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Oscillatory neural dynamics play an important role in the coordination
of large-scale brain networks. High-level cognitive processes depend
on dynamics evolving over hundreds of milliseconds, so measuring
neural activity in this frequency range is important for cognitive
neuroscience. However, current noninvasive neuroimaging methods
are not able to precisely localize oscillatory neural activity above
0.2 Hz. Electroencephalography and magnetoencephalography have
limited spatial resolution, whereas fMRI has limited temporal resolu-
tion because it measures vascular responses rather than directly
recording neural activity. We hypothesized that the recent develop-
ment of fast fMRI techniques, combined with the extra sensitivity
afforded by ultra-high-field systems, could enable precise localization
of neural oscillations. We tested whether fMRI can detect neural
oscillations using human visual cortex as a model system. We
detected small oscillatory fMRI signals in response to stimuli oscillat-
ing at up to 0.75 Hz within single scan sessions, and these responses
were an order of magnitude larger than predicted by canonical linear
models. Simultaneous EEG-fMRI and simulations based on a biophys-
ical model of the hemodynamic response to neuronal activity sug-
gested that the blood oxygen level-dependent response becomes
faster for rapidly varying stimuli, enabling the detection of higher
frequencies than expected. Accounting for phase delays across voxels
further improved detection, demonstrating that identifying vascular
delays will be of increasing importance with higher-frequency activ-
ity. These results challenge the assumption that the hemodynamic
response is slow, and demonstrate that fMRI has the potential to
map neural oscillations directly throughout the brain.
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euronal information processing is shaped by ongoing oscil-

latory activity, which modulates excitability in neuronal
populations and supports the coordination of large-scale brain
networks (1-3). In particular, the occurrence of low-frequency
dynamics (0.1-2 Hz) within specific cortical regions has been
suggested as a key mechanism underlying perception, attention,
and awareness (4, 5), because conscious processes typically evolve
on the timescale of hundreds of milliseconds (6) and may depend
on cortical dynamics in this frequency range. Localizing >0.1-Hz
oscillatory dynamics in the human brain is an essential step toward
understanding the mechanisms of the many high-level cognitive
processes that occur on these timescales. Studies of the spatial
properties of neural oscillations in human subjects have been
fundamentally limited by the ill-posed inverse problem of elec-
tromagnetic recordings: It is not possible to reconstruct the neural
generators of EEG and magnetoencephalography (MEG) signals
unambiguously, and signals from deep subcortical structures are
rarely detected. Noninvasive neuroimaging approaches that can
detect >0.1-Hz oscillations with higher spatial resolution are needed
to advance studies of large-scale brain network function.

We hypothesized that recent technical advances in fMRI could
potentially enable direct localization of neural oscillations in the
human brain. fMRI measures brain function by tracking focal
changes in blood flow and oxygenation and therefore is an indirect
measure of neuronal activity, with spatial and temporal specificity
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intrinsically limited by the precision and responsiveness of the co-
ordinated regulation of blood delivery in the brain (7, 8). Typical
fMRI experiments use stimuli or tasks designed to elicit large, easily
detectable hemodynamic responses, which lag the onset of neuronal
activation by several seconds, suggesting that these hemodynamic
signals are too slow to capture many aspects of ongoing neuronal
activity. However, new MRI technologies available in recent years,
such as ultrahigh magnetic field systems, provide boosts in sensi-
tivity, enabling more naturalistic stimulation paradigms that perturb
the vasculature only weakly.

In addition to improvements in sensitivity, the recent development
of methods for simultaneous multislice (SMS) imaging (9-13) allows
whole-brain fMRI to be performed at relatively fast acquisition rates
(<1 s). However, the temporal resolution of fMRI has generally been
thought to be limited by the sluggishness of the hemodynamic re-
sponse itself rather than by data-acquisition rates. The slow dynamics
of the hemodynamic response function (HRF) result in strong at-
tenuation of high-frequency neural activity (14). In addition, rapidly
repeating neural stimuli typically result in smaller fMRI responses
(15-20), further limiting the detectability of neural oscillations.

The detection of patterns that are periodic in nature, rather than
irregular, is particularly challenging (14). The fMRI response to
periodic (nonjittered) stimuli declines rapidly with increasing fre-
quency and has been detected down to a limit of a 6.7-s (21) or 4-s
(22) period. Because of the strong attenuation of high-frequency
oscillatory signals, event-related fMRI paradigms that use relatively
short interstimulus intervals (ISIs) typically either jitter the ISIs or
alternate between different stimulus conditions (14, 23). These
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experimental design choices are made in part to lower the fun-
damental frequency being studied. In general, the fact that fMRI
temporal resolution is limited by slow neurovascular coupling has
restricted the majority of fMRI studies to studying dynamics in the
<0.1-Hz range, because periodic oscillations above that frequency
range are expected to be vanishingly small.

Despite this evidence, recent studies performed during the
resting state have suggested that there are significant neuronally
driven blood oxygenation level-dependent (BOLD) contributions
to fMRI signals at frequencies above 0.1 Hz (24-27). However, a
challenge in interpreting fMRI oscillatory dynamics measured
during the resting state is that the underlying brain activity is not
known. Electrophysiology studies have demonstrated a link be-
tween infraslow (<0.1 Hz) EEG activity and the fMRI signal (28,
29), but such studies have not been performed at higher frequen-
cies. In the absence of neurophysiological recordings, it is difficult
to ascertain the degree to which the >0.1-Hz fMRI signals are
generated by >0.1-Hz neural activity or instead reflect other he-
modynamic and physiological processes.

This study aimed to determine whether fMRI signals contain
neurally generated oscillatory content above 0.2 Hz and to de-
termine the frequency response to ongoing periodic neural ac-
tivity. To link the dynamics of the fMRI signal to underlying
neural activity, we examined the fMRI response in the context of
a known, stimulus-induced neural oscillation and used rapid data
acquisition [repetition time (TR) <300 ms] to sample the fMRI
oscillatory response directly. We found that fMRI oscillations of
up to 0.75 Hz can be detected and that the amplitude of these
oscillations is an order of magnitude larger than predicted by
canonical models. Using simultaneous EEG-fMRI and model-
based simulations, we studied the link between neural activity,
neurovascular coupling, and the BOLD signal to determine how
fast fMRI responses are generated.

Results

Canonical Linear Models Predict Undetectable fMRI Oscillations at
0.5 Hz. We used a flickering checkerboard stimulus whose lumi-
nance contrast oscillated at a frequency of interest, driving neuronal
oscillations in human primary visual cortex (V1) and enabling us to
quantify the fMRI response to a controlled oscillation with a known
frequency (Fig. 14).

We first performed simulations of the predicted fMRI response
to neural oscillations at each frequency by convolving the idealized
neuronal activity (the sinusoidal stimulus waveform) with either the
canonical two-gamma HRF used in SPM software, a single-gamma
function, or the double-gamma HRF (Fig. 1B) described by Glover
(30). The predicted response was estimated as the amplitude of the
convolved response once it reached a plateau value (Fig. 1C), dis-
carding the initial transient response. The predicted response am-
plitude declined exponentially with increasing frequency for all
three models (Fig. 1D and Fig. S14). The amplitude of the fMRI
response to a 0.5-Hz neural oscillation was predicted to be 0.8-1.3%
of the response to a 0.2-Hz oscillation, suggesting that resolving
fMRI signals at delta-range frequencies could be quite challenging.
We next added nonlinear effects to the hemodynamic model, be-
cause at short ISIs the fMRI response becomes both smaller in
amplitude and broader (15, 16, 20), and observed that this nonlin-
earity is predicted to yield even more temporal smoothing and a
further reduction in fMRI signal at higher frequencies (Fig. 1E).
However, these models were developed to describe task-evoked
activity in response to individual stimuli with long durations during
block-design experiments, whereas periodic continuous neural ac-
tivity, which may be closer to that observed in typical naturalistic
contexts, could potentially elicit different hemodynamic responses.

fMRI Oscillations at 0.5 Hz Are an Order of Magnitude Larger than

Expected. To test whether fMRI can detect neural oscillations
directly, we acquired fMRI data at 3 T using fast temporal
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Fig. 1. Linear canonical models predict that the fMRI response to oscillatory
neural activity will decrease exponentially as the oscillation frequency in-
creases. (A) Diagram of the visual stimulus. The luminance contrast of a
flickering radial checkerboard was modulated at 0.2, 0.33, 0.5, or 0.75 Hz.
(B) Time course of the HRFs used for simulations. (C) Example of the pre-
dicted fMRI response to sinusoidally oscillating neural activity. As the fre-
quency increases, the predicted response reaches a stable plateau, and the
oscillation amplitude around that plateau becomes small. (D) Predicted fMRI
response across stimulation frequencies. The predicted response declines
exponentially for all HRFs. (E) The predicted fMRI response on a log scale for
a linear system and for a sample set of nonlinear parameters shows that
nonlinear adaptation effects would be expected to reduce the fMRI re-
sponse amplitude further at high stimulus frequencies.

sampling (TR <280 ms) and analyzed the mean response in V1
during the oscillatory visual stimulus (Fig. 2 4 and B). We av-
eraged the mean time series across all voxels in the region of
interest (ROI) on every cycle of the stimulus contrast oscillation,
discarding the first 3-10 cycles to avoid transient effects (S/
Methods). The resulting plot shows a stimulus-triggered average
of the fMRI data. In experiment 1, we found a robust oscillation
in response to the visual stimulation at 0.2 Hz, with an amplitude
of 0.73% [95% confidence interval (CI) 0.55, 0.92] (Fig. 2C). As
the stimulus frequency increased, we continued to find signifi-
cant oscillatory responses, with an amplitude of 0.21% (CI 0.09,
0.33) at 0.33 Hz (Fig. 2D) and an amplitude of 0.06% at 0.5 Hz
(CI 0.04, 0.09) (Fig. 2E). The induced oscillations also could be
seen in the power spectrum of the V1 BOLD signal (Fig. S2),
although the evoked analysis (Fig. 2C) enabled a better estima-
tion of oscillation amplitude because it reduced the contribution
of non—phase-locked noise. To ensure the replicability of these
responses, we conducted a second experiment using SMS imag-
ing to double the number of slices acquired. We again found
robust induction of oscillatory responses in V1 when stimulation
was delivered at 0.2, 0.33, or 0.5 Hz (Fig. 2 F-H) at similar
amplitudes (0.2 Hz = 1.05%, CI 0.83, 1.31; 0.33 Hz = 0.28%, CI
0.15, 0.41; 0.5 Hz = 0.08%, CI 0.04, 0.13). The phase of the
response was shifted at higher frequencies, as expected because
of the filtering induced by the hemodynamic response (Fig. S1 B
and C). Although the response amplitude was small at higher
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Fig. 2. Oscillatory fMRI responses in V1 acquired at 3 T can be detected at
each stimulus frequency and are an order of magnitude larger than pre-
dicted. (A) An example of slice positioning in experiment 1 (five slices). (B) An
example of the V1 ROl in a single subject. (C) Stimulus-triggered mean re-
sponse in V1 in experiment 1, locked to the stimulation cycle at 0.2 Hz. The
shaded area shows the SE across runs. (D) As in C, runs at 0.33 Hz. (E) Asin C,
runs at 0.5 Hz. (F-H) Mean response in V1 in experiment 2. (/) Amplitude of
the fMRI response across stimulus frequencies, compared with the linear
model using the SPM HRF. Error bars are 95% Cls (bootstrap). (J) Ratio of the
fMRI response at 0.2 Hz to the response at 0.5 Hz across all subjects who
participated in both conditions: Each individual subject had a larger response
to the 0.5-Hz stimulus than predicted by the canonical linear model with the
SPM HRF (black dashed line).

frequencies (Fig. 21), it nevertheless was substantially larger than
predicted by the canonical linear model in every subject studied
(Fig. 2J), eliciting a mean response within individual subjects that
was 10.1% the size of the 0.2-Hz condition rather than the 1.3%
ratio predicted by the SPM model (P = 0.0005, Wilcoxon signed-
rank test). The response amplitude was very similar (10.7%)
when edge slices were excluded from the analysis, suggesting that
these observations were not driven by inflow effects. The fMRI
response at 0.5 Hz was therefore an order of magnitude larger
than predicted, suggesting that delta-range neuronal oscillations
are detected more easily with fMRI than originally thought.

Neural and Vascular Mechanisms Underlying the Unexpectedly Large
fMRI Response. The large fMRI response could indicate either
that the underlying neural activity is stronger at 0.5 Hz than at
0.2 Hz and therefore drives a larger hemodynamic response, or
that the linear canonical hemodynamic model is not a good fit
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for periodic neural activity. To investigate the first possibility, we
recorded EEG simultaneously with fMRI in four subjects to ob-
tain an electrophysiological measure of response amplitude. The
evoked response was concentrated in occipital channels (Fig. 34),
consistent with previous studies suggesting that the steady-state
visual evoked potential (SSVEP) is generated largely by visual
cortex with strong contributions from V1 (31-33). The cross-
correlation between the V1 fMRI signal and the 12-Hz amplitude
in the occipital EEG demonstrated a clear correlation (Fig. 3B), in
line with these previous reports that V1 is a major generator of
the SSVEP. The cross-correlation for both stimulus conditions
overlapped with a lag of ~3.5 s, suggesting a more rapid hemo-
dynamic response than in canonical models but within a physi-
ologically plausible range.

To determine whether increased neural activity could have
contributed to the large fMRI oscillations we observed, we tested
how the SSVEP dynamics changed across stimulus frequencies.
The stimulus-triggered mean EEG (Fig. 3C) contained an evoked
signal at 12 Hz (corresponding to the checkerboard contrast in-
version frequency), with amplitude modulation of either 0.2 Hz or
0.5 Hz (corresponding to the luminance contrast modulation). The
amplitude of the EEG response to the 0.5-Hz stimulus was not
larger than the response to the 0.2-Hz stimulus (0.2 Hz = 3.12 pV;
0.5 Hz = 2.99 pV; difference = —0.08; CI -1.4, 1.2) (Fig. 3 D
and E). This finding suggested that the magnitude of the neural
response was similar across conditions and that the HRF to ongoing
oscillatory neural activity must differ from the classic models de-
veloped for transient task activity.

Although the magnitude of neural activity appeared similar
across conditions, the duration of neural activity in the 0.5-Hz
condition was substantially shorter (Fig. 3 D and E). fMRI re-
sponses are known to exhibit nonlinear dependence on stimulus
duration, with briefer stimuli inducing larger responses than
expected from a linear system (17, 34, 35). To test the role of
stimulus duration explicitly, we presented stimuli with luminance
contrast varying as the square of a sinusoidal function, yielding a
narrower stimulus waveform than the sinusoidal case (Fig. 44).

A meanssver < B c Correlation of EEG and fMRI
) 2 —02Hz
;) K —0.5Hz
1] £
203
o 2
o o
3 3]
= °
£ 3
@ g-
ER-
-8 -4 0 8
C D E Lag (s)
EEG timeseries EEG envelope EEG envelope
Sine modulation at 0.5 Hz 0.5 Hz stimulus 0.2 Hz stimulus
= = < 4
£ >54 2 4
2 2] g
20 22 22
S s S
£ g, %4
0 1 5 <% 1 2 0 1 4 5

2 3
Time (s) Time (s) Time (s)

Fig. 3. Simultaneous EEG recordings suggest that the large fMRI responses
are not explained by increased amplitude of neural oscillations at higher
frequencies. (A) The SSVEP to the 0.5-Hz sinusoidal stimulus localizes primarily
to occipital channels, consistent with previous studies. (B) Cross-correlation of
the 12-Hz amplitude in channel OZ and the fMRI signal in the V1 ROI. Both
stimulus conditions induce a peak with a lag of ~3.5 s, indicating that the V1
fMRI signal correlates with EEG power at a plausible physiological lag (n = 3
subjects, 6 runs at 0.2 Hz, 15 runs at 0.5 Hz). (C) Mean EEG across runs with
sinusoidal contrast modulation at 0.5 Hz (n = 4 subjects, 19 runs) shows an
SSVEP at 12 Hz in channel OZ. (D) Amplitude envelope of the 12-Hz EEG
oscillation across runs at 0.5 Hz (n = 4 subjects, 19 runs). (E) The amplitude
envelope of the 12-Hz EEG across runs at 0.2 Hz has the same magnitude (n =
4 subjects, 12 runs).
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Fig. 4. Continuous and rapidly varying neural activity can elicit faster he-
modynamic responses. (A) Schematic of the contrast modulation used in the
sine vs. sine-squared conditions. In the sine-squared case, the same range of
contrasts is used, but the waveform shape is narrower. (B) Envelope of the
EEG signal. As expected, the magnitude of the EEG is similar across condi-
tions, but the waveform of the EEG response is narrower in the sine-squared
case, suggesting successful modulation of the waveform of the underlying
neural oscillation. (C) The predicted fMRI response to oscillating neural ac-
tivity varies with its waveform but is expected to change less than 15% in the
range of our stimulus parameters. (D) The fMRI response to a sine-squared
wave at 0.2 Hz is 49% larger than the response to a sine wave. (E) Similarly,
the fMRI response to a sine-squared wave at 0.5 Hz is 93% larger than the
response to a sine wave, demonstrating that narrower neural oscillations
drive larger fMRI signals. The shaded region shows the SE across runs.

The EEG recordings in the sine-squared condition had the same
magnitude as in the sinusoidal condition (amplitude = 3.12 pV)
but had a narrower waveform (Fig. 4B), suggesting that this
stimulus paradigm successfully elicited neural activity of similar
magnitude but briefer temporal dynamics. Simulations predicted
that the sine-squared stimulus would elicit a 15% larger fMRI
response than the sine stimulus at either stimulus frequency (Fig.
4C). In contrast, the measured fMRI response to the sine-squared
stimulus was 49% larger (CI 24%, 81%) than the response to the
sinusoidal stimulus in the 0.2-Hz stimulus condition (Fig. 4D) and
was 93% larger (CI 21%, 399%) in the 0.5-Hz stimulus condition
(Fig. 4F). We concluded that ongoing oscillatory activity can
produce relatively large fMRI responses if the waveform of that
activity is narrow.

What mechanism could underlie the production of a large fMRI
response to >0.1-Hz oscillatory neural activity? A recent study
proposed that a faster HRF should be used for resting-state fMRI
signals (25). We hypothesized that a fast HRF also should be used
for task-driven activity when neural activity varies rapidly and
continuously. To test whether a similar modification to the HRF
could account for our data, we simulated the predicted fMRI
response using HRFs with different shapes. Narrower HRFs
produced larger responses at high stimulus frequencies: An HRF
peaking at 2.5 s predicted a response at 0.5 Hz that is five times
larger than the canonical SPM HRF (Fig. S3 4 and B). In ad-
dition, the 93% increase in fMRI signal observed for the sine-
squared vs. sine modulation at 0.5 Hz could be generated if the
HREF shape depends on the duration of the neural activity, be-
cause an additional reduction of the HRF width would generate
this increase (Fig. S3B). A single parsimonious model in which
the temporal dispersion of the HRF is linked to the timescale of
neural activity could therefore explain these data.
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Biophysical Modeling of Oscillatory fMRI Responses. To test whether
this narrower shape for the HRF is physiologically plausible
during task-evoked neural activity, we implemented the balloon
model (36-38) and examined its responses to a brief input. We
considered two possible factors that could contribute to a faster
HREF in this experiment: (i) whether brief neural activity in-
duces a narrower fMRI response, as suggested by Fig. 4, and (i)
whether continuous, rather than transient, activity would affect
the shape of the response. To test the first possibility, we ex-
amined the predicted responses to a single cycle of a sinusoidal
flow input with increasing frequency (Fig. S3C). We varied the
time constant for the viscoelastic effect, in which blood volume
transiently lags before achieving steady state. Setting this time
constant to zero, as in the original model, yielded slow BOLD
responses similar to the canonical HRF (Fig. 54 and Fig. S3D).
However, when this time constant was set to physiologically
plausible nonzero values (37), the BOLD response to stimuli of
shorter duration was both faster (time-to-peak) and narrower
(FWHM) (Fig. 54 and Fig. S3E). These sharper dynamics dem-
onstrate that when cerebral blood volume (CBV) lags changes in
cerebral blood flow (CBF) rather than maintaining a steady-state
relationship, the fMRI response to high frequencies or brief ac-
tivity is expected to increase.

Another possibility is that continuous periodic stimuli may
shift the system to a new steady state in which baseline flow is
higher and the system can respond more rapidly to changes in
neural activity. Higher baseline flow would reduce the mean
transit time, used as a time constant in the balloon model. Varying
this parameter demonstrated that higher baseline flow would speed
up the BOLD response (Fig. S3F), although the effects were less
than those seen when the viscoelastic parameter was varied.
However, values near 2 s, which would be consistent with prior
reports (39), were sufficient to replicate the responses we observed,
suggesting that as long as the mean transit time is relatively short
at baseline, these oscillations could be expected.

When using the modified balloon model with these parameter
settings to simulate the response to the visual stimulus, we obtained
predictions much closer to the data: The model predicted that the
fMRI response amplitude to a 0.5-Hz stimulus should be 7.5% of
the response to a 0.2-Hz stimulus (Fig. 5 B and C), compared with
~8-10% in the data (whereas the canonical model predicted
1.3%). These analyses demonstrated that a physiologically grounded
model can produce the responses we observed, through vis-
coelastic effects that cause blood volume to lag while changes in
flow vary more rapidly, leading to a sharpened HRF waveform
when neural activity is brief. The large fMRI responses we ob-
served therefore may be explained by a shift in the shape of the
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Fig. 5. Modeling suggests that the vasculature can respond relatively
quickly to oscillatory neural activity. (A) Predicted responses to a 1-s sine flow
input using different parameters for the balloon model. (B) The predicted
frequency response demonstrates that modifying the time constants within
physiological values is expected to lead to an order-of-magnitude increase in
fMRI oscillatory responses. (C) The predicted amplitude at 0.5 Hz (normal-
ized to 0.2 Hz), depending on balloon model parameters. Low but still
plausible values for the mean transit time (tyr7) and the increased visco-
elastic constant (r,) lead to values closer to the data (~8%, orange/red re-
gion of the plot).
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HREF, with continuous and rapidly varying neural activity inducing
a sharper HRF and thereby leading to rapid fMRI responses.

Extending Detection of Oscillatory Activity up to 0.75 Hz. This model
also allowed us to extrapolate and generate predictions of the
fMRI response at even higher frequencies, predicting that
stimuli at 0.75 Hz would elicit a response 1.9% as large as the
response at 0.2 Hz (as opposed to 0.14% predicted by the linear
convolutional model). Our experiments at 3 T were unable to
detect a significant neural response to the 0.75-Hz oscillation
(amplitude, 0.02%; CI —0.02, 0.06), because the noise was larger
than the predicted signal. To increase the signal-to-noise ratio,
we conducted a third experiment at 7 T. We found a significant
fMRI oscillation during 0.75-Hz stimulation (Fig. 6 A and B)
with an amplitude of 0.021% (CI 0.009, 0.034). This value cor-
responded to 1.46% of the signal at 0.2 Hz, i.e., slightly below the
balloon model prediction but an order of magnitude larger than
the canonical model. The phase of the response again was shifted
within a range that would be expected with physiologically
plausible models (Fig. S4). To control for the possibility that the
detected oscillation was caused by a physiological or motion
artifact rather than by neural activation, we analyzed a control
gray matter region that was not visually driven and observed no
significant oscillation (amplitude, 0.002%; CI -0.006, 0.010) (Fig.
6 C and D). In addition, the 0.75-Hz oscillation in V1 was still
detectable when physiological noise was reduced through nui-
sance regression of white matter and ventricle signals (Fig. S5).
The magnitude of the observed response was small but never-
theless was detectable within a single session of scanning at 7 T,
suggesting that the fMRI response is measurable and larger than
predicted even at 0.75 Hz.

Accounting for Vascular Delays Improves Resolution of Neural
Oscillations. The analyses described up to this point were aver-
aged across all visually responsive voxels in V1, assuming similar
response properties throughout that region. However, HRFs
vary across the brain (40), and the structure of local vasculature
can alter the timing of responses in individual voxels by hundreds
of milliseconds (41). As stimulation frequencies approach 0.5 Hz
(i.e., a period of 2 s), these delays can introduce cancellation into
fMRI signals when averaging is performed across voxels. We
therefore examined the response phase in individual voxels. In
the localizer run, we selected voxels with the earliest peak re-
sponse (in the 0-33rd percentile) and voxels with the latest peak
response (in the 67th-100th percentile, median lag 635 ms). We
then analyzed the response of these voxels on the other func-
tional runs (Fig. 74). In the 3-T experiments, the late-responding

10\1 V1:0.2 Hz B V1:0.75 Hz C1 Control ROI: 0.2 Hz D Control ROI: 0.75 Hz
n=5 subjects, n=5 sub., 60 runs
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Fig. 6. fMRI responses can be detected reliably up to 0.75 Hz. (A) In ex-
periment 3, at 7 T, oscillatory stimuli at 0.2 Hz evoked consistent and large
responses. (B) At 0.75 Hz, the evoked oscillations were still statistically de-
tectable and were ~1% of the amplitude of the 0.2-Hz signal. (C and D) A
non-visually activated gray matter control ROl does not show oscillatory
responses, suggesting that the detected oscillation is caused by neural ac-
tivity rather than by motion or physiological noise. In all panels, the shaded
region shows the SE across runs.
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voxels exhibited a signal 97% larger than the early-responding
voxels in the 0.2-Hz condition (P = 0.0004) and 54% larger in the
0.5-Hz condition (P = 0.02). Late and large-amplitude responses
typically correspond to larger draining veins (41), suggesting that
even large veins can contain periodic oscillatory signals at fre-
quencies 0.2 Hz.

The phase delays across voxels suggest that identifying and cor-
recting for hemodynamic delays could further improve the de-
tection of oscillatory signals. In the 0.75-Hz condition, separating
early- and late-responding voxels had a large impact, because these
lags introduced major phase cancellation when averaged across all
voxels (Fig. 7B). The mean signal amplitude in the early-responding
voxels alone was 0.033%, 45% larger than the results from aver-
aging across all voxels within the ROI (Fig. 7C). Furthermore, this
result was better aligned with the model prediction from the data
generated at lower frequencies (0.027%). Overall, late-responding
voxels exhibited a more severe drop-off in signal as stimulus fre-
quency increased, and early-responding voxels exhibited slightly
larger responses at 0.75 Hz (Fig. 7D), suggesting that high-frequency
oscillatory activity may be detected more easily in voxels with
rapid response onset. The oscillations in early-responding voxels
were also significant (P < 0.05) within a single scan session in three
of the five subjects, in addition to the mean being significant across
the group. The early- and late-responding voxels were spatially
intermixed (Fig. 7E), suggesting that avoiding spatial smoothing
during preprocessing and then grouping individual voxels according
to their lags in a localizer run before analysis can further improve
the detectability of high-frequency oscillations.

Discussion

We conclude that the fMRI response to oscillatory neural activity
is detectable up to at least 0.75 Hz within a single 7-T scan session
in individual subjects, and higher frequencies may be detectable
with future gains in MRI sensitivity. The amplitude of the fMRI
signal at high frequencies is an order of magnitude larger than
predicted by canonical linear models, suggesting that fMRI could
provide a new method for noninvasively localizing oscillatory
neural activity in the human brain. The strong oscillatory re-
sponses result from the faster dynamics of the BOLD response
when neural activity is continuous and rapidly varying, suggesting
that different models of the hemodynamic response should be
used in studies seeking to analyze ongoing periodic activity or
rapidly fluctuating activity rather than large, transient task-evoked
activations. The HRFs derived from these conventional block-
design stimulation paradigms do not represent a true “impulse
response” in the strict sense of the term; instead, for rapid stim-
ulus presentations, the shape of the HRF varies as a function of
the stimulus duration. The slow canonical hemodynamic response
functions may reflect the slow experimental paradigms used to
obtain them, whereas hemodynamic responses to rapidly fluctu-
ating neural activity are, in fact, fast. This interpretation also could
explain the observations of previous studies that have reported
nonlinear fMRI responses to short-duration stimuli (17, 25, 34,
42). We suggest that, rather than representing a problem for fMRI
because of the failure of the canonical linear models, these fast
responses in fact mean that fMRI has an unexpectedly strong
ability to measure naturalistic, rapidly varying neural activity.
Updated models with faster HRFs may provide a generally better
representation of the true hemodynamic response during high-
level cognitive tasks, because it is likely that cortical activity typi-
cally is ongoing at fluctuating rates rather than slowly alternating
between the silent and high firing rates that can be induced in
primary sensory cortices through a blocked experimental design.

Our model suggests that both viscoelastic effects and a new
vascular baseline state during rapid neural activity could con-
tribute to the fast dynamics we observed. The fact that increasing
the variability in neural firing rates through a narrower stimulus
waveform (Fig. 4) increased the fMRI response amplitude suggests
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Fig. 7. Accounting for vascular lags can further improve the resolution of
fMRI oscillations. (A) Responses of early-responding and late-responding voxels
across stimulus frequencies in an individual subject. The phase delays persist
across conditions, and the fMRI response is larger in the later-responding
voxels. (B) Early- and late-responding voxels plotted for a subject in experiment
3. At 0.75 Hz, the lags across voxels introduce phase cancellation of the fMRI
response. The shaded region shows the SE across cycles. (C) The mean oscillatory
response across all subjects in experiment 3 declines more in late-responding
voxels and is stronger in early-responding voxels at high frequencies. The black
dashed line is the prediction of the canonical linear model. (D) Mean time series
across subjects in experiment 3 demonstrates that analyzing the early voxels
separately results in larger oscillations than are detectable when averaging
across the whole V1 ROI (n = 5 subjects, 60 runs). The shaded region is standard
error across runs. (E) Heterogeneous spatial distribution of lags in individual
voxels. The image is from a representative subject. Color indicates the phase lag
in each voxel in the localizer run.

that the HRF waveform depends on the dynamic activity patterns
of the neurons. The important influence of viscoelastic effects
suggests that classic block designs induce steady-state dynamics
with a slow HRF, whereas uncoupling of CBF and CBV during
dynamic neural activity leads to a sharper HRF and stronger fre-
quency response. Although we could not directly measure the CBF
responses to these fast oscillations because of the limited temporal
resolution and sensitivity of arterial spin-labeling methods, previous
experiments have demonstrated that the CBF—CBV coupling is
altered during dynamic stimulation (43) and have suggested that
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the CBV lags during dynamic neural activity; this suggestion is
consistent with our proposed model. Further studies will be needed
to assess the mechanism underlying our results more conclusively.
Experiments manipulating total flow using hypercapnia or caffeine
have found that the shape of the hemodynamic response changes
in a counterintuitive manner that does not match model predic-
tions (44, 45); however, these agents also influence neuronal activity
and oxygen consumption (46, 47) and may act through different
pathways than neuronal activity (48). Directly manipulating CBF
and/or neural activity would be valuable for testing the underlying
mechanism. Although selectively manipulating a single parameter
of the vasculature is not feasible in humans, studies in animal
models could manipulate either local neuronal activity or local
vessel dilation while performing simultaneous flow and neuronal
imaging to test these mechanisms causally.

We also show that the impact of hemodynamic delays is severe
when studying signals above 0.1 Hz, because the delays typically
seen in vasculature can be hundreds of milliseconds (41, 42, 49),
large enough to cause phase cancellation in rapidly oscillating
signals. Spatial smoothing can therefore attenuate oscillatory fMRI
signals substantially, because the delay in neighboring voxels can
differ according to their local vascular anatomy. Analysis methods
that take local vascular delays into account (15, 50-52) will be
essential when analyzing fast fMRI activity. Smaller voxel sizes
also could improve the resolution of higher frequencies, although
fMRUD’s spatial resolution is also limited by its point spread func-
tion. Ultimately, high-spatial-resolution scans are expected to yield
better results when studying fast neural activity, because they
would minimize smoothing across regions with different phase
delays. Current fMRI analyses are weighted toward the large (and
hence slow) signals from draining veins, and shifting to focus
selectively on the rapidly responding voxels, which exhibited less
attenuation at high frequencies, may enhance the detection of
faster neural dynamics.

Our results suggest that fMRI now can be used to measure
oscillatory neural activity on the timescale of many high-level
cognitive processes, in the hundreds of milliseconds. Even higher
frequencies potentially could be attained when averaging across
sufficient numbers of subjects and sessions, and animal studies
directly imaging the vasculature could test the upper limit of
hemodynamic oscillatory responses. The temporal resolution of
fMRI undoubtedly will still be limited, because it seems unlikely
the vasculature follows rapid neural oscillations (e.g., >10 Hz),
but our results suggest it could be useful for measuring dynamics
in the slow-delta range. In particular, this approach could be
used to measure endogenous low-frequency oscillations and
<1-Hz modulations of gamma power, dynamics that are key to
modulating attention and states of consciousness (4, 53-55).
Intracranial recordings in human subjects (54, 56) have demon-
strated that slow oscillatory activity is often spatially isolated, but
these invasive methods can access only restricted cortical regions
and are limited to patient populations. Similarly, amplitude
modulation of high-frequency oscillations occurs locally and on
timescales of hundreds of milliseconds, putting it in the range of
phenomena that can be measured and spatially localized using
this approach. Fast fMRI studies potentially could resolve the
spatial distribution of these dynamics across the entire cortex and
in subcortical structures simultaneously, yielding new insight into
the role of oscillatory neural dynamics in human cognition.

Methods

Written informed consent was obtained from all subjects, and all experi-
mental procedures were approved by the Massachusetts General Hospital
Institutional Review Board. Experiment 1 included data from seven subjects,
and experiment 2 included data from nine subjects, using a Siemens Tim Trio
3T scanner and similar stimulus paradigms but different imaging acquisition
parameters. Experiment 3 included five subjects and was conducted on a
Siemens Magnetom whole-body 7-T scanner. For four subjects in experiment
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2 we also acquired a simultaneous EEG using an Electrical Geodesics 256-channel
system. Visual stimuli consisted of a 12-Hz (inversion rate) flickering checkerboard
with luminance contrast modulation oscillating at the frequency of interest.
Displayed fMRI time series show the mean fMRI data triggered on each cycle of
the visual stimulus. Statistics for the magnitude of the fMRI oscillation were
computed using a nonparametric bootstrap to estimate the 95% Cls. Full details of
acquisition and analysis procedures are provided in S/ Methods.
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