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The search for high-affinity aptamers for targets such as proteins,
small molecules, or cancer cells remains a formidable endeavor.
Systematic Evolution of Ligands by EXponential Enrichment (SELEX)
offers an iterative process to discover these aptamers through
evolutionary selection of high-affinity candidates from a highly
diverse random pool. This randomness dictates an unknown pop-
ulation distribution of fitness parameters, encoded by the binding
affinities, toward SELEX targets. Adding to this uncertainty, repeating
SELEX under identical conditions may lead to variable outcomes.
These uncertainties pose a challenge when tuning selection pressures
to isolate high-affinity ligands. Here, we present a stochastic hybrid
model that describes the evolutionary selection of aptamers to ex-
plore the impact of these unknowns. To our surprise, we find that
even single copies of high-affinity ligands in a pool of billions can
strongly influence population dynamics, yet their survival is highly
dependent on chance. We perform Monte Carlo simulations to ex-
plore the impact of environmental parameters, such as the target
concentration, on selection efficiency in SELEX and identify strategies
to control these uncertainties to ultimately improve the outcome and
speed of this time- and resource-intensive process.
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Understanding and exploiting target–ligand binding are bedrocks
of the biomedical sciences and support a host of applications

ranging from diagnostics, therapeutics, and drug discovery to
biosensing, imaging, and gene regulation. Antibodies and rational
design provide a constructive playground to develop these appli-
cations, yet there generally remains a paucity of strong and specific
binders for the innumerable viral, protein, and small-molecule
targets under investigation.
Aptamers offer an alternative to antibodies, yet despite their

growth (1–4), the discovery of high-affinity aptamers remains a
challenge, especially for small-molecule targets (5, 6). Systematic
Evolution of Ligands by EXponential Enrichment (SELEX) (7, 8)
is the premier framework for aptamer development and isolates
high-affinity ligands from an initial library similar to how advan-
tageous traits are enriched in a biological population through
Darwinian selection. In a cyclic process, ligands are incubated with
the target, and those that exhibit preferential binding are ampli-
fied and survive to the next round. Target molecules are typically
immobilized on a substrate material to facilitate easy separation of
target-bound and unbound ligands. Through numerous rounds of
selection, an initial library can be reduced to a handful of high-
affinity aptamers. Nucleic acids comprise the vast majority of li-
braries used in SELEX, where sequence regions are randomized
to generate tremendous structural diversity. Whereas this diversity
underpins the evolutionary nature of SELEX, numerous works
suggest that initial library design is a significant contributor to its
overall success (9).
Although conceptually simple, the practical application of

SELEX is plagued by uncertainty. Despite the impact of library
design, the initial affinity distribution for any library toward a
specific target remains a priori unknown. Target immobilization
further complicates the procedure, particularly for small molecules.
In comparison with large molecular weight targets such as proteins

(10), viruses (11), and whole cells (12, 13), the immobilization of
small molecules eliminates ligand binding sites and is thus im-
practical. Newer approaches instead bind the library itself to a
substrate material using noncovalent equilibrium binding, but this
introduces the opportunity for competitive losses of high-affinity
ligands that are initially present in extremely low numbers. Wash
steps and other experimental procedures may lead to further ran-
dom losses, whereas nonspecific selection of ligands can counter
environmental pressures and stall selection. In short, these uncer-
tainties may quickly compound to apply tremendous risk toward
the guarantee of successful selection.
Mathematical modeling therefore has great potential to help

understand the uncertainties of aptamer selection and devise
strategies to optimize environmental parameters and improve se-
lection outcomes. Previous models have explored SELEX for
protein targets, considering parameters such as target concentration
(14–16), separation efficiency of target-bound and unbound ligand
(17), nonspecific binding of DNA to target (18), and negative se-
lection steps (19). These studies predict that, despite its experi-
mental complexity, the evolutionary nature of SELEX guarantees
selection of the highest affinity ligand from the initial library.
However, these works focus primarily on the use of deterministic
equilibrium equations (14), whereas the presence of ligands in low
copy numbers and the role of other experimental uncertainties
suggest the use of more fundamental stochastic models rather than
deterministic approximations. Mathematically, the chemical master
equation provides a framework to test this hypothesis and gener-
alize the above-mentioned deterministic models to include intrinsic
stochasticity (20). Whereas this approach could be applied toward a
purely stochastic model for SELEX, the result cannot currently be

Significance

Oligonucleotide aptamers have increasing applications as a class
of molecules that bind with high affinity and specificity to a
target. Aptamers are typically selected from a large pool of ran-
dom candidate nucleic acid libraries through competition for the
target. Using a stochastic hybrid model, we are able to study the
combined impact of important evolutionary success factors such
as competition, randomness, and changes in the environment.
Whereas the environment may be tuned with experimental pa-
rameters such as target concentration, competition varies with
differences in the initial distribution of aptamer–target binding
affinities, and random events can eliminate even the ligands with
the highest affinity.

Author contributions: F.S., Z.B.W., D.D., and M.H.Z. designed research; Z.B.W., N.H., A.I.S.,
and D.D. contributed new reagents/analytic tools; F.S. and D.D. analyzed data; F.S. de-
veloped the model; F.S. and D.D. implemented the model; and F.S., D.D., andM.H.Z. wrote
the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. C.A.F. is a Guest Editor invited by the Editorial
Board.
1To whom correspondence may be addressed. Email: ddesai@bu.edu or zaman@bu.edu.
2Deceased August 14, 2016.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1605086113/-/DCSupplemental.

12076–12081 | PNAS | October 25, 2016 | vol. 113 | no. 43 www.pnas.org/cgi/doi/10.1073/pnas.1605086113

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1605086113&domain=pdf
mailto:ddesai@bu.edu
mailto:zaman@bu.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1605086113/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1605086113/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1605086113


solved analytically or simulated by conventional techniques such as
the Gillespie algorithm (21), due to the large number of molecules
present. These limitations are common for many stochastic multi-
scale problems in biology, chemistry, and physics; the development
of novel analytic approximations or numerical techniques to ad-
dress this problem is an important ongoing research topic (22).
Using these ideas as our foundation, we introduce a hybrid

model for aptamer selection that builds on the chemical master
equation to introduce stochastic uncertainty in SELEX modeling.
Here, ligands are separated into two categories of high and low
copy number. In the former case, the master equation is simplified
toward a deterministic equilibrium system, whereas in the latter it
can be approximately solved analytically. Unlike previous efforts
to incorporate stochasticity into aptamer modeling (23, 24), our
framework allows us to simultaneously investigate the impact of
low copy number ligands and their competitive binding to target
molecules and immobilization substrates among the presence of
high copy number ligands. Most importantly, this approach can
capture total loss of individual ligands, which can strongly con-
tribute to protocol outcome. Such events have not previously been
investigated and cannot be captured by other approximations of
the master equation such as the Langevin approximation, which
rely on the presence of sufficiently high numbers of molecules and
thereby diminish the possibility of extinction events (25).
Using this framework, we investigate unexplored sources of

uncertainty in SELEX, beginning with a systematic analysis of the
role the initial library affinity distribution plays in selection. We
further challenge the assumption that this distribution is contin-
uous at its tails and evaluate the impact of adding noise at these
extremes. We find that introducing as few as 20 additional ligands
outside the bulk distribution of 1015 molecules can strongly affect
the outcome of selection. In light of these results, we revisit the
topic of optimizing target concentration as discussed in previous
works (14–16), and show that the assumed initial KD distribution

strongly influences protocol optimizations. We also provide ad-
ditional insights regarding noncovalent ligand immobilization to
support more recent efforts to develop robust protocols for small-
molecule SELEX (26–28). Integrating these ideas, we show that
simultaneously lowering the target concentration and the substrate
binding dissociation constant over the SELEX cycles can lead to
improved selection outcomes for a wide range of initial conditions.

Computational Model of Selection Dynamics
The original SELEX protocol (7, 8) serves as the basis for our
model, with additional modifications to accommodate small-mol-
ecule targets as described in ref. 26. Whereas this marks a model

Fig. 1. Sample candidate library of ligands Ai is prepared by letting the ligands bind to a substrate S. Then, the target is added, leading to competitive
binding between the different aptamers for substrate and target molecules T. The ligands still bound to the substrate are then separated from those which
are either bound to a target, or have randomly unbound from the substrate. The latter two are subsequently amplified and taken into the next cycle.

Fig. 2. Initial distribution affects SELEX dynamics. We plot the distribu-
tion of ligand binding affinities with increasing SELEX cycles for the same
experimental parameters and two different assumed Gaussian distribu-
tions at cycle 1, Nð−3,0.4Þ (blue triangles) and Nð−5,0.8Þ (red dots). The
dynamics of the two cases are totally different. For Nð−5,0.8Þ, the distri-
bution shifts to the left and becomes considerably narrower, while for
Nð−3,0.4Þ, the distribution additionally skews to the left, such that after
cycle 12 the highest affinity binders have outcompeted the rest of the
distribution.
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that specifically considers small-molecule targets, the main ideas
and conclusions derived from this work remain applicable to other
targets and selection schemes. The main steps of our approach are
summarized in Fig. 1. We begin with a library of ~Ai

tot ligands of type i,
where i= f1, . . . ,MAg and MA is the total number of unique li-
gands. The ligands are then noncovalently immobilized using
~Stot substrate molecules, where KS is the ligand–substrate disso-
ciation constant. These complexes are then subjected to wash
steps to remove unbound ligands, from which ~AI

i ligands of type i
survive. Surviving ligands are then incubated with ~Ttot target
molecules, where a ligand of type i binds to the target with a
dissociation constant KD,i. Ligands that are bound to a target or
have unbound from the substrate are partitioned from those that
remain bound to the substrate. Finally, the partitioned ligands
are amplified via PCR, modeled as a constant factor increase of
αPCR, and used to begin the next cycle. The proceeding sections
highlight the notable details of our hybrid approach, whereas a
more thorough description and derivation of the model can be
found in the SI Appendix. Throughout these sections, quantities
that refer to an absolute number of molecules are denoted with a
tilde, whereas those without represent concentrations.

Deterministic Model of Ligand Binding. Earlier works use equilib-
rium conditions to characterize ligand–target interactions during
selection (14–17), focusing on changes in bulk properties, such
as the mean dissociation constant, to study the enrichment of a
single best candidate. We instead monitor the full ligand affinity
distribution in an effort to better understand how parameters
such as the initial SD also impact selection dynamics. Because
modeling each of the MA ≈ 1015 unique ligands is computation-
ally intractable, we discretize the initial distribution of MA

unique ligands into MB bins, each containing ~Ai ligands of dis-
sociation constant KD,i, where i= f1, . . . ,MBg. We choose MB to
be large enough that the results do not depend on the binning,
and small enough to optimize simulation performance. We
further build on this analysis by introducing additional equilib-
rium conditions for nonspecific ligand–substrate interactions
represented by a dissociation constant KS. In ref. 26, substrate–
ligand binding is accomplished through DNA base pairing using
a fixed sequence, and is thus constant. Altering the length of this
fixed sequence is a means to tune KS. Moreover, different im-
mobilization techniques, such as the use of graphene oxide (27,
28), will lead to variations of KS within a given pool, but we do
not consider such cases here and instead treat KS to be constant
throughout a single cycle of SELEX. Combining ligand–target

and ligand–substrate binding, the full system of steady-state
equilibrium binding conditions can be described by the set of
equations:

½SAi�= 1
KS

�
AI
i − ½SAi�− ½TAi�

�
Sfree, i= 1, . . . ,MB,

½TAi�= 1
KD,i

�
AI
i − ½SAi�− ½TAi�

�
Tfree, i= 1, . . . ,MB,

Stot =
XMB

i=1

½SAi�+ Sfree, Ttot =
XMB

i=1

½TAi�+Tfree.

[1]

Here, ½SAi� and ½TAi� denote the concentration of ligand–substrate
and ligand–target complexes, representing 2MB independent var-
iables that are solved for; the quantities Ttot,Tfree and Stot, Sfree
denote the concentrations of total and free target and substrate,
respectively. From these results, we determine the concentration
of ligands which survive selection, denoted by AS,D

i , and are am-
plified by PCR for the next cycle. The superscripts denote that this
number is obtained after selection and using the deterministic
model defined by Eq. 1. This concentration is simply the sum of
free- and target-bound ligands, and is hence given by

AS,D
i = ½TAi�+Afree

i =AI
i − ½SAi�. [2]

Stochastic Model of Ligand Selection. Chemical reactions are
fundamentally stochastic in nature, with forward and backward
reactions occurring constantly. Whereas powerful and simple,
Eq. 1 is based on real-valued concentrations which require
sufficiently high molecular copy numbers to make discreteness
and random fluctuations negligible. This is challenged at the
tails of the KD distribution, where appropriate binning results
in few ligands per bin. To address this, a hybrid approach is
used where additional stochastic analysis is applied when Eq. 1
predicts ~AS,D

i to be below a threshold Θ. To distinguish these
quantities for stochastic analysis, we denote them as ~AS,D

ψ , where
ψ represents the subset of indices i that satisfy the condition
~AS,D
i <Θ. Results exploring the choice for Θ are provided in SI

Appendix, Fig. S6. We then calculate the probability for selecting
~AS,S
ψ ligands, pð~AS,S

ψ Þ; the superscripts denotes that the number is
obtained after selection and using the stochastic model. As

Fig. 3. Noise affects SELEX dynamics. We fix the experimental parameters,
the initial Gaussian distribution Nð−4,0.4Þ; and the added noise of only 20
additional ligands initially present between KD = 10−10M and 5× 10−8M. Two
different Monte Carlo simulations from these identical initial conditions
show dynamics of selection under random loss of the 20 strongest binders
(blue triangles), versus dynamics when only two of those strong binders with
affinities between 10−10 and 10−9M are selected (red dots). In the latter case,
these two high-affinity binders completely dominate the distribution from
cycle 12 on and outcompete the remaining ligands with low affinities
(KD > 10−7M).

Fig. 4. Impact of target concentration on SELEX dynamics. Evolution of KD

distribution for three different values of the target concentrations is shown.
Under a high target concentration of Ttot =10−2M, the distribution shifts to the
left and narrows, but does not skew toward high-affinity ligands. Additional
skewing is achieved by reducing to Ttot = 10−4M, which increases selection
pressure by intensifying ligand competition. However, further reduction to
Ttot = 10−8M has the opposite effect and actually halts selection. In this case,
the target concentration is so low that nonspecific ligand–substrate equilibria
dominate selection dynamics and nullifies the selection pressure.
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described in the SI Appendix, we find that by starting with the
chemical master equation, pð~AS,S

ψ Þ is well-approximated by a bi-
nomial distribution:

p
�
~AS,S
ψ

�
=

0
@ ~Atot

ψ
~AS,S
ψ

1
Ap

~AS,S
ψ

ψ

�
1− pψ

�~Atot
ψ −~AS,S

ψ

,

for  ~AS,S
ψ = 0, . . . , ~Atot

ψ .

[3]

Here, the quantity pψ represents the probability that a single
ligand is selected out of ~Atot

ψ ligands of type ψ . To provide the
most accurate description, we account for stochastic contribu-
tions from both the immobilization and incubation steps. The
contribution from immobilization is approximately the same for
all candidates, and is given by ~AI=~Atot, the fraction of remaining
immobilized ligands after wash steps over those present before
immobilization, where ~AI =

PMB

i=1
~AI
i and ~Atot =

PMB

i=1
~Atot
i . The

contribution from incubation is calculated as the fraction of
predicted ligands, ~AS,D

ψ , out of an initial number of ~Aψ
I . Using

these contributions, the total probability that a ligand in bin ψ
survives is given by

pψ =
~AIAS,D

ψ

~AtotAI
ψ

. [4]

Finally, Eq. 3 requires ~Atot
ψ to be integer-valued, as it denotes a

number of molecules. However, the deterministic equations yield
real-valued concentrations that must be renormalized to an integer.
We separate ~Atot

ψ into its integer and fractional parts, ~Atot
ψ =

~Atot
ψ ,N + ~Atot

ψ ,f , and then interpret 0≤ ~Atot
ψ ,f < 1 as the probability to

have an extra molecule present. We then draw a uniformly distrib-
uted random number 0≤ r≤ 1, and set ~Atot

ψ = ~Atot
ψ ,N + 1 if r< ~Atot

ψ ,f ,
and ~A

tot
ψ = ~A

tot
ψ ,N otherwise. Following this renormalization, we

finally draw a random variate distributed according to Eq. 3 to
simulate the set of ligands ~AS,S

ψ that remain after both immobili-
zation and selection.

Results and Discussion
Using a hybrid computational approach, our model provides a
generalized framework that can be used to analyze both de-
terministic and stochastic effects in SELEX. We use the model to
deconstruct two main forms of uncertainties in aptamer selection.
The first is parameter uncertainty, including the unknown initial KD
distribution as well as the experimentally tunable quantities KS and
Ttot. These are analyzed using a parameter study that observes the
impact of these factors on SELEX dynamics. The second is sto-
chastic uncertainty associated with low copy number binding

phenomena. As this form of uncertainty is random in nature, we
use Monte Carlo simulations to observe the variability in outcomes
between repeated SELEX procedures and extract conclusions
which are robust with respect to stochastic fluctuations. Unless
mentioned otherwise, the parameters from SI Appendix, Table S1
are used in all simulations.

Effect of KD Distribution on Selection Efficiency. Gaussian distribu-
tions describing the initial ligand pool dominate SELEX models in
literature (16), yet we are not aware of any prior systematic ap-
proach to study the impact of various distributions on the outcome
of SELEX. Whereas strong justifications have been made for the
assumption of a log-normal Gaussian description (29), we explore
various Gaussian as well as non-Gaussian distributions and their
impact on selection. Our convention for log-normal KD distribu-
tions is such that a Gaussian Nðμ, σÞ with mean μ and SD σ in log-
space translates to a mean of 10μ in KD space; we do not shift the
mean by ð1=2Þσ2 as is customary in Ito calculus. Fig. 2 highlights the
dramatic difference observed for just two different assumed distri-
butions, and demonstrates the significant role the initial KD distri-
bution plays in SELEX. This point is further accentuated by the fact
that different selection targets may significantly alter the initial KD
distribution for any given library. SI Appendix, Fig. S1 confirms that
for a variety of other distributions, including non-Gaussians, dis-
tribution shape has a dramatic impact on selection dynamics.
In addition to shape, we also explore the assumption that the KD

distribution is continuous everywhere. Whereas this assumption is
credible near the distribution mean where the frequency of mol-
ecules is sufficiently high, we expect it to fail at the extreme tails
where stochastic effects dominate and highly specific sequences
can create gaps in the affinity distribution. Indeed, it is well-known
that even single base-pair changes in DNA can dramatically im-
pact binding (30). Ligands in this regime are highly prized, but
may also be at highest risk to be lost to stochastic effects due to
low copy numbers.
We investigate this risk by using an initial Nð−4,0.4Þ distribution

and adding a fixed noise component that is randomly sampled
from a uniform distribution in log-space. Fig. 3 andMovie S1 show
a comparison of 2 Monte Carlo simulations where there are only
20 ligands present in the range of KD < 10−7M, i.e., where the
continuous Gaussian distribution is effectively zero. We find that
random binding effects can lead to total loss of those 20 ligands,
resulting in a very different evolution of the KD distribution from
cycle 12 onward in comparison with the case where only 2 of those
ligands survive. SI Appendix, Fig. S2 shows a distribution of the
mean ligand KD at cycle 20 obtained from 250 Monte Carlo
simulations, confirming this enormous variability in outcomes,
where the mean KD value spans 3 orders of magnitude.

Fig. 5. Optimal target concentrations strongly depend on assumed initial KD

distribution. The plot shows themean KD as a measure of pool binding strength
for the SELEX pool at cycle 20 using different constant target concentration.
Depending on the initial distribution of ligands, we find vastly different optimal
target concentrations, i.e., concentrations with lower mean KD.

Fig. 6. Impact of KS on SELEX dynamics. The plot shows the evolution of KD

distribution for three different values of KS. Similar to target concentration,
we find an optimal outcome in the middle range (KS = 10−12M, blue), but the
outcome for low KS is not as adverse as for low Ttot, because the distribution
still shifts toward low KD with increasing cycles.
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These results demonstrate the tremendous sensitivity of selec-
tion dynamics to both distribution shape and noise. They illustrate
that selection pressures are parameterized not only by extrinsic
environmental conditions given by the experimental setup, such as
the tunable quantities KS and Ttot, but just as importantly by in-
herently uncertain intrinsic population parameters that govern
relative competition between ligands of varying affinities.

Revisiting Target Concentration. Optimization of the target con-
centration, Ttot, has long stood as a critical step in adjusting se-
lection pressure based on experimental parameters (14–16).
However, the results from the previous section now suggest that
in addition to these experimental factors, the intrinsic affinity
distribution of the initial ligand pool may have a significant in-
fluence on the impact Ttot exerts on the overall selection pres-
sure. In light of this, we revisit the topic to study this impact by
varying both Ttot and the initial distribution. Fig. 4 and Movie S2
first show the dramatic impact of target concentration on se-
lection dynamics. The results indicate that Ttot = 10−4M (blue)
provides optimal selection out of the three investigated target
concentrations that use the initial Gaussian distribution
Nð−4,0.4Þ. To investigate the impact of Ttot more systematically,
Fig. 5 shows the mean KD value of ligands selected after 20 cycles
as a function of Ttot for 9 different initial distributions. Note that
as the mean KD decreases, the average binding strength of the
pool increases. Fig. 5 confirms that intermediate values of Ttot

yield optimal selection. SI Appendix, Fig. S7 A–C further shows
that adding noise to the initial distributions introduces additional
variability, but provides similar qualitative results. Interestingly,
we find that different initial distributions can have very different
optimal Ttot, stressing the importance of devising a strategy to
mitigate this impact and thereby control the inherent uncertainty
associated with the initial KD distribution.

KS Dependence and Nonspecific Selection. Our hybrid model has
allowed us to explore the impact of the unknown initial KD dis-
tribution and the target concentration Ttot, which are both present
in all SELEX protocols. However, our model additionally intro-
duces a ligand–substrate interaction that has never before been
studied and offers a unique opportunity to apply it toward more
recent selection schemes aimed at small-molecule aptamer devel-
opment (26–28). We therefore extend our analysis to study un-
certainties that govern an optimum KS, and observe how changes in
KS impact selection dynamics for different KD distributions.
Fig. 6 and Movie S3 show the evolution of a single initial KD

distribution for three different values of KS, showing an optimal
outcome for KS = 10−12M (blue). Noting these dynamics, we next
vary KS systematically and observe the mean KD value of ligands
present at cycle 20 for 9 different initial KD distributions (Fig. 7 and
SI Appendix, S7 D–F). Similar to target concentration, we find an
optimum in the intermediate ranges of KS and a clear dependence
on the initial distribution. However, contrary to target concentra-
tion, the mean KD for smaller KS is relatively insensitive. Thus,
these results suggest that a lower value of KS = 10−16M would
provide similar results across a multitude of initial distributions.
As it pertains to small-molecule selection schemes, these results

provide useful insights into the impact that substrate binding af-
finity has on selection efficiency, and may offer some guidance in
the appropriate selection of a substrate material. The results also
provide general insights into the impact of partitioning efficiency
and nonspecific binding on selection across various initial distri-
butions and suggest that a given partitioning efficiency or fraction
of nonspecific selection can impact different initial distributions in
vastly different ways.

Improving Selection Efficiency. We have shown that the initial KD
distribution has a tremendous impact on selection efficiency and
plays a significant role in modulating the impact of experimental
parameters such as Ttot and KS. These results highlight that
whereas established protocols are expected to perform well for
some distributions, they may perform moderately for others. To
address this variability in outcomes, we finally explore strategies to
mitigate these impacts using only the experimental parameters Ttot

and KS. As a metric for our analysis, we introduce the quantity
ϕðcÞ, which describes the fraction of ligands with KD < 10−10M at
cycle c= f1, . . . ,Cg. Using this quantity, we further introduce two
measures of efficiency: success probability Φ=ϕðCÞ and success
speed SC defined as the cycle c at which ϕðcÞ= 0.5ϕðCÞ.
We have seen that KS and Ttot play distinct roles in the evolu-

tionary dynamics of the KD distribution. However, both parame-
ters exhibit regimes of optimal selection that depend heavily on
the initial distribution mean and width. Figs. 5 and 7 show that
high values for Ttot and KS have a similar impact across all dis-
tributions, and suggest a conservative approach of beginning at
these high values for the initial cycles. This reduces the risk of

Fig. 7. Optimal KS depends on initial distribution. Plot of mean KD for the
SELEX pool at cycle 20 using different values of KS. Reducing KS from its
optimal value does not increase the mean KD as strongly as a reduction of
the target concentration from its optimum, as shown in Fig. 5.

Fig. 8. Plots comparing the fraction of high-affinity ligands Φ and speed SC of SELEX for six different KD distributions. The values are obtained from av-
eraging 50 Monte Carlo simulations. We observe that decreasing Ttot and KS over the rounds will lead to a higher fraction of strong binders (here with
KD < 10−10M) and will reach this fraction faster than when Ttot and Ks are kept constant.
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eliminating high-affinity, low copy number ligands early on. As
these high-affinity ligands are amplified in subsequent rounds, Ttot

and KS can be lowered to rapidly eliminate the remaining low-
affinity ligands (SI Appendix, Figs. S3 and S4). Whereas ideas to
lower the target concentrations have been discussed previously
(26), our results indicate that other parameters such as KS can be
tuned simultaneously to improve outcome across a multitude of
initial distributions and stochastic conditions. Fig. 8 shows Φ and
SC obtained from 50 Monte Carlo simulations of an improved
protocol where both Ttot and KS are decreased over the cycles as
described in SI Appendix, Table S2. These results are compared
with the original protocol with constant values Ttot = 10−4M and
KS = 10−12M (26); SI Appendix, Fig. S5 shows ϕðcÞ including the
SDs. Using six different initial Gaussian distributions with noise
added similar to Fig. 3, we observe that the improved protocol
with decreasing Ttot and KS is faster and leads to a higher fraction
of high-affinity binders than the original protocol. As an alterna-
tive metric of protocol performance, SI Appendix, Fig. S8 shows
the evolution of mean KD across the cycles, and also introduces
two alternative protocols where Ttot or KS are decreased faster
than in the improved protocol. The results indicate that whereas
faster decreases can further improve performance for some dis-
tributions, they may also lead to adverse outcome for others.

Conclusions and Outlook
Deterministic models for SELEX have shed tremendous insight on
the challenges faced in aptamer selection, but have been unable to
capture its inherently uncertain nature. Here, we have presented a
hybrid model that captures stochastic binding and furthermore
incorporates noncovalent ligand–substrate immobilization. Using
this framework, we have investigated previously unexplored ques-
tions including the role of the initial library KD distribution, impact
of distribution noise, and the effect of these factors on the opti-
mization of experimental parameters such as the total target con-
centration Ttot and the substrate dissociation constant KS.
The results of our modeling draw striking parallels to out-

comes in evolutionary biology, where environmental parameters
define a fitness landscape and competition can change this

landscape to influence survival and reproduction (31). Within
SELEX, ligands compete for target molecules to ensure survival
into the next cycle, whereas substrate binding traps the ligands and
leads to their removal. Reduction of target concentration can in-
crease competition, but when few target molecules are present,
even high-affinity binders are unlikely to find a target. Similar to
competition in limited resources scenarios, we find that the chance
of survival for even the highest affinity ligand strongly depends on
the strengths of the other ligands present in the population. Our
surprising finding that a handful of high-affinity ligands can out-
compete a pool of 1015 ligands is also seen in evolutionary biology,
where highly advantageous traits can quickly spread in a pop-
ulation, given the right conditions. The model enables one to
identify the parameters impacting selection, and can thus be used
to improve selection efficiency. A further important component of
evolution in biological systems is mutations. Mutations in SELEX
can also appear during PCR amplification, but usually lead to
reduced affinities of the strongest aptamers (30), so we ignored
them in our current approach. However, for some SELEX pro-
tocols, mutations can be beneficial to expand the experimental
sampling space (32), and it may be interesting to extend our model
to those protocols.
In summary, our model provides a better understanding of the

impact of the uncertainties in SELEX, and how experimental pa-
rameters can be tuned to improve outcome and speed of this ex-
pensive and time-consuming protocol. We have demonstrated how
optimization of the parameters can enhance selection efficiency of
one protocol dramatically, and we envisage that simple adaptations
of our model can be used to improve the many other established
protocols, as well as guide the design of novel protocols, which aim
to limit the impact of uncertainties in selection methods.
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