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Terpenes are structurally diverse natural products involved in many
ecological interactions. The pivotal enzymes for terpene biosynthe-
sis, terpene synthases (TPSs), had been described only in plants and
fungi in the eukaryotic domain. In this report, we systematically
analyzed the genome sequences of a broad range of nonplant/
nonfungus eukaryotes and identified putative TPS genes in six spe-
cies of amoebae, five of which are multicellular social amoebae
from the order of Dictyosteliida. A phylogenetic analysis revealed
that amoebal TPSs are evolutionarily more closely related to fungal
TPSs than to bacterial TPSs. The social amoeba Dictyostelium
discoideum was selected for functional study of the identified TPSs.
D. discoideum grows as a unicellular organism when food is abun-
dant and switches from vegetative growth to multicellular devel-
opment upon starvation. We found that expression of most
D. discoideum TPS genes was induced during development. Upon
heterologous expression, all nine TPSs from D. discoideum showed
sesquiterpene synthase activities. Some also exhibited monoter-
pene and/or diterpene synthase activities. Direct measurement of
volatile terpenes in cultures ofD. discoideum revealed essentially no
emission at an early stage of development. In contrast, a bouquet of
terpenes, dominated by sesquiterpenes including β-barbatene and
(E,E)-α-farnesene, was detected at the middle and late stages of de-
velopment, suggesting a development-specific function of volatile
terpenes in D. discoideum. The patchy distribution of TPS genes in
the eukaryotic domain and the evidence for TPS function in
D. discoideum indicate that the TPS genes mediate lineage-specific
adaptations.
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Terpenes constitute a structurally diverse class of natural
products. They are synthesized from two universal precursors:

isopentenyl diphosphate (IPP) and dimethylallyl diphosphate
(DMAPP), which are supplied by the mevalonate pathway and/or
the methylerythritol phosphate pathway (1). From IPP and DMAPP,
isoprenyl diphosphates of various chain lengths are produced by the
action of isoprenyl diphosphate synthases (IDSs) (2). Among the
many metabolic fates of isoprenyl diphosphates (3), they serve as
substrates for terpene synthases, which convert isoprenyl diphos-
phates to different subclasses of terpenes of fascinating structural
diversity, such as monoterpenes, sesquiterpenes, and diterpenes
(4). The ability of an organism to produce terpenes depends on
whether the organism contains terpene synthase genes.
Unlike IDS genes, which are ubiquitous in living organisms,

the occurrence of terpene synthase genes and, thus, the pro-
duction of terpenes appear to be lineage-specific. Presently, two
general types of terpene synthases are recognized: classic terpene
synthases (abbreviated as TPSs) and IDS-type terpene synthases.
The majority of terpene synthases that have been characterized
so far belongs to the classic TPSs. In prokaryotes, classic TPS
genes are widely distributed in bacteria (5, 6), whereas none has
been observed in archaea. In eukaryotes, classic TPS genes had
been found only in land plants (7, 8) and fungi (9, 10), whereas

the IDS-type terpene synthases have been identified recently in
two species of insects (11, 12). Sequence analysis of these insect
genes suggests that they have evolved recently from insect IDSs
(12), whereas classic TPSs probably also evolved from IDSs, but
anciently (13). TPS genes are major contributors to the chemical
diversity exhibited by living organisms, so it is important to un-
derstand their distribution and evolution.
In the current global tree of eukaryotes, a domain that is

composed of diverse organisms, the five supergroups Opistho-
konta, Amoebozoa, Excavata, Archaeplastida, and SAR (stra-
menopiles + alveolates + Rhizaria) are recognized (14, 15). Only
the supergroup Archaeplastida, which contains land plants, and
Opisthokonta, which contains fungi, are known to contain classic
TPS genes. It has been accepted that classic TPS genes are ab-
sent in insects (12), which are in the supergroup of Opistho-
konta. The presence/absence of TPS genes in other eukaryotes
has not been systematically investigated. Terpenes serve diverse
functions in the organisms that produce them, including defense
against predators and attraction of beneficial organisms (16),
which implies that TPS genes play a role in evolutionary adap-
tations. The goals of this study were to systematically search for
classic TPS genes in nonplant/nonfungus eukaryotes, infer their
evolutionary relationship to known TPSs, and understand their
biochemical and biological functions.

Significance

Many living organisms use terpenes for ecological interactions.
Terpenes are biosynthesized by terpene synthases (TPSs), but
classic TPS genes are known to exist only in plants and fungi
among the eukaryotes. In this study, TPS genes were identified
in six species of amoebae with five of them being multicellular
social amoebae. Amoebal TPSs showed closer relatedness to
fungal TPSs than bacterial TPSs. In the social amoeba Dictyos-
telium discoideum, all nine TPS genes encoded active enzymes
and most of their terpene products were released as volatiles
in a development-specific manner. This study highlights a
wider distribution of TPS genes in eukaryotes than previously
thought and opens a door to studying the function and evo-
lution of TPS genes and their products.
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Results
Identification of Terpene Synthase Genes in Nonplant/Nonfungus
Eukaryotes. To determine the occurrence of TPS genes in eu-
karyotes other than plants and fungi, a HMMER search (17) was
conducted by using a set of 168 well-annotated genomes (Table
S1) of nonplant/nonfungus eukaryotes. Whereas the general
absence of TPS genes in nonplant/nonfungus eukaryotes was
confirmed, TPS genes were detected in the two supergroups of
Amoebozoa and Excavata (Fig. 1). Among the seven species of
Amoebozoa analyzed (Table S1), all three species from the ge-
nus Dictyostelium, Dictyostelium discoideum, Dictyostelium fas-
ciculatum, and Dictyostelium purpureum, were found to contain
TPS genes, whereas no TPS genes were found in the other four
species Entamoeba histolytica, Entamoeba dispar, Entamoeba
invadens, and Acanthamoeba castellanii. Among the 10 species of
Excavata with sequenced genomes (Table S1), TPS genes were
found only in Naegleria gruberi (Fig. 1). A search against the
nonredundant (nr) database of National Center for Biotechnology
Information (NCBI) (www.ncbi.nlm.nih.gov) revealed that TPS
genes are also present in two additional species of eukaryotes,
Polysphondylium pallidum and Acytostelium subglobosum, both of
which are classified as Amoebozoa (Fig. 1). Both genera Poly-
sphondylium and Dictyostelium belong to the family Dictyostelii-
dae, whereas A. subglobosum is a species in the Actyosteliidae
family. Both Dictyosteliidae and Actyosteliidae belong to the same
order of Dictyosteliida (18). It should be noted that all of the
six eukaryotic species that were found to contain TPS genes in
this study are amoebae (19), with the five species from Dic-
tyosteliida belonging to the unique group of multicellular social
amoebae (18).
There are significant variations in the number of TPS genes

found in the genome of each of the five Dictyosteliida species.
Whereas A. subglobosum contains a single TPS gene, the four
species from Dictyosteliidae possess small gene families ranging
from three TPS genes in D. fasciculatum to 21 TPS genes in
P. pallidum (Table S2). The amoeba N. gruberi contains seven
TPS genes. The number of introns for the TPS genes from
Dictyosteliida ranges between 0 and 3, whereas in contrast, all of
the TPS genes from N. gruberi are intronless (Table S2).

Identified Eukaryotic Terpene Synthases: Evolutionary Relatedness
and Motifs. To understand the evolutionary relatedness of the
identified eukaryotic TPSs with known TPSs, a phylogenetic tree
was constructed that includes, besides the eukaryotic TPSs de-
scribed here, representative bacterial and fungal TPSs, and mi-
crobial type TPSs from the lycophyte Selaginella moellendorffii
(8). Notably, the TPSs from the five species of Dictyosteliida
clustered together (clade I), whereas the seven TPSs from
N. gruberi clustered in a separate, but closely related clade (clade
II) (Fig. 2). Together, the amoebal TPSs showed closer relatedness
to fungal TPSs than to bacterial TPSs (Fig. 2).
TPSs contain several highly conserved motifs that are important

for catalytic activity including the aspartate-rich “DDxx(x)D/E”
motif and the “NDxxSxxxD/E” motif, both of which are involved in
complexing metal ions to coordinate the binding of the isoprenyl
diphosphate substrate in the active site (20, 21). Both motifs are also
highly conserved among all newly identified eukaryotic TPSs (Table
S3). In addition, the diphosphate sensor that is involved in substrate
recognition and critical for catalytic activity (Arginine) (6, 22) was
also highly conserved (Table S3).

Expression Patterns of Individual Terpene Synthase Genes in Dictyostelium
discoideum.D. discoideum was selected as a model system to explore
the function of the newly identified eukaryotic TPSs. As a social
amoeba, D. discoideum has a distinctive life cycle (Fig. S1). It
propagates vegetatively as a unicellular organism when food (bac-
teria in the natural environment) is abundant. Upon starvation,
D. discoideum transitions into multicellular development in a highly
coordinated process that causes individual cells to aggregate and
differentiate with formation of a multicellular slug that migrates
and finally turns into a fruiting body. This process lasts approxi-
mately 24 h (23).
The D. discoideum genome contains 11 putative TPS genes, 9

of which show a full-length sequence and were designated
DdTPS1 to DdTPS9. Analysis of the published gene expression
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Fig. 1. Distribution of terpene synthase (TPS) genes among the major
lineages of eukaryotes with sequenced genomes. A total of 168 species
(Table S1), which did not include any species from land plants and fungi
(Holomycota), were analyzed. The phylogeny of eukaryotes was adapted
from Adl et al. (14) and Burki (15) with five supergroups recognized: Opis-
thokonta, Amoebozoa, Excavata, Archaeplastida, and SAR (stramenopiles +
alveolates + Rhizaria). The first number (before the slash) indicates the
number of species in certain lineages that were determined to contain TPS
genes. The second number (after the slash) indicates the total number of
species in that lineage that were analyzed. NA, not analyzed. The “+2” in-
dicates that two additional species from Amoebozoa were identified to
contain TPS genes in the nonredundant database at NCBI.

Fig. 2. Phylogenetic reconstruction of newly identified eukaryotic TPSs with
known TPSs. The set of known TPSs includes representative TPSs from fungi
and bacteria. Also included were the microbial terpene synthase-like pro-
teins identified from the plant Selaginella moellendorffii. The newly iden-
tified eukaryotic TPSs include a total of 50 putative full-length TPSs
identified from six species (five species from Dictyosteliida and N. gruberi)
(Table S2). TPSs are color-coded based on their source. The TPSs from Dic-
tyosteliida form clade I and the TPSs from N. gruberi form clade II.
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dataset of D. discoideum (24) revealed that each TPS gene of
D. discoideum was expressed at different times during multicel-
lular development (Fig. 3). Specifically, as D. discoideum began
to starve (0 h), mRNAs of DdTPS1, DdTPS2, DdTPS3, DdTPS6,
and DdTPS7 were present at detectable but low levels, whereas
mRNAs of DdTPS4, DdTPS5, DdTPS8, and DdTPS9 were almost
undetectable, but in all cases, the mRNA abundance increased
during development. During mound formation (approximately
8–12 h), DdTPS3 attained the highest level of expression among
all nine genes, whereas DdTPS1 levels were still near the limit
of detection. At the time of slug formation (approximately 16 h),
DdTPS2 and DdTPS8 mRNAs reached their highest abundance,
whereas the abundance of DdTPS3 started to decrease. Finally,
during culmination (from 18 to 24 h), DdTPS2, DdTPS3, DdTPS5,
and DdTPS8 levels decreased, whereas DdTPS1, DdTPS4,
DdTPS6, and DdTPS9 mRNAs accumulated to higher levels,
reaching their peaks at the ultimate stage of mature fruiting
body (24 h).

DdTPS Genes in Dictyostelium discoideum Encode Active Terpene-
Producing Enzymes. To further understand the function of
D. discoideum terpene synthase genes, we characterized the
biochemical activities of the enzymes they encode. Full-length
cDNAs of DdTPS1–DdTPS9 were cloned and heterologously
expressed in Escherichia coli. Individual recombinant DdTPS
proteins were tested for terpene synthase activity. All nine en-
zymes were able to accept farnesyl diphosphate (FPP) as a sub-
strate to produce either a single sesquiterpene or a mixture of
compounds (Fig. 4). The major products of DdTPS1, DdTPS4,
DdTPS5, and DdTPS7/9 were identified as (E,E)-α-farnesene,

(E)-nerolidol, (E)-β-farnesene, and β-barbatene, respectively,
whereas DdTPS2, DdTPS3, DdTPS6, and DdTPS8 produced
unidentified sesquiterpenes. DdTPS1, DdTPS2, DdTPS3, and
DdTPS9 were also able to convert geranyl diphosphate (GPP)
into different mixtures of monoterpenes (Fig. S2). In addition,
diterpene products from geranylgeranyl diphosphate (GGPP)
could be observed for DdTPS1, DdTPS2, DdTPS3, DdTPS4,
DdTPS5, and DdTPS9 (Fig. S3).

Dictyostelium discoideum Emits Terpene-Dominated Volatiles During
Multicellular Development. The elaborate temporal regulation of
mRNA abundance during different life stages suggests that the
DdTPS genes may play a role in development. Monoterpenes
and sesquiterpenes are generally volatile compounds that can
be trapped by use of, e.g., a closed-loop stripping apparatus or
solid-phase microextraction (SPME) and analyzed by gas chro-
matography/mass spectrometry (GC/MS) (25). Based on the
expression patterns of individual DdTPS genes (Fig. 3) and the
in vitro biochemical activities of the respective proteins (Fig. 4
and Figs. S2 and S3), we hypothesized that DdTPSs might be
involved in producing volatile compounds during development.
To test this hypothesis, we performed volatile profiling of
D. discoideum cultures at 4-h intervals during the 24 h of de-
velopment (Fig. 5).
Altogether, a total of 15 volatile compounds were detected

from developing D. discoideum cultures (Fig. 5), including 11
terpenes and four nonterpene volatiles, one of which was iden-
tified as 2-phenylethanol. The terpene portion of the volatiles
was dominated by nine detectable sesquiterpenes, of which four
were identified as (E,E)-α-farnesene, calarene, (E)-nerolidol,
and β-barbatene (Fig. 5). Comparison of the mass spectra of the
unidentified sesquiterpenes in the headspace extracts to those
obtained enzymatically with the expressed DdTPSs allowed as-
signment of each of the compounds emitted by D. discoideum
with confidence to a specific DdTPS. As such, each sesquiter-
pene in Fig. 5 was labeled with the same peak number as used in
Fig. 4. In addition, the monoterpene linalool and one diterpene,
which was identical to in vitro diterpene product of DdTPS5
(Fig. S3), were detected in the culture extracts.
The relative abundance of individual volatile terpenes during

the 24 h of development was calculated based on three biologi-
cal replicates (Fig. 5 and Fig. S4). At the beginning of develop-
ment (0 h), essentially no volatile terpenes were detected, whereas
after 4 h of development, the emission of traces of terpenes in-
cluding (E)-nerolidol was detected. The production of terpenes by
D. discoideum gradually increased during the next hours of de-
velopment, but some compounds showed an early maximum
production, e.g., calarene peaked at 12 h and 16 h, whereas the
production of other terpenes such as (E,E)-α-farnesene and
β-barbatene exhibited a later maximum of production.

Discussion
This first report of the occurrence of canonical terpene synthase
genes in the social amoebae raises questions about the functions
of the terpene products in these organisms. The fact that TPS
gene expression and terpene volatile emission in D. discoideum
are restricted to specific periods during multicellular develop-
ment suggests possible roles for these compounds if the unique
biology of D. discoideum is considered in light of the known
functions of volatile terpenes in other organisms.
One possible function of volatile terpenes emitted from

D. discoideum is to attract other organisms to facilitate spore
dispersal, resembling the function of volatile terpenes from the
fruiting bodies of fungi (26). Forming fruiting bodies by social
amoebae is considered to be an adaptation for spore dispersal
(27). This hypothesis was directly supported by experimental
studies in which fruiting bodies were shown to increase the rate
at which spores are acquired by a model invertebrate Drosophila

Fig. 3. Expression patterns of nine terpene synthase genes in D. discoideum
(DdTPS1-9). This analysis was based on published RNAseq data (24), which
were obtained at seven time points during a complete developmental pro-
gram in which individual D. discoideum cells aggregated and differentiated,
forming a multicellular slug that migrated and then formed a fruiting body
in a highly coordinated process that lasted approximately 24 h. The ex-
pression levels of nine DdTPS genes were measured by RPKM (reads per
kilobase per million sequenced reads) and then displayed on a log2(RPKM+1)
scale in this line plot. The line plot shows the transcript abundance (y axis;
log-scale) of nine DdTPS genes. The cartoons depict various stages during
multicellular development: vegetative, individual cells (0 h), streaming (8 h),
loose aggregate (10 h), tipped aggregate (14 h), slug (16 h), Mexican hat
(20 h), and fruiting bodies (24 h).
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melanogaster (27). Although the primary vectors for D. discoideum
spore dispersal are unknown (27), it will be an interesting future
subject to identify such vectors in nature and then determine
whether volatile terpenes have a role in attracting such vectors to
facilitate spore dispersal. Consistent with this hypothesis, β-bar-
batene (Fig. 5) emitted from the fruiting bodies of the bracket
fungus Fomitopsis pinicola has been implicated in attracting insects
for spore dispersal (26).
Another possible function of D. discoideum volatile terpenes is

defense. Social amoebae are preyed on by nematodes (28). They
have evolved multiple defense mechanisms, which include the
synthesis of a protective extracellular matrix called the slime
sheath and the formation of protective coats at the surface of
spores (28). In addition, individual amoebae protect themselves
by secreting compounds that repel nematodes (28). It will be
interesting to see whether any of the volatile terpenes emitted
from D. discoideum serve such a function as well. Consistent with
this hypothesis, (E,E)-α-farnesene (Fig. 5) emitted from the leaves

of the model plant Arabidopsis thaliana has been implicated in
defense against insects (29).
The third possibility is that D. discoideum terpenes may

function as signals to coordinate multicellular development. The
roles of terpenes in signaling have been relatively well-studied in
plants (30). As volatile compounds, terpenes can signal over a
distance in either multicellular organisms or multicellular ag-
gregates. Previous studies showed that ammonia, a volatile by-
product of gluconeogenesis, is involved in regulating several
stages of D. discoideum development, including aggregation (31),
slug migration (32), and culmination (33). It is certainly in-
triguing to ask whether volatile terpenes could have similar
functions, with the diversity of chemical structures helping to
provide functional specificity.
It is interesting that all of the five species of social amoebae

(i.e., all from Dictyosteliida) with sequenced genomes contain TPS
genes, whereas the three species from the genus Entamoeba
(Table S1 and Fig. 1), which also belong to the supergroup
Amoebozoa, do not contain any TPS gene. The genus Entamoeba
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Fig. 4. Sesquiterpene synthase activity of D. discoideum terpene synthases. Genes were heterologously expressed in E. coli, and crude protein extracts were
incubated with the substrate FPP. Enzyme products were collected by using solid-phase microextraction and analyzed by GC/MS. GC traces (Left) and mass
spectra of major products (Right) are shown. 1, (E,E)-α-farnesene*; 2, unidentified sesquiterpene hydrocarbon; 3, β-maaliene; 4, aristolene; 5, calarene; 6,
unidentified sesquiterpene hydrocarbon; 7, unidentified sesquiterpene hydrocarbon; 8, unidentified sesquiterpene hydrocarbon; 9, (E)-nerolidol*; 10,
β-elemene*; 11, (E)-β-farnesene*; 12, unidentified sesquiterpene hydrocarbon; 13, β-barbatene*; 14, unidentified sesquiterpene; cont, contamination.
Compounds marked with asterisks (*) were identified by using authentic standards. Each assay was repeated at least three times, and a representative GC
chromatogram is shown.
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are amoebae but not social amoebae, suggesting that TPS genes
may provide adaptive functions for social amoeba, which share a
unique lifestyle. However, N. gruberi of the supergroup Excavata,
which is also an amoeba having no multicellular development (34),
contains TPS genes (Fig. 1). Sharing similarity in lifestyle, N. gruberi
and Entamoeba are evolutionarily distantly related. It will be in-
teresting to investigate the biochemical and biological function of
N. gruberi TPS genes and to understand how they may confer
a fitness advantage.
To briefly summarize, we have found classic terpene synthase

genes in six species of amoebae among a broad range of non-
plant/nonfungus eukaryotes. Amoebal TPSs are more closely
related to fungal TPSs and the microbial type TPSs from plants
than bacterial TPSs (Fig. 2). The social amoeba D. discoideum is
an organism other than plants, fungi, and bacteria from which
classic terpene synthase genes have been functionally charac-
terized (Fig. 4). This study provides insights into the occurrence,
function and evolution of TPS genes, particularly in eukaryotes,
and it is expected to stimulate important future research.

Materials and Methods
Sequence Retrieval and Analysis.A total of 168 species of nonplant/nonfungus
eukaryotes with well-annotated genome sequences (Table S1) archived at
the KEGG genome database (www.genome.jp/kegg/catalog/org_list.html)
were downloaded as the genome dataset. Another dataset was the non-
redundant (nr) protein database from NCBI, which was downloaded on April
19, 2016. Both databases were searched against the Pfam-A database locally
by using HMMER 3.0 with an e-value of 1e−2. Sequences with best hits from
the following three HMM profiles were identified as putative terpene

synthases: Terpene_synth_C (PF03936) and Terpene Synthase N-terminal
domain (PF01397), and TRI5 (PF06330). For the search of the nr database, the
terpene synthase hits identified from plants, fungi, archaea, and bacteria
were removed. For phylogenetic reconstruction, known bacterial and fungal
terpene synthases were retrieved from Pfam database (version 27). MAFFT
(L-INS-i) was used to build the multiple sequence alignment with 1,000 it-
erations of improvement. The maximum-likelihood phylogenetic tree was
built with RAxML through the CIPRES Science Gateway (https://www.phylo.
org) by using the LG+G+F amino acid substitution model with 1,000 boot-
strap replicates and then rendered by using FigTree (version 1.4.2).

Cloning of Full-Length cDNA of DdTPS Genes of Dictyostelium discoideum via
RT-PCR. D. discoideum (strain AX4) was obtained from the Dictybase Stock
Center (www.dictybase.org). D. discoideum was cocultured with live Kleb-
siella pneumoniae bacteria on SM agar plates (35) by following the protocol
described in the Dictybase Stock Center. When slugs formed, D. discoideum
cells were collected and used for total RNA isolation following the protocol
described by ref. 36. Full-length cDNA of each DdTPS gene was amplified
by RT-PCR using the gene specific primers listed in Table S4. PCR products
were cloned into the pEXP-5-CT/TOPO vector (ThermoFisher Scientific) and
confirmed by sequencing.

Terpene Synthase Enzyme Assays. Heterologous expression of DdTPS genes in
E. coli, recombinant protein preparation, terpene synthase enzyme assays, and
terpene product identification using a Hewlett-Packard 6890 gas chromato-
graph coupled to a Hewlett-Packard 5973 mass spectrometer were performed
as described (8). Each expressed protein was assayed at least three times.

DdTPS Gene Expression Analysis. DdTPS gene expression was analyzed by
using published RNA-seq data from developing D. discoideum (24). Transcript
abundance was quantified as described in ref. 37. The data are available on
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dictyExpress (38). Briefly, D. discoideum was grown on a thick lawn of
K. aerogenes before the food source was removed to initiate the develop-
mental program. The samples were obtained in 4-h intervals throughout the
24-h developmental program.

Headspace Collection and GC/MS Analysis. A mixture of D. discoideum spores
and freshly grown K. pneumoniaewas spread onto SM agar plates to initiate
D. discoideum culture. Under our experimental conditions, D. discoideum
progressed from spore germination to vegetative growth to the completion
of multicellular development in ∼48 h. At 24 h, the appearance of the cul-
ture plate changed from opaque (from the bacterial lawn) to translucent,
indicating the clearing of bacteria. This time point was defined as the start
of multicellular development, after which D. discoideum progressed through
the various described developmental stages in the next 24 h with the
eventual formation of fruiting bodies (Fig. S1). SPME combined with GC/MS
was used for volatile profiling of the D. discoideum cultures. During the 24 h
of development, volatiles were collected once every 4 h (Fig. 5). Before each
collection, the lid of the culture plate was removed and the plate was left in

the hood for 1 min to dispose of accumulated volatiles. Then the lid was put
back on and a SPME fiber coated with 100-μm polydimethylsiloxane was
inserted into the headspace of the plate to start volatile collection. After 1 h,
the SPME fiber was retracted and inserted into the injector port (a splitless
injection and injector temperature of 250 °C) of a Shimadzu 17A gas chro-
matograph coupled to a Shimadzu QP5050A quadrupole mass selective
detector for chemical identification. Separation was performed on a Restek
Rxi-5Sil MS column (30 m × 0.25 mm i.d. × 0.25 μm thickness; Restek) with
helium as the carrier gas and a temperature program from 60 °C to 300 °C at
5 °C·min−1. The experiment was performed with three biological replicates.
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