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The herpes simplex virus (HSV) infected cell culture polypeptide 27
(ICP27) protein is essential for virus infection of cells. Recent studies
suggested that ICP27 inhibits splicing in a gene-specific manner via an
unknown mechanism. Here, RNA-sequencing revealed that ICP27 not
only inhibits splicing of certain introns in <1% of cellular genes, but
also can promote use of alternative 5′ splice sites. In addition, ICP27
induced expression of pre-mRNAs prematurely cleaved and polyade-
nylated from cryptic polyadenylation signals (PAS) located in intron 1
or 2 of ∼1% of cellular genes. These previously undescribed prema-
turely cleaved and polyadenylated pre-mRNAs, some of which con-
tain novel ORFs, were typically intronless, <2 Kb in length, expressed
early during viral infection, and efficiently exported to cytoplasm.
Sequence analysis revealed that ICP27-targeted genes are GC-rich
(as are HSV genes), contain cytosine-rich sequences near the 5′ splice
site, and have suboptimal splice sites in the impacted intron, suggest-
ing that a common mechanism is shared between ICP27-mediated
alternative polyadenylation and splicing. Optimization of splice site
sequences or mutation of nearby cytosines eliminated ICP27-medi-
ated splicing inhibition, and introduction of C-rich sequences to an
ICP27-insensitive splicing reporter conferred this phenotype, support-
ing the inference that specific gene sequences confer susceptibility to
ICP27. Although HSV is the first virus and ICP27 is the first viral pro-
tein shown to activate cryptic PASs in introns, we suspect that other
viruses and cellular genes also encode this function.
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Herpes simplex virus (HSV) infected cell culture polypeptide 27
(ICP27), an immediate early (IE) gene (among those first

expressed after virus enters the cells) that is required for expression
of some early and late viral genes as well as for virus growth, is
highly conserved between HSV-1 and -2, two closely related neu-
rotropic herpesviruses (1). ICP27 has a role in transcriptional
regulation through association with the C-terminal domain of RNA
polymerase II (2, 3), forms homodimers (4, 5), interacts with U1
small nuclear ribonucleoprotein (snRNP) through its C-terminal
domain, and colocalizes with U1 and U2 snRNPs (6, 7). It also
interacts with splicing factors such as SRSF3, SRSF1, SRSF7, and
SRSF2 (8–11), and is involved in nuclear export of some viral
transcripts (12, 13). The role of ICP27 in regulating pre-mRNA
splicing remains controversial. Early studies indicated that, in an
in vitro pre-mRNA splicing system, ICP27 may nonspecifically in-
hibit host pre-mRNA splicing, impairing spliceosome assembly as a
result of interaction with SR protein kinase 1 (SRPK1) through
ICP27’s N-terminal RGG RNA-binding motif and/or interaction
with spliceosome-association protein 145 (SAP145 or SF3B2)
through ICP27’s C-terminal domain (8, 11). A recent communi-
cation reported that HSV-1 does not inhibit cotranscriptional
splicing and proposed that previous reports of ICP27-induced
splicing inhibition were artifacts, due to misinterpretation of run-on
transcription (14). Indeed, splicing of only a few viral and cellular
pre-mRNAs have been reported to be inhibited by ICP27 in in-
fected cell culture. For example, splicing of alpha-globin is inhibited

by ICP27 when ICP4, another viral IE gene, is present (15). ICP27
also promotes expression of the full-length glycoprotein C protein
(16, 17) and a truncated form of HSV-2 ICP34.5 (18, 19), the major
viral neurovirulence factor, by inhibiting splicing of these genes.
ICP27 inhibits splicing of only introns 7a and 8 of promyelocytic
leukemia protein (PML) (20). We previously reported that ICP27
inhibits ICP34.5 splicing much more efficiently than other cotrans-
fected splicing reporter genes in a way not fully dependent on the N-
terminal RGG motif, suggesting that ICP27 may inhibit splicing in a
gene- or sequence-specific manner (18) that cannot be completely
explained by previously proposed mechanisms (1).

Results
To further characterize the role of ICP27 in regulating host pre-
mRNA processing, high-throughput RNA-sequencing (RNA-seq)
data from poly-(A)-enriched RNA purified from HEK293 cells
transiently transfected with or without ICP27 was analyzed. We
narrowed our search from the 19,655 cellular genes with expression
level ≥0.5 fragments per kilobase per million fragments mapped
(fpkm) to the ∼12,000 highest-ranked genes [based on scores rating
differences in expression in poly(A)-enriched RNA between ICP27-
transfected and control samples] and visually examined gene ex-
pression profiles for differences in exon or intron use. ICP27 was
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associated with aberrant pre-mRNA processing in >200 genes (Fig.
S1 A and B). Most frequently, this association was related to pre-
mature termination of pre-mRNA because of polyadenylation from
a cryptic, previously undescribed, polyadenylation signal (PAS) in
intron 1 (132 genes, ∼1.1%) or from a PAS in intron 2 or an al-
ternative exon 2 in associated with retention of intron 1 (16 genes,
∼0.13%). ICP27 promoted use of a cryptic downstream 5′ splice site
in 12 genes. Intron retention was identified in 78 genes (∼0.65%),
consistent with our previous finding that ICP27 specifically inhibits
the splicing only of certain genes (18). ICP27-targeted genes in-
cluded genes that play roles in key cellular pathways, including
transcription, DNA-damage response, stress and immunoregulation
(including innate immunity), signal transduction, translation, the
cell cycle, and metabolism (Table S1).

ICP27 Induces Expression of Previously Undescribed Cellular Pre-mRNAs
Prematurely Cleaved and Polyadenylated from Cryptic PASs in Intron 1 or
2 or Immediately Downstream of Retained Intron 1. PPTC7 (Fig. 1A), a
protein phosphatase gene, and UNK (Fig. 1B), an RNA-binding
zinc finger protein implicated in the control of a neuronal mor-
phology program (21), transmembrane protein TMEM245 (Fig.
1C), and the serine/threonine-protein phosphatase PPP6C (Fig. 1D)
were among the 132 genes in which ICP27 induced partial retention
of intron 1 with sharp decreases in read counts at a cryptic intron 1
PAS. A total of 48 (∼36%) of these intronless transcripts, including
the 4 examples above, contain an ORF of >110 amino acids, with
predicted molecular masses ranging from 11.5 to 39.9 kDa (Table
S1), and none have been previously described. Northern hybridiza-
tion of total RNA prepared from cells infected with wild-type HSV
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Fig. 1. HSV ICP27 activates expression of pre-mRNAs prematurely cleaved and polyadenylated from cryptic PASs in intron 1. (A and B) Read counts mapping to
representative ICP27-targeted genes in poly(A)-selected RNA PPTC7 (negative strand;A) and UNK (positive strand; B). Control, pFlag vector-transfected cells; ICP27,
HSV-2 ICP27-transfected cells. Previously described transcript variants (thick black lines denote exons) are shown underneath. Arrows indicate significant dif-
ferences in intronic read counts in ICP27-expressing cells. Blowups showing intron 1 read counts are shown below. (C) Blowup showing intron 1 of TMEM245
(negative strand) read counts. (D) Blowup showing intron 1 of PPP6C (negative strand) read counts. (E) Domains and mutations in HSV-1 (WT) and ICP27 mutants
d27-1, d4-5, andm15. (F) Northern hybridization of TMEM245, PPTC7, UNK, and PPP6C in HEK293 cells infected with HSV wild-type or ICP27 mutants at 8 hpi using
intron-specific probes illustrated at Right to detect prematurely cleaved and polyadenylated pre-mRNAs. β-actin and ribosomal RNAs were used as loading
controls. (G) ICP27-mediated prematurely cleaved and polyadenylated mRNAs are detectable during early infection. Northern hybridization for prematurely
cleaved and polyadenylated TMEM245 and PPTC7 pre-mRNAs in HEK293 cells infected with HSV-1 KOS strain or d27-1 at 3, 5, and 8 hpi is shown. (H) ICP27-
mediated prematurely cleaved and polyadenylated mRNAs can be efficiently exported to cytoplasm. Northern hybridization for prematurely terminated PPTC7
pre-mRNA of cytoplasmic (C) and nuclear (N) RNA fractions from HSV-1 infected at 5 hpi or uninfected (NIC) cells is shown. The same membrane was blotted with
probes for PPTC7, TMEM245, and U1 snRNA. U1 snRNA and ribosomal RNAs indicate efficiency of cytoplasmic and nuclear fraction separation.
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and ICP27 mutant viruses (Fig. 1E), using intron sequence-specific
probes, revealed that both HSV-1 and -2 activated expression of
cellular genes that use intronic PASs, based on detection of bands
of sizes expected from the RNA-seq analysis (Fig. 1F). Mutant
viruses with deletion of ICP27 (d27-1) or point mutations of
amino acids 465 and 466 in the ICP27 C-terminal domain (m15)
did not induce expression of these alternatively polyadenylated
cellular transcripts. Deletion in mutant d4-5 of the RGG/SRPK-1
binding domain, which has been shown to interact with RNA and
SRPK-1 (11, 22), also sharply reduced expression of alternatively
polyadenylated PPTC7 and PPP6C and yielded only weak ex-
pression of alternatively polyadenylated TMEM245 and UNK,
suggesting that this domain also plays an important role in the
processing of these prematurely cleaved and polyadenylated
intronless cellular transcripts. These alternatively polyadenylated
transcripts were detectable as early as 3 h postinfection (hpi) and
peaked at 5 hpi (Fig. 1G). Intronless PPTC7 was efficiently exported
to the cytoplasm in infected cells (Fig. 1H).
Eukaryotic translation initiation factor 4 gamma 3 (EIF4G3), a

translation initiation factor targeted by vaccinia virus (23), was
among the 16 genes for which ICP27 induced expression of pre-
mRNAs polyadenylated from a PAS in intron 2 (frequently asso-
ciated with retention of intron 1) or immediately downstream of
retained intron 1 of the targeted gene (Fig. S2 and Table S1). As
was observed for intron 1 alternative PASs, ICP27-activated PASs
in intron 2 or downstream of retained intron 1 were typically within
1.7 Kb of the transcription start site (TSS) and within 0.7 Kb of the
intron 2 5′ splice site (similar to the location of ICP27-facilitated
intron 1 PASs, which were typically within 1.4 Kb of the TSS and
within 1 Kb of the 5′ splice site, respectively) (Fig. S3).

ICP27 Promotes Use of Cryptic 5′ Splice Sites. In 12 genes, including
ZER1 (which encodes a subunit of an E3 ubiquitin ligase complex;
Fig. 2A) and DESI2 (desumoylating isopeptidase 2; Fig. 2B),
ICP27 induced partial retention of intron 1 with read counts de-
clining abruptly not at PASs, but at potential 5′ splice site se-
quences. The sequences between the usual and the cryptic donor
splice sequences encode alternative exons that have not been
previously described. Two of these 12 genes, LEPR (a leptin re-
ceptor involved in fat metabolism) and PPP1R8 (an inhibitor
subunit of the major nuclear protein phosphatase-1 required for
cell proliferation), are sometimes prematurely terminated at a
PAS downstream of the cryptic 5′ splice site (Table S1). In all 12
genes, the impacted 5′ splice sites were within a short distance of
the TSS (<1 Kb). Use of these alternative 5′ splice sites was
confirmed by RT-PCR and by sequencing of HEK293 cells in-
fected with wild-type HSV-1 and ICP27 mutants (Fig. 2C),
showing that the cryptic ZER1 splice site is at nucleotide 772 and
that DESI2 has two downstream cryptic splice sites, at nucleotides
979 and 991 (used at a 7:1 ratio, consistent with the read counts
shown in Fig. 2B). Use of the cryptic 5′ splice site at nucleotide 772
changes the 5′ UTR sequence of ZER1, whereas use of either
cryptic 5′ splice sites changes the expected coding sequence
for DESI2 (Fig. 2C). The ICP27 RGG domain-deleted HSV-1

mutant virus (d4-5) promoted the use of the alternative 5′ splice
site in ZER1 more efficiently than that in DESI2, suggesting an
additional role of the RGG RNA binding domain in regulating
alternative splicing of DESI2.

ICP27 Only Inhibits Splicing of Select Introns in Targeted Genes. In the 78
genes in which ICP27 induced retention of one or more introns, the
first and last introns appeared to be most susceptible. For example,
ICP27 inhibited splicing of the last intron of POLR2A (encoding the
large subunit of RNA polymerase II) (Fig. 3A), introducing a
frameshift and a stop codon upstream of the final exon, which en-
codes a C-terminal domain previously described to interact with
splicing factors, polyadenylation factors, and transactivating factors
and with ICP27 itself (3, 24). Through retention of the last intron,
ICP27 likely reduces functional POLR2A expression, and contributes
to ICP27-mediated alteration of POLR2A functions (3, 25). ICP27
also promotes retention of the first intron of NFS1, a cysteine
desulfurase related to protein dimerization activity (Fig. 3B). ICP27
induced retention of four introns (16–19) near the 3′ end of
ATXN2L (ataxin-2-like), a regulator of stress granules that is also
implicated in neurodegenerative disorders (26) (Fig. 3C). It appears
that viral infection (vs. transfection of ICP27 alone) may be more
efficient in inhibiting splicing, an observation that is not explained by
differences in ICP27 protein levels between transfected vs. infected
cells (Fig. S4), suggesting that other viral proteins or the microen-
vironment created by viral infection may facilitate ICP27’s function.
Deletion of ICP27 (d27-1) or a two-amino-acid mutation in the
C-terminal domain (m15 for the mutant virus or pM15 for the
mutant plasmid) nearly abolished ICP27-mediated splicing inhibition
of NFS1 in both virus infection and transfection experiments (Fig. 3
D and E). Deletion of the N-terminal RGG/SRPK-1 binding domain
in viral mutant d4-5 reduced ICP27-mediated intron retention, but
not to the extent of the C-terminal (m15) mutation.

ICP27-Targeted Genes Are GC-Rich, with Suboptimal Splicing Sites and
C-Rich Sequences Near the 5′ Splice Site. ICP27-mediated alternative
pre-mRNA processing occurred only in relatively less abundant
transcripts [based on fpkm (reads), the three most abundant
ICP27-targeted mRNA transcripts in the RNA-seq experiment
were ranked 283 for MDH2, 946 for YWHAH, and 1,882 for
ZNF598). The GC content of analyzed ICP27-targeted host gene
introns and exons near the impacted splice site averaged 64.5%
and 68.0%, respectively, similar to that of HSV genes and much
higher than that of typical human introns (46%) and exons (51%)
(Fig. S5A; ref. 27). No example of a consensus 5′ or 3′ splice site
was observed in an ICP27-targeted intron, suggesting that, al-
though the average strength for both 5′ and 3′ splice sites was
comparable to that of typical splice sites in human genes (Fig.
S5B), ICP27-targeted splice sites are suboptimal (as are many
human splicing sites). Indeed, we observed that ICP27-targeted
introns are normally spliced efficiently when ICP27 is not present.
Analysis using MEME GLAM2 software identified C-rich consen-
sus sequences containing a stretch of cytosines such as CCCC(U)
in exon (Fig. S6A) and/or intron (Fig. S6B) sequences near the 5′
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splice site of genes for which splicing is inhibited by ICP27. In genes
for which ICP27 activated intronic PAS, intronic cytosine stretches
were more common (Fig. S6D) than were exonic cytosine stretches
(Fig. S6C), suggesting that intronic cytosines may play a more im-
portant role in polyadenylation from intronic PAS of these tran-
scripts in the presence of ICP27.

Splicing Inhibition Mediated by ICP27 and Cytosine-Rich Sequences
Does Not Require the ICP27 N-Terminal RGG Motif. ICP27 increased
the unspliced to spliced ratio of a chimeric mRNA in which the
C-rich HSV-2 ICP34.5 intron was replaced with the similarly sized
intron 2 from the ICP27-insensitive KSHVK8 gene (Fig. 4A and B),
whereas neither HSV-1 nor HSV-2 ICP27 significantly inhibited
splicing of mutant chimeric mRNAs in which ICP34.5 exon 1 was
also replaced with corresponding KSHV K8 exon 2 sequences or in
which point mutations of cytosines in ICP34.5 exon 1 were in-
troduced (Fig. 4B). Mutation of ATXN2L exon 18 C-rich sequences,
whether immediately upstream of the 5′ splice site or further up-
stream, sharply reduced ICP27-mediated intron 18 splicing inhibition
in reporter assays, whereas mutation of C-rich sequences in intron 18
or in downstream exon 19 did not (Fig. 4 C and D). Together, these
results indicate that exonic C-rich sequences near the 5′ splice site
are more important for ICP27-mediated splicing inhibition than
intronic sequences. KSHV K8 intron 2 is normally alternatively
spliced and contains suboptimal splicing sites (28, 29). Splicing in a
KSHVK8 splicing reporter containing both K8 introns 1 and 2 is not
inhibited by ICP27 (18). Introduction of cytosines by G to C and A
to C mutations in the K8 exon 2 sequence upstream of the 5′
splice site in pK8ccct (Fig. 4E), greatly increased its sensitivity to
ICP27-mediated splicing inhibition (Fig. 4F), further confirming
that C-rich sequences near the 5′ splice site are involved in ICP27-
mediated splicing inhibition. Additionally, an ICP27-expressing
plasmid mutant with deletion of the ICP27 N-terminal RGG/
SRPK-1 motif and adjacent downstream potential RNA binding
sequences was nearly as efficient as wild-type ICP27 in inhibiting
pK8ccct mutant splicing, further indicating that ICP27 interactions
with the RNA sequence and SRPK-1 through the RGG motif are
not required for ICP27-mediated specific splicing inhibition.

Suboptimal Splice Sites Contribute to ICP27-Mediated Splicing Inhibition.
Replacement of the suboptimal ATXN2L intron 18 5′ and 3′ splice
sites with consensus sequences moderately increased basal splicing
efficiency in the absence of ICP27, but nearly abolished ICP27-
mediated splicing inhibition (Fig. 4 G and H). This finding suggests
that the suboptimal splice sites that flank all of the identified ICP27-
targeted introns are required for efficient ICP27-mediated splicing
inhibition, which is also in agreement with a previous report that
optimization of PML intron 7 splicing sites abolished its sensitivity
to ICP27-mediated splicing inhibition (20).

Discussion
HSV-1 and -2 ICP27 modify the pre-mRNA processing of a select
group of cellular genes, leading to use of cryptic intronic PAS, use
of downstream cryptic 5′ splice sites, and retention of specific

introns, reducing the expression of targeted genes while increasing
the protein coding diversity of these genes. Both the N-terminal
RGG domain and the C-terminal domain of ICP27 are required
for efficient use of intronic PAS, with the C-terminal domain
being apparently more important for regulating alternative splic-
ing. Shared sequence elements (suboptimal splice sites and C-rich
sequences near the 5′ splice site) and the reduced use of a specific
5′ splice site in all cases of these ICP27-mediated effects suggest
that different forms of ICP27-mediated aberrant pre-mRNA
processing likely have overlapping mechanisms.
Our results confirm ICP27’s role in cotranscriptional cellular

pre-mRNA splicing and polyadenylation of specific transcripts,
consistent with the results using splicing reporters (Figs. S7 and
S8). Our findings, including identification of prematurely cleaved
and polyadenylated transcripts by Northern hybridization in wild
type, but not in ICP27 deletion mutant virus-infected cells, would
not have been predicted by a recent report (14), which posited
that ICP27 had no role in regulating cellular cotranscriptional
pre-mRNA splicing or termination of cellular transcripts.
In vitro polyadenylation experiments suggested that ICP27 is

involved in promoting polyadenylation from “weak” PASs of late
genes, including UL44 (glycoprotein C) (30–33), suggesting that
ICP27 likely directly influences both polyadenylation and splicing.
ICP27’s impact on polyadenylation from intronic PAS typically
located within 1 kb of the 5′ splice site mirrors that recently ob-
served when U1 snRNP’s binding to the 5′ splice site was inhibited,
also relieving its inhibition of CPSF binding to the downstream
PAS (34–36). We hypothesize that ICP27 may thus interfere with
U1 snRNP’s binding to 5′ splice sites in the context of specific
introns, through direct or indirect interaction with the C-rich se-
quences near the 5′ splice site (Fig. 4I). Recent crystal structure
studies demonstrated that the structure of ICP27 does not have KH
domains and that its C-terminal region does not fold into a poten-
tially RNA-binding hnRNPK-like structure (4, 5). ICP27’s RGG
motif has been shown to directly bind RNA (37, 38) and appears to
play a significant role in alternative polyadenylation and a lesser role
in splicing inhibition. However, our in vitro transfection experiments
and previous reports (18, 20) showing that the RGG motif is not
required for ICP27-mediated splicing inhibition suggest that there
may be other RNA binding sites in ICP27 or that unknown adaptor
proteins are involved in recognizing the C-rich sequences near the 5′
splice site. We also note that the precise nature of the C-rich se-
quences important for ICP27 effects has not yet been defined.
For LEPR and PPR1R8 (Table S1), some RNAs were alterna-

tively polyadenylated using intronic PAS, and others used an al-
ternative 5′ splice site, suggesting that the relative kinetics of splicing
and polyadenylation are important for alternative polyadenylation,
as has been hypothesized (39). Thus, it appears that the fate of
ICP27-targeted pre-mRNA is determined by the strength and
proximity of splice sites, availability of C-rich sequences near the 5′
splice site, availability and proximity of an intronic PAS, the size of
the intron (with larger introns more likely to show use of an alter-
native 5′ splice site or intronic PAS, and with smaller introns
more likely to be retained), and efficiency of RNA polymerase
II transcription (i.e., reduced efficiency or “pausing” of RNA
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polymerase II at the TSS or at suboptimal 3′ splice sites favors
alternative polyadenylation). Because ICP27 appears to target
less abundant transcripts and expression of many genes is tissue-
specific, it is possible that ICP27 has tissue-specific targets.
ICP27-induced aberrant pre-mRNA processing likely leads to

reduced expression of many affected cellular genes and alter-
ation in the UTR sequence of other cellular transcripts that
may alter mRNA stability. ICP27-induced aberrant pre-mRNA
processing likely also leads to expression of novel truncated or
frameshifted host cell proteins, expanding the genomic material
available to the virus. Although aberrant pre-mRNAs containing
premature termination codons (PTCs) are often subjected to
degradation via nonsense-mediated decay (NMD) (40), at least
some ICP27-mediated aberrant pre-mRNAs contain PTCs are able
to escape NMD and express proteins, including full-length glyco-
protein C and HSV-2 ICP34.5β (16, 18). It thus seems likely that at
least some of these host transcripts can also express novel proteins.
Recent studies suggested that the virion host shutoff-RNase (vhs)
protein, previously thought to nonspecifically degrade host and
viral mRNAs, more selectively targets specific host mRNAs, but
not GC-rich viral mRNAs (41, 42). Because the GC content of
ICP27-targeted genes is similar to that of HSV genes, they also
likely escape selective degradation by vhs. Thus, by specifically
modifying pre-mRNA processing of HSV-like GC-rich transcripts
that are likely spared by the virion host shutoff protein, ICP27
contributes to virus-induced host shutoff required for efficient
viral growth.

ICP27 affects pre-mRNA processing of >200 genes in ICP27-
transfected cells involved in important cellular pathways, implying
a broad program of ICP27-mediated cellular modification to favor
the virus, and helping to explain the observation that ICP27 ex-
pression is toxic to the cell and is both required for efficient virus
growth and for severe symptoms (43–45). Of the affected genes,
>30, including PML, STING, TRAF6, PPP6C, MAP3K7, FBXW11,
IFNAR2, NFKB1, RELA, and CREBP, are related to innate
immunity pathways, which is consistent with ICP27’s known role
in regulating innate immunity (46–49). Although it would not be
practical to separately examine these effects in each of these
genes, it seems likely that the combined effect of these alterations
exceeds that of any one. It has been reported that ICP27-induced
intron retention in PML appears to alter viral growth (20), that
alternative splicing in viral gC plays an important role in viral
immune evasion by regulating the relative expression of full-length
and secreted forms of gC (16), and that ICP27 alters viral neu-
rovirulence through inhibition of HSV-2 ICP34.5 splicing (18).
Although HSV is the first virus and ICP27 is the first viral or

cellular protein shown to promote expression of pre-mRNAs
prematurely cleaved and polyadenylated from intronic PAS, we
suspect that other viruses or unidentified cellular genes also en-
code this function. Further investigation will likely yield insight
both into mechanisms of viral pathogenesis, potentially leading to
identification of new targets for antiviral strategies, and into the
mechanisms by which the cell itself controls alternative poly-
adenylation and splicing of selected genes. ICP27 could also
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potentially be used as a template for future design of proteins
that influence cellular gene expression in this manner.

Methods
HEK293 cells were transfected with pICP27 or pFlag vector by using Lip-
ofectamine 2000. More than 95% transfection efficiency was achieved, as
determined by fluorescence microscopy of cells transfected with the same
amount of pEGFP-C1 (Clontech). At 48 h after transfection, total RNAs were
purified with the All-Prep DNA/RNA Kit (Qiagen). cDNA libraries were pre-
pared from polyadenylated RNA by using the Truseq RNA Sample Kit V2
(Illumina) and were sequenced on the HiSeq 2500 according to the manu-
facturer’s instructions (Illumina). The two samples shared a single sequencer
lane. The resulting paired-end sequencing data were first aligned to the
HG19 reference human genome by using Partek Flow and then further
analyzed by using the Partek Genomics Suite according to the software
instructions. A total of 19,655 genes were selected after applying expression-

level filters (≥0.5 fpkm) for both the control (pFlag vector-transfected sam-
ple) and the ICP27 (ICP27-transfected sample) from a total of 45,000 iden-
tified genes. Genes were ranked by scores of differential expression. The
expression profile of each of the first 12,000 genes for both control and ICP27
samples was visually examined. Other methods are described in SI Materials
and Methods.

Supporting information includes SI Materials and Methods, Figs. S1–S8,
and Tables S1 and S2.
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