution

function at temperature T.
We let the nonthermal phonon populations evolve in time

according to the linear Boltzmann transport equation (BTE):

∂
�
nμðtÞ− �nμ

�
∂t

=
1
V

X
μ′

Ωμμ′
�
nμ′ðtÞ− �nμ′

�
, [2]

where nμðtÞ is the phonon population at time t of the phonon
mode μ [a shorthand notation for μ= ðq, sÞ, to label both phonon
wavevectors q and phonon branches s], V is a normalization

Fig. 3. Deformation dynamics of the graphene unit cell. (A) Measured temporal evolution of the in-plane strain as derived by monitoring the change of the
Brillouin zone area (first three Brillouin zones as shown in the inset). The solid line is a multiexponential fit of the experimental data. Note the positive change
of the strain before its negative value behavior. (B) The magnitude of the transient lattice expansion (as indicated in A) is shown as a function of the ex-
citation fluence. The blue and red circles indicate the homemade and commercial graphene TEM grids, respectively. Very similar dynamics for the lattice
expansion are observed in both cases.
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volume, and Ωμμ′ is the scattering matrix derived from first-prin-
ciples. The term Ωμμ′ contains the rates for all possible transitions
μ→ μ′ and is built with three-phonon scattering rates and isotopic
scattering (to lowest order in perturbation theory) at natural
abundances. Harmonic phonon properties and phonon–phonon
scattering rates are computed from density-functional perturba-
tion theory (47) as implemented in Quantum ESPRESSO (48)
(see Materials and Methods for further details). We stress that
the solution to the BTE is found by diagonalizing the complete
scattering matrix, i.e., beyond the single-mode relaxation time ap-
proximation. Therefore, we obtain the time evolution of the pho-
non population nμðtÞ for each phonon mode, from which we can
compute the transient change of lattice properties (see Materials
and Methods for details).
The time evolution of the DW factor is reported in Fig. 4A for

various temperatures, showing a good agreement with the exper-
imental data of Fig. 2A, and thus confirming that the modulation
of the laser fluence is directly tuning the thermal energy of the
layer. Despite the complexity of the microscopic time evolution of
phonons, the DW factor relaxes to the equilibrium value ap-
proximately as a single exponential with an effective relaxation
time τsim. The temperature dependence of τsim shown in Fig. 4B
agrees well with the experimental trend in Fig. 2C, and qualita-
tively captures the values within a factor of ∼1.5. Therefore,
notwithstanding the approximations adopted in the present mod-
eling, we retain the main features of the experimental lattice dy-
namics and provide an adequate description of the system in the
out-of-equilibrium conditions. We attribute the remaining dis-
crepancy mainly to the choice of initial conditions of the phonon
populations, which is the only free parameter of the simulation.
The inclusion of the electron dynamics and their decay, which
nevertheless formidably increases the modeling complexity and
goes out of the scope of this article, could provide a parameter-
free description of the very first femtoseconds after the laser pulse
and eliminate the arbitrariness in the initial phonon populations.
The lattice dynamics simulations also provide an insight into

the ultrafast evolution of strain. In particular, the excitation of
the phonon gas is able to induce a change of the lattice pressure,
causing the crystal to expand or contract. Within the quasi-har-
monic approximation (49) (which we extend here to the time-
dependent case) the lattice pressure can be obtained as

PðtÞ= 1
V

X
μ

Zωμγμ

�
nμðtÞ+ 1

2

�
, [3]

where γμ =−ð1=2ωμÞð∂ωμ=∂«Þ is the Grüneisen parameter.
Therefore, the time-dependent phonon population allows imme-

diate access to the lattice pressure, which we plot in Fig. 4C as a
function of time for various temperatures. At short times, pres-
sure has larger positive values, indicating the expansion of the
graphene crystal. The pressure then decreases, well below the
room temperature value, leading to the layer contraction. Al-
though we are neglecting the electron dynamics, the model is able
to capture the qualitative features of the ultrafast expansion/con-
traction as experimentally observed by the strain dynamics in
Fig. 3A. This behavior can easily be interpreted in terms of
Eq. 3 and of γμ. In fact, in-plane phonons, populated at the short-
est times, are characterized by positive γμ (41) and thus drive the
fast expansion of the graphene unit cell. Out-of-plane ZA modes
have negative values of γμ, much larger in absolute value than γμ
associated with in-plane modes, and determine the contraction of
the layer once they are excited at longer times. To see why the
contraction dominates at equilibrium (>20 ps), notice that pho-
nons are occupied according to the Bose–Einstein occupation,
which at high temperatures reduces to nμ ≈ kT=Zωμ. Hence, by
referring to Eq. 3, the equilibrium pressure is essentially a sum
over Grüneisen parameters, which is dominated by the large con-
tribution to contraction of the ZA mode.

Summary and Conclusions
The dynamic response of suspended graphene to ultrafast laser
pulses, as experimentally observed and theoretically simulated
here, is schematically pictured in Fig. 5A. At early times (∼5 ps)
after the ultrafast excitation, the ripples are stretched out by
anharmonic excitation of in-plane phonons, which should reduce
their height. On a longer time scale (50 ps), the excitation of ZA
phonon modes increases the out-of-plane thermal fluctuation,
resulting in an increase of the ripple height. The modulation of
the rippling by ultrashort laser pulses not only improves our un-
derstanding of structural stability of graphene, but also provides
possibilities for new generations of ultrafast photoelectronics. As
described before, because ripples are “imperfections” on an oth-
erwise perfect 2D lattice, they have a significant impact on the
properties of graphene, including electronic transport, magneto-
resistance, and chemical activity. By controlling the rippling
structure on an ultrafast time scale, it would thus be possible to
significantly modify the physical properties within a very short time
window. As an example, we estimated the modulation of the
electric resistivity of graphene resulting from the nonthermal in-
plane stretch at different initial temperatures based on the theory
given in ref. 50, as shown in Fig. 5B. At the maximum expansion
experimentally reached, the resistivity due to thermal out-of-plane
phonons is reduced more than one order of magnitude compared
with the value without tension. This reduction is obtained in only

Fig. 4. Theoretical simulations of the ultrafast lattice dynamics. (A) Time evolution of the simulated DW factor of the second-order Bragg reflections for two
different excitation fluences. (B) Calculated effective decay time of the DW factor as a function of the lattice temperature. The solid line is a fit using Eq. 1 (see
text for details). (C) Calculated time evolution of the lattice pressure as obtained from Eq. 3 (see text). The horizontal dashed line defines the lattice pressure
of the system at thermal equilibrium at 300 K before the laser excitation.
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few picoseconds, and thus graphene could be used as an ultrafast
switch, as conceptually shown in Fig. 5C. When an ultrashort laser
pulse illuminates the suspended graphene, the electric resistivity
decreases at least by one order of magnitude in 5 ps, generating an
ultrashort electrical current.
In conclusion, we have visualized the spatiotemporal behavior

of suspended monolayer graphene under femtosecond optical
excitation using UEC and first-principles simulations of the real-
time lattice dynamics. Because of the high electron/matter
scattering cross-section, the atomic-scale spatial resolution, and
the ultrafast temporal resolution of UEC, we were able to re-
solve the energy evolution process in graphene from the optical
excitation to the lattice thermal equilibrium and reveal the de-
formation dynamics of graphene unit cell. An ultrafast expansion
occurs in 5 ps, which is responsible for an initial reduction of the
ripples intrinsically present in graphene, followed by a long-term
contraction in 50 ps, which leads to a recovery or even en-
hancement of the original rippling. This is driven by a sequential
excitation and interaction of in-plane and out-of-plane acoustic
phonon modes. The results reported here demonstrate the
ability to modulate rippling in graphene by using ultrashort laser
pulses and, because ripples are ubiquitous in 2D materials, they
are expected to be of general validity with potential applications
in ultrafast photoelectronics.

Materials and Methods
Sample Preparation. The monolayer graphene sample used here is grown by
CVD. After spin-coating a PMMA layer on one face of the graphene plane,
the sample was then placed on the surface of a soluble polymer (so-called
“Trivial Transfer Graphene,” purchased from ACS Material LLC). After

polymer was dissolved in deionized water, the graphene with PMMA was
collected with a circular aperture 2000 mesh TEM grid (hole diameter of
6.5 μm, Ted Pella, Inc.). The grids were then dried by annealing at 50 °C for
10 min, followed by a further bake at 100 °C for 10 min, to enhance the
adhesion of graphene with the copper grid and flatten out the wrinkles.
The grid was then dipped into acetone for 15 min to dissolve the PMMA
layer and rinsed several times using ethanol to improve the cleanness of the
graphene layer. Finally, the grid with graphene was annealed in a furnace
with Ar (∼500 standard cubic centimeters per minute, sccm) and H2 (∼500 sccm)
at 400 °C for 3 h to minimize the PMMA residue. We also investigated a
commercially available monolayer graphene suspended on the 2000 mesh
grid (Ted Pella, Inc.), which shows a nonnegligible amount of PMMA im-
purities resulting in a strong background scattering in the diffraction pat-
tern. The layer number of both samples was identified by the ratio between
the intensities Ifirst and Isecond of the first-order and second-order diffraction
spots, respectively. For the case of a monolayer Ifirst/Isecond is around 1,
whereas for a bilayer Ifirst/Isecond is around 0.5 (see ref. 27).

UEC Experiments. The UEC experiments have been performed in the
transmission geometry. Briefly, a laser-pump/electron-probe scheme is
adopted to detect the photoinduced change as a function of the delay time
between the pump and probe pulses. The pump pulse (800 nm, 120 fs),
generated from a Ti:sapphire amplifier at the repetition rate of 2 kHz, is
used to initiate the dynamics with an incident angle of 45° with respect to
the sample surface. The electron probe beam (subpicosecond), emitted by
a LaB6 photocathode under the illumination of a 266-nm UV laser pulse
and then accelerated to 20 keV, is used to produce diffraction patterns off
the sample at a certain delay time. Because of the limited lateral size of
monolayer graphene flakes, the electron beam is tightly focused on the
sample position with a spot size of 31 × 13 μm2. To minimize space-charge
effects, each electron probe pulse contains only ∼300 photoelectrons and
the upper limit of the electron pulse duration is estimated to increase to

Fig. 5. Calculated strain and resistivity, together with a schematic for the importance of time scales of rippling. (A) Schematic representation of the ultrafast
attenuation (5 ps) of the intrinsic ripples due to the excitation of nonthermal in-plane acoustic phonons (LA and TA), followed by a recovery, or even en-
hancement, of the rippling structure in 50 ps, as caused by the increased population of out-of-plane phonon modes (ZA). (B) The effect of the in-plane strain
on the electrical resistivity of graphene at different initial temperatures, as derived from the theory given in ref. 50, is depicted for strain values experi-
mentally measured here. The blue line represents the contribution from in-plane phonons, whereas the gray lines represent the contribution from ZA
phonons at three different strains. (C) Conceptual drawing of an ultrafast optical switch based on graphene.
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2.1 ps in the present experiment. The spatial overlap between pump and
probe beams is ensured with a precision of ∼20 μm by maximizing the
transmission of both beams through a 150-μm aperture at the sample
plane. The diffraction patterns are recorded on a microchannel plate/
phosphor screen/CCD assembly working in the gate mode.

First-Principles Calculations. We used Quantum ESPRESSO (48) for density-
functional theory and density-functional perturbation theory calculations,
using the local-density approximation, norm-conserving pseudopotentials
from the PSLibrary (qe-forge.org/gf/project/pslibrary/), a plane-wave cutoff
of 90 Ry, and a Methfessel–Paxton smearing of 0.02 Ry. The slab geometry
used to simulate graphene has a relaxed lattice parameter of a = 4.607 Bohr
and a cell height c = 3a. We integrate the Brillouin zone with a Gamma-
centered Monkhorst–Pack mesh of 24 × 24 × 1 points and compute second-
and third-order force constants on meshes of 16 × 16 × 1 and 4 × 4 × 1
points, respectively.

Lattice Dynamics Simulations. The scattering matrix is built to include
3-phonon and harmonic isotopic scattering (37, 51) at natural carbon abun-
dances (98.93% C12, 1.07% C14), and is constructed using the same
computational parameters of refs. 36, 52 (a Gaussian smearing of 10 cm−1 and
a mesh of 128 × 128 × 1 points for integrating the Brillouin zone). The scat-
tering matrix is diagonalized exactly using the routine PDSYEV of the
ScaLAPACK library (53).

The DW factor is computed according to

DWðtÞ= e−2WðtÞ,

with

WðtÞ=  
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where G is the momentum transfer vector, b is the index over the basis of
atoms in the primitive unit cell of the crystal, Mb is the mass of the atom b,
and z is the phonon polarization vector. The equation is a direct extension of
the standard equation for the DW factor used for an out-of-equilibrium,
time-dependent case.
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