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The visual images in the eyes contain much more information than
the brain can process. An important selection mechanism is feature-
based attention (FBA). FBA is best described by attention filters that
specify precisely the extent to which items containing attended
features are selectively processed and the extent to which items
that do not contain the attended features are attenuated. The
centroid-judgment paradigm enables quick, precise measurements
of such human perceptual attention filters, analogous to trans-
mission measurements of photographic color filters. Subjects use a
mouse to locate the centroid—the center of gravity—of a briefly
displayed cloud of dots and receive precise feedback. A subset of
dots is distinguished by some characteristic, such as a different
color, and subjects judge the centroid of only the distinguished
subset (e.g., dots of a particular color). The analysis efficiently
determines the precise weight in the judged centroid of dots of
every color in the display (i.e., the attention filter for the particular
attended color in that context). We report 32 attention filters for
single colors. Attention filters that discriminate one saturated hue
from among seven other equiluminant distractor hues are extraor-
dinarily selective, achieving attended/unattended weight ratios
>20:1. Attention filters for selecting a color that differs in saturation
or lightness from distractors are much less selective than attention
filters for hue (given equal discriminability of the colors), and their
filter selectivities are proportional to the discriminability distance
of neighboring colors, whereas in the same range hue attention-
filter selectivity is virtually independent of discriminabilty.

feature-based attention | color discrimination | selective attention |
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The visual world on our planet is incredibly complex. The main
mechanism for selecting a subset of the environmental visual

information to process is orienting our head and body and pointing
our eyes toward the most significant locations. Even then, each
retinal image contains enormously more information than the brain
can process. To further constrain the flow of information, perceptual
attention processes select locations in space, intervals in time, objects
that contain particular features, and ultimately particular complex
objects for further processing. Here, we focus on attention to a
particular color, an instance of feature-based attention (FBA). It is
well established that FBA operates broadly across space, heightening
sensitivity to the attended feature even at locations that are irrele-
vant to the task at hand (1–4). We exploit this global property of
FBA in a centroid paradigm to derive human attention filters for
color. Just as the physical description of a color filter describes the
relative transmission of the filter for each wavelength of light, a
color-attention filter describes the relative effectiveness with which
each color in the retinal input ultimately influences performance.

Using the Centroid Paradigm to Derive Attention Filters
In a centroid task, a subject views a briefly presented stimulus con-
taining a cloud of dots. The task is to then mouse-click the apparent
center of the dot cloud. Drew et al. (5) first used a centroid task to
estimate attention filters. The procedure was substantially refined by
Sun et al. (6) into the centroid paradigm used here. Subjects attempt
to locate the centroid (center of gravity) of only those items
that have a to-be-attended feature (targets) and attempt to
ignore the nontargets (distractors). In the present experi-
ments, the targets are three dots of the to-be-attended color,

and the distractors are 21 dots, three each of seven other colors
(Fig. 1A). Insofar as subjects can perfectly attend to targets and
completely ignore distractors, and can perfectly compute the cen-
troids of the attended targets,* the judged centroid location would
be the centroid of the targets plus random response error (noise)
that is independent of the distractors’ colors and locations. In re-
ality, however, reported centroids are influenced to some extent
by every item in the stimulus, reflecting the subject’s inability to
selectively attend exclusively to targets and to completely ignore
distractors. By analyzing judged centroid locations from 100 or so
trials, the relative weight of each color’s contribution to the cen-
troid judgment—the attention filter—can be inferred. Because a
trial takes 3–4 s, an attention filter can be roughly estimated in
5–7 min. Of course, more trials would give greater precision.
The inference process is illustrated by the model of selective

attention illustrated in Fig. 1B particularized for the present ex-
periments. On each trial, a stimulus containing three dots of each
of eight colors is presented. The attention instruction is to assign
equal weight to dots of the to-be-attended color (three targets) and
zero weight to the remainder (21 distractors). Let the eight colors
be represented as Ci, i= f1,2,⋯, 8g, and let the target color be Ck.
Then, the target attention filter ϕk is ϕkðiÞ= 1 if i= k and ϕkðiÞ= 0
if i≠ k (i.e., by convention, the total attention weight is 1.0).
The model’s representation of a human subject attending to

color Ck has an attention filter fkðiÞ that causes the model’s pre-
dicted centroids to best match the observed centroids. The opti-
mally predictive model filter fkðiÞ is obtained by simple linear
regression (Materials and Methods).
The model’s optimally predictive filter fkðiÞ is called the ob-

served attention filter. It typically is a very good predictor of a
subject’s observed centroid judgments.† Therefore, we say for
short that fkðiÞ is the subject’s attention filter for attending to
color Ck in that context.

Significance

The eyes present the brain much more information than it could
possibly process. One important way to prioritize information is
by selective attention to features, processing only items con-
taining the attended features and blocking others (i.e., forming
an attention filter). Here we demonstrate an extremely efficient
paradigm and a powerful analysis to quantitatively measure, as
accurately as one might measure physical color filters, 32 such
human attention filters for single colors. These data are an es-
sential basis for a theory of attention to color. The centroid
paradigm itself, because it quickly and quantitatively character-
izes basic attention processes, has numerous applications.
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Overview
We measured attention filters for single colors. The significant
perceptual attributes of color are hue, saturation, and lightness.
The attributes of isolated colors on a neutral background are fully
described by the relative stimulation of long-, medium-, and short-
wavelength-sensitive retinal cones, here represented as a 3D
space (Fig. 2A). In this representation, hue is represented as a
circle in an equiluminant plane with two orthogonal axes, red–
green (R–G) and blue–yellow (B–Y); the other (nonorthogonal)
axis is black–white (Bl–Wh).
In different blocks of trials, we tested the four sets of eight

colors embedded in the 3D cone color space shown in Fig. 2A,
which also shows an example stimulus from each set. Using the
centroid paradigm, attention filters were derived for each of 32
different attended colors, each in the presence of the seven dis-
tractor colors from its set. Fig. 3B shows the results: 32 measured
selective-attention filters for each of five subjects. Attention fil-
ters for colors on the hue circle are remarkably precise, similar for
all subjects, and much more selective than attention filters along
the saturation axes (R–G and B–Y) or lightness axis (Bl–Wh).
To determine whether the better hue-attention filters were

due to stimuli on the hue circle being more discriminable than
the stimuli on the axes, Exp. 2 measured the discriminability
distances between the different stimuli in terms of the number
of just-noticeable differences (JNDs) separating them. Filter
selectivity was closely related to JND distances for stimuli along
the three axes but not for hue stimuli. In Exp. 3, colors were
arranged around the hue circle but with the JND spacing of the
axis colors. The JND arrangement along the hue circle was
enormously more advantageous than the same JND spacing
along the Bl–Wh axis, confirming Exp. 2: In the color-attention
system, attention filters for a specific hue are far more effective
and follow different rules than attention filters that select for a
color embedded within one of the other dimensions of color
(saturation and lightness).

General Procedures
There were eight attention conditions for each set of stimuli, each
corresponding to attending to (i.e., judging the centroid of dots of)
just one the eight different target colors and ignoring the others.
Each attended color was tested in separate counterbalanced blocks
of trials. Randomly chosen stimuli from the same set were used in
all eight attention conditions within that set. Because the stimuli
were chosen from the same urn for all eight different attention
conditions within a set, any statistically reliable differences in results
(i.e., differences between the observed attention filters) are due
entirely to the different attention instructions. The trial procedure
is illustrated in Fig. 2 C–F (see Materials and Methods for details).

Exp. 1: Attention Filters for Four Sets of Eight Single Colors
Fig. 3A shows the attention filter achieved by a naive subject, S1, for
a typical target color in each of the four stimulus sets. The illustrated

target color was arbitrarily chosen as the third (of eight) colors in
each stimulus set. For the hue set, S1’s attention filter quite closely
approximates the target attention filter, but S1’s attention filters are
far from the target filters for the other stimulus sets.
Sun et al. (6) introduced five quantitative measures to evaluate

attention filters, two of which are used here. The “selectivity
ratio” is defined as the filter weight of the target color divided
by the mean weight of all of the distractor colors. A selectivity ratio
of 20 for a hue filter means that a dot of the target color has 20
times the influence on the centroid judgment as a distractor-colored
dot. Efficiency is determined by giving a perfect centroid computer
the subject’s achieved attention filter, showing the computer the
same stimuli as the subject except that some stimulus dots are
randomly removed. The fraction of remaining stimulus dots
that the centroid computer needs to perform with the same
accuracy as the subject is the subject’s “efficiency.”‡ An effi-
ciency of 90% for the hue attention filter means that when 2
of 24 dots (8.3%) are randomly removed from the stimulus
the perfect centroid computer is slightly more accurate than
the subject, but when three dots (12.5%) are removed it does
worse. Alternatively, 90% efficiency means that the average
number of dots used for the centroid judgment is 2.7 (of 3).
Clearly, subject S1’s 20:1 selectivity and 90% efficiency de-
scribe an extremely good hue-attention filter.
Compared with attention filter for stimulus 3 in the hue set,

attention filters for stimulus 3 in the R–G, B–Y, and Bl–Wh
stimulus sets are significantly worse both in terms of selectivity and
efficiency. Compared with the narrow tuning function (selectivity =
20) of S1’s attention filter for stimulus 3 in the hue set, the tunings
of filters for S1’s R–G, B–Y, and Bl–Wh stimulus sets are quite
broad, consistent with their relatively lower selectivity ratios: 3.8,
4.1, and 2.8 (Fig. 3). When the perfect centroid computer is
handicapped with S1’s attention filter, it can match the accuracy of
S1’s judged centroids by using only slightly more than half the
stimulus dots (i.e., efficiencies of 55%, 61%, and 51% for the three
axis stimulus sets.
Attention filters for all subjects and stimulus sets are shown in

Fig. 3B. For the colors on the hue circle, all of the color-attention
filters are sharply tuned. The attention filters for the three color
sets on the three color axes are similar to each other and are much
less selective and much more variable than attention filters for
hue. Attention filters at the two ends of a color axis and the at-
tention filters for colors closest to the gray background are the
most selective filters.
Fig. 3C shows a summary of the attention filters’ selectivities

(Fig. 3C, Top) and efficiencies (Fig. 3C, Bottom), averaged across all
subjects. Filter selectivities and efficiencies for colors lying on the hue
circle are generally greater than those for colors on the axes. Again,
for color-attention filters for colors on the three axes (R–G, B–Y, and
Bl–Wh), selectivities and efficiencies are greater for colors at the two
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Fig. 1. The centroid paradigm: procedure and analysis. (A) Example of a subsection of a display that shows the centroid of orange targets among distractors
of different colors. (B) Model of the attention-weighted centroid computation. The input image consists of dots of different colors. Filter weights shows the
filter weights induced by attention instructions (e.g., attending to orange) when performing the task. The filter is derived such that it best predicts the
subject’s centroid judgment. The centroid computation computes the center of gravity (x,y) of the dot locations, weighting each location by the filter weight
for the color of the dot at that location. The output x,y is the model’s prediction for that subject’s judged centroid for this particular input image.

‡See Sun et al. (6) for details.
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ends of the three diagonal axes and for colors that are near the
background gray. A possible explanation for the parametric properties
of the color-attention filters is explored in the next two experiments.

Exp. 2: The Dependence of Color-Attention Filters on
Target–Distractor Discriminability
Color-attention filters for some colors are more selective than for
others. Is this simply because these target colors are further away
from the distractor colors in some perceptual space? An objective
measure of perceptual distance between two colors is the number
of JNDs separating two colors in color space. To measure JND
distances, the space along the (invisible) line in color space be-
tween each pair of neighboring stimulus colors was sampled at
various points. At each sample point in color space two nearby
colors were chosen and assigned to two stimulus dots. We mea-
sured the local JND (i.e., the minimum distance in color space
between the nearby colors that enabled 82% discrimination of the
color difference between the two dots).
Interpolation from the collection of local JNDs enables es-

timating the number of JNDs that separate two stimulus colors.
JND distances were measured for all adjacent color pairs for

three of the original five subjects—two were unavailable because
they had graduated. These JND measurements were an order of
magnitude more time-consuming than the attention-filter mea-
surements. The JND local isolation of a target color is defined as
1=ð1=d1 + 1=d2Þ, where di is the JND distance between it and its
two adjacent (i.e., most confusable) colors. For brevity we omit
“local” and refer simply to JND isolation. For the end colors on
the three axes the JND isolation is simply the JND distance from
the only adjacent color, conforming with the above definition.
Because the JND isolation measures the discriminability of

the target color against its adjacent color(s), to make comparisons
plausible we computed a new filter selectivity measure as the target
weight divided by the mean weight of just-nearest distractors. We
call this new measure local selectivity and compare it to JND iso-
lation for each color. Fig. 4A shows the comparisons between color-
attention filter local selectivity (target/adjacent distractor weight)
and JND isolation. The mean local selectivity and the mean iso-
lation ratio averaged for the three subjects are given in Fig. 4B.
Whereas Fig. 4 A and B show local selectivity and JND isolation of

color-attention filters as functions of target color, Fig. 4C shows di-
rectly the relationship between the two dependent variables, JND
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Fig. 2. A diagrammatic representation of the four sets of stimuli used in Exp. 1, sample stimuli, and the testing procedure. (A) The stimuli represented in a 3D
space defined in terms of retinal cones. Circles: the eight hue-set stimuli that lie equally spaced on a circle in an equiluminant plane. Squares: 1, stimuli in the B–Y
set that lie on a diameter defined by the short-wavelength (S, blue cone) sensitivity function; 2, the R–G-set stimuli that lie on a diameter perpendicular to the
blue-cone axis corresponding to the long-wavelength (L, red) minus mediumwavelength (M, green cone) sensitivity functions; 3, the achromatic set stimuli that lie
on a line (L+M+S), commonly called the Bl–Wh axis. Note that the achromatic line is not perpendicular to the equiluminant plane (the perpendicular axis to the
equiluminant plane is the L+M axis, which is yellowish, not achromatic). Stimuli along each radius are spaced equally in cone space to use the maximum color
range available on the monitor. An example stimulus from each of the four stimulus sets: hue, Bl–Wh, R–G, and B–Y. (B) Example of an instruction display shown
before a block session starts. Subjects are instructed to mouse-click the centroid of the three dots of the single color in the top row and to ignore the other dots
(seven colors in the bottom row). (C–F) Stimulus sequence on each trial. (C) Fixation frame, 1 s. (D) Stimulus, 300 ms. (E) Response display shown until a response is
made. (F) Feedback frame that shows the stimulus, the target centroid, the subject’s response, the target color (extreme left), and the to-be-ignored colors
(extreme right). The feedback frame is displayed until the subject initiates the next trial.
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isolation and local selectivity. Fig. 4C makes it evident that whereas
there is a strong positive correlation between local selectivity and
JND isolation for axis colors, there is no such correlation for hue

colors, even in the same range of JND isolations. Exp. 3 further ex-
plores this difference between color-attention filters for hue and
color-attention filters for the other dimensions of color.

1

2

4

8

16

32

64

128

0 

1 

0.5 

0 
1 

0.5 

0 
1 

0.5 

0 
1 

0.5 

0 
1 

0.5 

Fi
lte

r w
ei

gh
ts

 

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1 Selectivity ratio = 20 
Efficiency = 90% 

Selectivity ratio = 3.8 
Efficiency = 55% 

Selectivity ratio = 4.1 
Efficiency = 61% 

Selectivity ratio = 2.8 
Efficiency = 51% 

Fi
lte

r w
ei

gh
ts

 
a b 

c d 

A 

B 

S
el

ec
tiv

ity
 ra

tio
 

E
ffi

ci
en

cy
 

C 
Hue Ach 

RG YB 

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 
Stimulus colors 

Hue Bl-Wh R-G B-Y 

0 

0.5 

1 

Fig. 3. Five subjects’ attention filters, filter selectivity ratios, and filter efficiencies for 32 attention conditions. In all panels, the eight colored circles on the
abscissa represent the eight colors in the particular set. (A) Four example target and achieved attention filters; each filter corresponds to a particular target color in
one of the four stimulus sets: (a) hue set, (b) achromatic (Bl–Wh) set, (c) R–G set, and (d) Y–B set. Dashed and solid curves are target and the subject’s achieved
filters. Filter curves are painted in the corresponding target colors. Error bars throughout Fig.3 represent 95% confidence intervals. (B) Attention filters of five
subjects (separated in rows) for four sets of stimuli (separated in columns). Columns (from left to right) are hue set, Bl–Wh set, R–G set, and Y–B set. Within each
panel, each colored curve corresponds to the achieved attention filter for that particular target color. Filter curves for all of the colors within a stimulus set are
shown in one panel although they are derived from data collected in separate blocks of trials. (C) Mean filter selectivities (target/distractor filter weights) and
efficiencies (fraction of targets used) averaged across five subjects. The colors of points are the corresponding target colors; the line colors are arbitrary.
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Exp. 3: Color-Attention Filters for Spacing-Adjusted Hue
Colors
One possible explanation for the advantage of color-attention
filters for the saturated hue-circle colors versus the R–G,
B–Y, and Bl–Wh axis colors is that hue colors are more widely
separated in perceptual color space. In Exp. 3, for each of the
three subjects eight new equiluminant colors were chosen on
the hue circle so that the JND distances between them were
exactly the same as the JND distances between the eight
stimuli on the Bl–Wh axis. Selectivity ratios of the color
attention filters for these eight spacing-adjusted colors are
shown in Fig. 5.
The enormous attention-selectivity advantage of hue color filters

over Bl–Wh attention filters is still observable despite a JND
spacing of the eight hue colors that is exactly equivalent to the
spacing of the eight Bl–Wh contrasts. As in Exp. 2, the selectivity of
attention filters for specific hues seems to be virtually independent of
the discriminability distance of the nearest neighbors, quite different
from attention filters for specific Bl–Wh contrasts. The special prop-
erties of attention filters for specific hues most likely reflect that
greater ecological validity of hue (versus saturation or lightness) as
a clue to the true nature of a surface that demands attention.

Discussion
The behavioral effects of FBA have most often been characterized
in terms of either a reduced reaction time, when searching for
attended features, or a reduced threshold for detecting and dis-
criminating attended features (7, 8; see ref. 9 for a review). These
measures reveal how much more effective FBA makes the atten-
ded feature compared with when the same feature is not attended.

However, other important aspects of FBA have been left largely
unaddressed. For example, to what degree does FBA influence the
effectiveness of irrelevant visual features? These aspects of FBA
are likely to be especially important in natural settings in which
irrelevant features abound.

Paradigmatic Efficiency. To probe feature attention quantitatively
and efficiently we developed the centroid paradigm (5, 6). The
centroid paradigm enables the simultaneous measurement of the
relative weight of target items in the presence of other items in a
neutral attention condition and in an attention condition when a
particular target type is attended and the other item types are
distractors. In both situations, the centroid paradigm provides the
relative weights of all of the other item types relative to the target
type(s), an enormous improvement in both the amount of in-
formation gained and in the paradigmatic efficiency of gaining this
information compared with previous FBA paradigms. In principle,
a human selective-attention filter for a hue can be determined as
accurately as the typical physical specification of an optical color
filter for a camera. Measuring 32 color-attention filters would
have been impossible without such a highly efficient paradigm.
Some interesting properties of FBA emerged as a result.

Extreme Selectivity, the Special Status of Hue. The principal result
of the experiments is that attention to hue, as measured in the
centroid paradigm, is extremely selective. In Exp. 1, selectivity (the
weight ratio of the attended-hue dots divided by the average
weight of the seven distractor-hue dots) exceeded 20:1 in most
cases. In Exp. 2, the local selectivity (weight ratio of the attended
hue to the most similar distractor hue) exceeded 10:1 for most
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attended hues. When equiluminant hues are matched in discrim-
inability distance to Bl–Wh stimuli that differ in contrast, the av-
erage attention selectivity for hue is 9.6 times greater (averaged
for the three tested subjects). As noted above, the great attention
advantage of selectivity for a hue versus selectivity for a value
within a Bl–Wh, R–G, or B–Y axis probably is ecological: Because
of reflectance differences caused by shadows, angle of lighting,
and angle of view, hue is a more reliable cue to material identity
than either lightness or saturation.
A second significant special property of attention to a hue is

that attention selectivity for a hue is almost independent of the
JND-discriminability distance of neighboring distractor hues,
whereas in the same discriminability range of the Bl–Wh, R–G,
and B–Y stimulus sets attentional selectivity and JND distractor
distance are highly correlated. When the JND distances between
hues were reduced in Exp. 3, attention selectivity started to show
enhanced dependencies on JND discriminability for two out of
three subjects. It is likely that JND discriminability determines
attentional selectivity for very closely spaced colors, but JND
discriminability quickly becomes much less relevant when hues
are more discriminable from each other. What determines at-
tentional selectivity for hues is an important question but is be-
yond the scope of the current study.

Neural Enhancement of an Attended Feature. A dominant theory of
FBA stems from the neural correlates of FBA (10). The response
magnitude (impulses per second) of neurons in the middle tem-
poral cortical area of macaque monkeys was measured for stimuli
moving in attended, neutral, and unattended motion directions.
When a monkey attended to the preferred motion direction for a
neuron, the neuron’s response magnitude increased by a factor of

about 1.15 versus neutral attention; attending to the antipreferred
motion direction reduced neural responses by 0.94 . It was proposed
that FBA had a multiplicative (amplifying) effect on neural re-
sponse magnitude. There are similar findings of such small (relative
to the present experiments) but statistically significant effects of
attention in the amplitude of responses in single neurons (11), EEG
waveform amplitudes (12, 13), and on fMRI BOLD response (1).

Different Processing Levels: Attention to Color Precedes Attention to
Motion. The multiplicative effect of attention on neurons that re-
port direction of motion operates at a different brain processing
level than the effect of attention to color. Neurons that are influ-
enced directly by attention to color represent the inputs to motion-
computing neurons. Blaser et al. (14) measured attention to a color
(red versus green) in an ambiguous motion paradigm and also
found a relatively small amplification factor (typically 1.3, range 1.2–
2.2). The enormously smaller effect of attention to hue in an am-
biguous motion paradigm versus a centroid task suggests that at-
tention selectivity varies enormously between tasks that involve
different brain processes. A critical difference between the centroid
task and the ambiguous motion task of Blaser et al. (14) is that
grouping of items may be very important in the centroid task (15,
16) but is irrelevant in the ambiguous motion task. That is, FBA
seems to have an especially big influence on grouping processes.

Different Processing Levels (Multiple Object Tracking Versus Statistical
Summary Representation) Depending on Number of Target Items.
Typically, a centroid judgment is assumed to be a statistical sum-
mary representation (SSR), that is, a statistic that accurately describes
a property of a group of items even when there are so many items
that the subject has accurate information only about few, if any, of
the individual items (17). For example, in judging the centroid of
16 items, subjects achieve efficiencies of about 0.8 (6), which means
that an ideal detector would have to know the precise location of
0.8 × 16 = 12.8 items to match the subjects’ performances. This is
three or four times the number of items that subjects can identify the
locations of. However, when the number of items is small a different
process comes into play. For example, in a search experiment, there
typically is only one target item and the subject typically knows the
location and other properties of the single target.
Inverso et al. (18) found that subjects are easily and accurately

able to find the centroid of two vertical lines randomly placed among
two horizontal distractors and, similarly, the centroid of two hori-
zontal lines among two vertical distractors. Very surprisingly, subjects
were unable to find the centroid of four, six, or eight verticals among
an equal number of distractors, although they succeeded easily with
black versus white attentional selection with the same stimulus sets.
The point here is not the point of Inverso et al. (18), that there is
something uniquely difficult about absolute vertical-versus-horizontal
attentional selection, but rather that there is a different judgment
process when the number of targets is less than four.
In various extensively studied tracking procedures in which a

number of targets move randomly among randomly moving dis-
tractors, subjects typically can track about four targets (19, 20);
they track fewer targets when displays are more complex (21). The
number of targets in all of the present attention experiments was
three. Therefore, we infer that the subjects’ judgments probably
did not exclusively rely on SSRs—if at all—but also involved their
ability to keep track of the locations of three targets. This agrees
with our subjects’ introspective reports. Those queried said they
were aware of the actual locations of the target dots. This does not
change the significance of the color-attention filters that were
observed; rather, it informs the processes by which the centroids
were computed. Whether the same color-attention filters would be
observed in paradigms that involved larger numbers of dots and
required SSRs is a matter for future investigation.
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Fig. 5. Exp. 3: selectivity ratio and JND-isolation derived from attention filters
for a Bl–Wh color set and an equivalent JND-spacing-adjusted hue color set;
data for three subjects. (Left) Black curves are JND isolation for the Bl–Wh
stimuli and also the JND isolation for hues spaced along the color circle to have
exactly the same JND isolation as a function of target color. Blue curves are the
selectivity ratio for Bl–Wh targets, which is highly correlated with JND-iso-
lation. Magenta curves are the selectivity ratio for the hue targets. (Right)
Selectivity ratio versus JND isolation for the two equivalently spaced sets of
color targets. The gray levels and colors of the points indicate the contrasts and
colors of the target stimuli. Selectivity correlates strongly with JND isolation for
Bl–Wh targets but not for identically JND-spaced hue targets.

Sun et al. PNAS | Published online October 10, 2016 | E6717

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S
PN

A
S
PL

U
S



Similar Processing of Dark and Light Target Items. It is well docu-
mented (22) that for the same contrast ratio magnitude of Weber
contrasts darker-than-background stimuli (“dark”) are more dis-
criminable than lighter-than-background stimuli (“light”). Figs.
4C and 5 show the measured JND separations between both
adjacent-contrast light and adjacent-contrast dark spots and, for
the same pairs of adjacent dot contrasts, the local attention se-
lectivity in centroid judgments. Consider corresponding pairs of
dark and light spots that are equally distant from the neutral
background (e.g., −1/4, +1/4; −1/2 +1/2; etc.). Although it is
difficult to see in reduced-size figures, in nearly all cases the dark
point lies to the right of the corresponding light point, indicating a
greater JND separation for adjacent dark versus light contrasts,
and in nearly all cases the dark point in the graph lies above the
corresponding white point, indicating greater attention selectivity
for dark versus light. Therefore, in Figs. 4C and 5, within mea-
surement error, both the dark and spots lie on the same diagonal
line. That means the attention selectivity advantage (greater
height in Figs. 4C and 5) of dark versus light spots is entirely due
to their greater JND separation, not due to different parameters
for attention to dark versus attention to light. Examining light and
dark spots separately shows again that attention selectivity for
light–dark contrasts is greatly dependent on their JND separation
and is much worse than attention selectivity for hue, which is
better and virtually independent of the target–distractor JND
separation for precisely the same separations (Fig. 5).

A Threshold for Attention Filtering. An interesting aspect of the
light–dark data is that the x intercept of the log selectivity versus
JND isolation graphs for Bl–Wh set of spots is greater than zero. A
greater-than-zero x axis intercept means that, below a threshold
number of JNDs (the intercept), the attention system is inoperative.
In Fig. 4C, the attention threshold seems to be lower for the R–G
(about five JNDs) and Y–B (about three JNDs) stimulus sets than
for the Bl–Wh stimulus set (attention threshold about seven JNDs).

FBA Acts on Location.Rather than directly assessing the perception
of features, the measured effect of attention to color in the cen-
troid paradigm as well as attention to color in motion paradigms is
on the locations of the features. That is, both centroid and motion
computations depend on location computations; features enter
into these computations only indirectly insofar as they change the
weights assigned to different locations. Similarly, Shih and Sperl-
ing (23) in a rapid stream of visual displays search experiment
concluded that “selective attention to a particular size or color
does not cause perceptual exclusion or admission of items con-
taining that feature; it acts by guiding search processes to spatial
locations that contain the to-be-attended features (ref. 23,
p. 758).” Prioritizing locations is, in fact, the guiding principle in
contemporary computational theories of visual search (e.g., refs.
24–26). To conclude: Although centroid, motion, and search tasks
are used to measure FBA, counter to intuition, these tasks do not
measure a direct effect of FBA on the perception of the attended
features; they measure an indirect action of FBA in selectively
weighting the locations of features.

Nonlocation Measurements of FBA. In paradigms other than cen-
troid, ambiguous motion, and search, the attended feature does not
necessarily involve location. Among the paradigms that measure
effects of FBA other than its effect on location, the most prominent
is adaptation of the attended feature, most commonly adaptation to
a particular motion direction as revealed by the motion after-
effect (e.g., ref. 27). Adaptation to grating orientation also varies
depending on FBA (28). A useful demonstration of FBA occurs in
repetition detection of digits that share color, spatial frequency,
orientation, size, or combinations of these features (29). The extent
to which and how the as-yet-unmeasured, implicit attention filters

activated by these many FBA paradigms relate to attention filters
derived from centroid judgments is a critical unanswered question.

Materials and Methods
Apparatus. The experiment was conducted on an iMac intel computer running
MATLAB with a Psychotoolbox package (30). The built-in 23-in., 60-Hz fresh
rate, LED monitor with 1,920 × 1,080 resolution was used to display the
stimuli. The luminance lookup table contained 256 gray levels generated by
a standard calibration procedure. The mean luminance of the monitor was
52.1 cd/m2. Stimuli were viewed at a fixed distance of 60 cm.

Generating Test Colors. The eight equiluminant hue colors were derived using a
minimum motion paradigm (31–33). Subjects adjusted the lightness of a color so
that the contrast between the color and themonitor’s mean luminance produced
no motion, only flicker. That is, all colors were made equiluminant to the mean
luminance of the monitor according to the luminance sensitivity of motion sys-
tem. The end points of the R–G, Y–B, and Bl–Wh axes were the largest available
contrasts available on the monitor. In addition to being in the equiluminant
plane (as determined for each participant individually), the gamut of lights along
the R–G axis is chosen to produce invariant activation of the S cones [as defined
by the Stockman–Sharpe (34), 2° fundamental], and the Y–B axis is orthogonal
(in cone-activation space) to the R–G axis. These constraints exhaust the three
degrees of freedom of the color display monitor. The coordinates of the monitor
screen were specified in the cone space. The eight Bl–Wh contrasts were −1,
−0.75, −0.5, −0.25, 0.25, 0.5, 0.75, and 1, where −1 is black and +1 is the most
intense white, and the monitor background is 0. The other half-axes R, G, Y, and
B also were equally divided in physical cone space. The eight hues were chosen to
lie in a circle in the 3D cone space that fell on an equi-luminant plane (29).

The Centroid Extraction Paradigm.
Subjects. Four naive subjects (S1–S4) were undergraduate psychology stu-
dents who were unaware of the purpose of the study. The other subject, S5,
was P.S. All subjects gave informed consent to participate in the study. All
methods used were approved by the University of California, Irvine in-
stitutional review board.
Stimuli. The stimulus display was 512 by 512 pixels (visual angle 12.1°) centered
in a display of 1,920 × 1,080 pixels. Dots were nine-pixel-wide squares (visual
angle 0.21°). In any one condition, only one of the four sets of eight colors
was tested. Every stimulus contained three dots of each of the eight colors.
Target and distractor dot locations were drawn from two bivariate Gaussian
distributions with different means but the same SDs of 3°. The means of the
two dot distributions roved independently, both with SD of 0.7°. If a sam-
pled dot location occurred within 10 pixels of another dot the location was
resampled so that two dots never overlapped. The roving variation improves
the statistical power of the paradigm and is imperceptible.
Procedure. Before the main experiments, subjects were trained to judge the
centroid of 1, 3, 6, 12, or 24 dots, respectively. After 50 training trials on one
dot and about 200 training trials on each of the other dot numbers, all with
feedback, subjects were able to locate the centroid very accurately and were
no longer improving. Each of the four conditions (hue, Bl–Wh, RG, and BY)
was tested in a blocked design. The target color was fixed within a block.
Each block contained 100 test trials interleaved with 20 control trials in
which only targets were shown. With the identification number given to
each color in Fig. 3C colors were tested once in the order 7, 8, 2, 3, 1, 5, 4, 6
and then once again in the reverse order—an ABBA design.

Estimating Filter Weights and Filter Efficiencies. Let Ci be the color of the ith
dot in a display and gðCiÞ be the weight assigned to it [implying gðCiÞ is
dependent on Ci only]. The model estimates the mean location of the 24-dot
array (its centroid) with each dot weighted by its corresponding gðCiÞ. Then
the model’s x, y response Rx ,Ry is given by

Rx =
Pi=24

i=1 gðCiÞxiPi=24
i=1 gðCiÞ

+Qx and Ry =
Pi=24

i=1 gðCiÞyiPi=24
i=1 gðCiÞ

+Qy  , [1]

where Qx and Qy represent noise terms. Let Xk ,Yk be the sum of the loca-
tions of all three dots of color Ck; then, Eq. 1 can be rewritten as

Rx =
Xk=8
k=1

fðCkÞXk +Qx and Ry =
Xk=8
k=1

fðCkÞYk +Qy , [2]

where fðCkÞ is equal to gðCkÞ=D for D the denominator in each of the two
parts of Eq. 1. Eq. 2 describes a simple linear model in which fðCkÞ can be
estimated by multiple linear regression.
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Finding the Number of JNDs Between Target Colors. The JND is ameasure of the
color discriminability between nearby colors (here, colors lying on one of the
three color axes or on the hue circle) (Fig. 2). Tomeasure a single JND, two dots
that were configured exactly like the stimulus dots in the attention experi-
ments were shown for the same duration as in the attention experiments
(300 ms) separated by 0.93° centered on the screen. One dot is the standard
color around which the JND is measured, and the other is a variable color. The
standard dot had a fixed color on a sequence of trials, and the variable dot
took one of 31 (or 62) nearby colors on the color axis of that set. A staircase
procedure was used to find the two-dot color discrimination threshold (JND) at
each of the eight colors in a color set. JNDs were measured for the four sets of
eight standard testing colors. Note that except for the end points there are
two JNDs at each standard color, one in each direction on the axis or hue circle.
JNDs were measured separately for each color set.

For each adjacent color pair, the continuum of the 33 colors (two adjacent
colors and 31 colors between them) were shown to the subject before the
staircase procedure began. In the test phase, subjects were to indicate which
of the two dots in a pair was closer in color to a designated end of the color
continuum. For example, to estimate the JND threshold for the color orange
toward the color yellow, subjects were asked to indicate which dot was more
yellow. There was feedback after each trial.

For each of the three diagonal axes, one additional JND threshold was
measured around the background gray. In this case, one of the two dots had a
color drawn from between one of the unsaturated axis colors (e.g., un-
saturated red) and the background gray, and the other dot had a color drawn
from between the other unsaturated color (e.g., unsaturated green) and the
background gray. The subjects indicated which of the dots was closer to one
of the unsaturated color (e.g., which one was more reddish or greenish). Two
three-down, one-up staircases were interleaved within a block to measure
the JND thresholds for a color difference. A staircase terminated after 16
reversals had occurred. The initial 10 trials in each block were discarded. The
staircase data were fit with a Weibull function; the centering parameter was
used as the threshold (i.e., 82% correct threshold).

The number of JNDs (i.e., perceptual distance) between two colors was
estimated using the method described below. Other ways of calculating JND
isolations and estimating perceptual distances were also tried but did not
alter the conclusions.

Definition of the Stimulus Space. The stimuli in the present experiments are
described in dimensions that are defined in terms of the human cone space,
that is, in terms of the action spectra of the blue-, green-, and red-sensitive
retinal cones. Or, as they are called by vision scientists, the short- (S), medium-
(M), and long- (L) wavelength cones. To describe stimuli in terms of cone
space, it was first necessary to measure the spectral characteristics of the
monitor that presents the stimuli; this was done by standard methods.

We define the cone space in terms of the Stockman–Sharpe (34) 2° short-,
medium-, and long-wavelength cone fundamentals. Each of S, M, and L is a
function that maps the wavelengths 390,395,400,⋯, 830 nm into R describing
a cone’s relative wavelength sensitivity. We represent S, M, and L as column
vectors of length 89. Then, let B be the three-column matrix in which the first
column B1 is equal to S rescaled to have norm 1, the second column B2 is equal
to M+ L orthogonalized relative to B1 and rescaled to have norm 1, and the
third column is L−M orthogonalized relative to B1 and B2 and rescaled to have
norm 1. B describes the stimulus space, three orthogonal dimensions (B–Y, R–
G, and luminance) defined by cone sensitivities. (The S and L − M dimensions
are illustrated in Fig. 2A.)

A stimulus of color C with a wavelength spectrum Q (a column vector of
length 89) is represented in the stimulus space by the 3D vector CQ:

BTQ=

2
4q1

q2

q3

3
5=CQ, [3]

which is referred to informally in the text as a “color.” The percept produced
by Q depends entirely on CQ. Any lights Q1 and Q2 for which CQ1 =CQ2 will
appear identical to human vision (such lights are called metamers) and the
perceptual discriminability two colors CQ1 and CQ2 is a smoothly increasing
function of the Euclidean distance between them; this will be important in
measuring JNDs.

Calculating the Number of JNDs Separating Two Stimuli. To calculate the
number of JNDs between two adjacent stimulus colors with spectraQ1 and Q2,
we measure one JND at each end of the line segment in R3 between CQ1 and
CQ2 and then, as explained below, infer howmany JNDs must be between them
to fill distance covered by that line segment. Let a be the threshold Euclidean
distance from CQ1 toward CQ2; let c be the threshold from CQ2 toward CQ1; and
let D= a+b+ c be the total Euclidean distance between CQ1 and CQ2. In all cases
in the current study, b> 0, and a≠ c. We anticipate that human vision may be
more sensitive to variations in some regions/directions of color space than in
other regions/directions. However, JNDs were measured only between adjacent
colors, so we can assume that such variations in sensitivity are gradual enough
that discrimination thresholds between the pairs of adjacent colors in the
current study undergo a smooth transition from a to c, with each successive
JND equal to a fixed scalar α times the preceding one.

This implies that for n equal to the number of JNDs from CQ1 to CQ2,

c= aαn−1, [4]

and in the case in which n is an integer,

D= a
Xn−1
k=0

  αk . [5]

Note that if bwere equal to 0, then Eqs. 4 and 5would imply that α= c=a and
(as desired) n= 2.

From Eq. 4, it follows that

c
a
= αn−1. [6]

From Eq. 5 it follows that

D
a
=
αn − 1
α− 1

. [7]

Eq. 7 generalizes Eq. 5 to noninteger values of n. Substituting Eq. 6 into
Eq. 7 yields

D
a
=

�
c
a

�
α− 1

α− 1
, [8]

implying that

α=
D− a
D− c

=
b+ c
b+ a

. [9]

Substituting Eq. 9 into Eq. 6 yields

c
a
=
�
b+ c
b+a

�n−1

, [10]

from which it follows that the number of JNDs between CQ1 and CQ2 is
given by

n= 1+
ln  c− ln  a

lnðb+ cÞ− lnðb+aÞ. [11]

To reiterate: a is the Euclidean distance of the threshold from CQ1 in
the direction of CQ2, c is the Euclidean distance of the threshold from
CQ2 in the direction of CQ1, D is the Euclidean distance between CQ1 and
CQ2, and

b=D− a− c. [12]
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