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In vivo, the human genome folds into a characteristic ensemble of
3D structures. The mechanism driving the folding process remains
unknown. We report a theoretical model for chromatin (Minimal
Chromatin Model) that explains the folding of interphase chromo-
somes and generates chromosome conformations consistent with
experimental data. The energy landscape of the model was derived
by using the maximum entropy principle and relies on two
experimentally derived inputs: a classification of loci into chromatin
types and a catalog of the positions of chromatin loops. First, we
trained our energy function using the Hi-C contact map of chromo-
some 10 from human GM12878 lymphoblastoid cells. Then, we used
the model to perform molecular dynamics simulations producing an
ensemble of 3D structures for all GM12878 autosomes. Finally, we
used these 3D structures to generate contact maps. We found that
simulated contact maps closely agree with experimental results for
all GM12878 autosomes. The ensemble of structures resulting from
these simulations exhibited unknotted chromosomes, phase separa-
tion of chromatin types, and a tendency for open chromatin to lie at
the periphery of chromosome territories.
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Chromatin comprises a highly flexible polymer composed of
nucleosomes, DNA wrapped around histone proteins, con-

nected to one another by a linker region of 20–50 bp. Hundreds
of associated structural and regulatory proteins interact with the
genetic material, coordinating the way chromatin folds to fit
inside the nucleus of eukaryotic cells.
The resulting ensemble of partially organized structures brings

sections of DNA separated by a great genomic distance into
close spatial proximity, and plays an important role in controlling
gene transcription (1, 2). Although some of the features of this
ensemble can be explained using simple polymer physics (3–6),
there is now ample evidence that specific biochemical interac-
tions play a crucial role (7–10). Understanding the interplay
between biochemistry, genome architecture, and transcriptional
regulation is a major outstanding challenge.
For over two decades, molecular biology techniques that

combine chromatin fragmentation and proximity ligation have
given us quantitative information about how chromatin is orga-
nized in vivo (5, 11–13). In recent years, Hi-C experiments have
made it possible to measure the frequency of contact between all
pairs of genomic loci using a single experiment.
Here, we explore a physical model by which local interactions

between genomic loci can lead to the conformations of human
chromosomes in interphase. Specifically, we propose a theoretical
energy landscape model for chromatin folding, designated the
Minimal Chromatin Model (MiChroM), which uses the maximum
entropy principle (14, 15) in combination with a minimal number of
assumptions to model the structural consequences of the aforemen-
tioned biochemical interactions. Importantly, MiChroM can be used
to model biochemical interactions even though the identity of the
interacting biomolecules is unknown. MiChroM suggests a mecha-
nism that is sufficient to explain chromatin organization and can be
used to generate ensembles of 3D structures describing whole ge-
nomes. As we will show, contact maps generated in silico from these
ensembles of structures reproduce in detail the maps from Hi-C.

The first assumption made in MiChroM is that the genome is
partitioned into intervals of a handful of types, such that each type
of interval is marked by characteristic histone modifications and
interacts with a characteristic combination of nuclear proteins. As a
result, when two segments of chromatin come into contact, the
effective free energy change due to this contact depends, to first
order, on the chromatin type of each segment [also Jost et al. (16)].
This assumption is supported by both biochemical and struc-

tural data. For instance, five distinct types of chromatin have
been found in Drosophila cells based on the binding patterns of
nuclear proteins (17). Further, analysis of original Hi-C maps (5)
suggested that human chromatin is partitioned into two com-
partments, A and B, each associated with distinct long-range
contact patterns. More recently, Rao et al. (9) used kilobase-
resolution Hi-C experiments to show that the human genome
can be further partitioned into six subcompartments (A1 and A2
and B1, B2, B3, and B4), each correlated with particular histone
marks and associated with a particular pattern of long-range
contacts. A similar partitioning of the genome was observed also
in the mouse (9, 18) and Drosophila (19, 20). Both the bound-
aries of these genomic intervals and their chromatin types may
change along with changes in cell state (9). The close associ-
ation between interval types and long-range contact patterns
suggests that intervals of the same type segregate together in
the nucleus.
The second assumption made in MiChroM is that certain pairs

of genomic “anchor” loci tend to form loops. This tendency is
encoded in the model as a change in the effective free energy of a
chromatin configuration when the two anchor loci are in contact.
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This assumption is well-supported by historical literature (8), and has
been further confirmed by recent high-resolution Hi-C maps of the
human genome, where loops are visible as peaks in the contact
probability map (9). Most loops are associated with convergent pairs
of CCCTC-binding factor (CTCF)–binding motifs, which have been
proposed to help orchestrate loop formation via extrusion (21).
MiChroM, however, makes no assumption about the particular
mechanism of loop formation. Loops associated with the presence of
CTCFs typically enclose a few hundred kilobases of DNA, and there
is evidence that such structures are involved in diverse regulatory
functions, including activation, repression, and insulation (8).
Finally, MiChroM assumes that every time a pair of loci comes

into contact, there is a gain/loss of effective free energy, γðdÞ, that
depends only on the genomic distance, d. This “ideal chromosome”
term models the local structure of chromatin in the absence of
compartmentalization or looping (15), and is sequence trans-
lational invariant by construction. The form of the ideal chromo-
some potential is supported by the widespread evidence that
chromatin can behave like a liquid crystal (22–24), and is consistent

with the popular notion of the existence of a higher order fiber in
chromatin (25–27), although remaining more general.
To build a physical model for chromatin, we use the maximum

entropy principle to convert the above three assumptions into an
information theoretical energy function. The effective energy
that maximizes the information theoretical entropy takes the
following form (SI Appendix):
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and includes, respectively, the potential energy, UHPð~rÞ, character-
izing a generic homopolymer; the interactions between chromatin
types (assumption 1); the interactions between loop anchors
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Fig. 1. Contact maps obtained by computational modeling using MiChroM closely reproduce experimental maps obtained using the Hi-C protocol. (A–C) Contact
probability map of chromosome 10 of B-lymphoblastoid cells (GM12878). The map obtained from MiChroM is shown in the upper diagonal section of each map,
whereas the lower diagonal region shows the maps reported by Rao et al. (9). A symmetrical figure indicates that the experimental data are reproduced well.
Color bars on axes show the chromatin-type sequences of chromosome 10. (A) Complete contact map of chromosome 10 (log scale). (B) Magnification of the 60- to
120-Mb region of chromosome 10 (log scale). At this magnification, the relationship between chromatin types and spatial proximity is clearly visible; for example,
it is easy to see that contacts between B-type loci are more frequent than contacts between B-type and A-type loci. MiChroM accurately reproduces the pattern of
contacts measured by Hi-C. (C) Further magnification of the 27.5- to 32.5-Mb region (linear scale). The peaks in contact probability characterizing the loops are
clearly visible in both experimental and computational maps (more details are provided in SI Appendix). (D) Schematic representation of MiChroM. Each bead
represents 50 kb of chromatin belonging to one single chromatin type represented by its specific color as in the color bars of A and B. A smaller black bead marks
the location of loop sites. (E) Probability of contacts as a function of genomic distance from experiment and in silico.
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(assumption 2); and the translational invariant compaction term
(assumption 3).
This potential function contains 27 parameters that must be

provided to specify the model fully. Once the potential function is
fully specified, it is possible to perform molecular dynamics sim-
ulations of chromatin using as input the classification of loci into
chromatin types and the location of loops. This procedure is di-
rectly analogous to the simulation of protein folding using amino
acid sequence and disulfide bond positions as the only input.
Determining the optimal value for these 27 parameters re-

quires a training dataset. In this case, we iteratively adjusted the
parameter set to reproduce data extracted from a Hi-C contact
map of chromosome 10 generated using GM12878 cells (9). To
do so, we modeled human chromosome 10, which is 136 Mbp
long, as a polymer containing 2,712 monomers, each represent-
ing 50 kb of DNA. We used the annotations generated by Rao

et al. (9) to assign each monomer a chromatin type, as well as to
specify the positions of loops between pairs of monomers. In
each iteration, we combined these polymer specifications with
the current parameter set to generate an ensemble of structures.
We then used this ensemble to generate a simulated map of
pairwise intermonomer contact frequencies, and compared this
contact map with the one obtained by Rao et al. (9) experi-
mentally to choose the next set of parameters (SI Appendix).
The simulated contact maps obtained using the final set of

parameters correspond closely to the experimental contact maps
obtained for chromosome 10 (Pearson’s r = 0.95). This corre-
spondence goes beyond the visually obvious “checkerboard”
pattern in the simulated contact map (Fig. 1). In general, all
features larger than 300–400 kb in the experimental contact map
(i.e., features that are about an order of magnitude larger than
the size of an individual monomer in our simulations) appear to
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Fig. 2. MiChroMgenerates 3D structures for the chromosomes of B-lymphoblastoid cells (GM12878) that are in agreement with experimental data. Panels 1–22 show
contact maps of chromosomes 1–22 represented in log scale; the upper diagonal regions show results from computational modeling, and the lower diagonal regions
showmaps obtained using the Hi-C protocol (9). Chromosome 10 was the only chromosome used for calibration. The contact maps for the remaining 21 chromosomes
were generated de novo using the chromatin-type sequence and location of loops as the only inputs. The quality of the generated contact maps is consistently high, as
shown by the symmetry of the maps. (A–D) Different measures of the accuracy of the maps generated by our model. (A and B) Scatter plots of Hi-C vs. MiChroM
contact probability for all of the possible contacts, together with a linear fit of the data obtained by using the least squares method. (A) Data from chromosome 10;
the slope of the fitting function is 0.96, and the intercept is 0.0003. (B) Data from chromosome 3; the slope in this case is 0.94, and the intercept is 0.0003. The
experimental and computational datasets show a strong linear relationship confirming their similarity. The quality of such a linear relationship remains substantially
unaltered whether we look at chromosome 10, which was used for calibration, or at chromosome 3, which was independently generated. (C) Pearson’s correlation
between the contact probabilities generated by MiChroM and as measured by Hi-C for all of the 22 chromosomes. The average correlation is 0.956. For chromosome
10, which was used for calibration, the correlation is 0.952 (also SI Appendix, Figs. S2 and S3). (D) Symmetry score (definition is provided in SI Appendix, Fig. S1) for the
combined Hi-C/MiChroM maps for the 22 chromosomes. The score is bounded by 0 and 1, with 1 indicating a perfectly symmetrical matrix (i.e., perfect agreement
between model and experiments). The average symmetry score is 0.88 using both the two-norm (blue bars) and the Frobenius norm (cyan).
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be accurately recapitulated by the MiChroM model. Notably, the
power law scaling relationship between the probability of form-
ing contacts and genomic distance, often used to justify the
nonequilibrium fractal globule model, is also reproduced with
great accuracy by this equilibrium model (Fig. 1E).
Next, we applied the MiChroM model to the remaining

GM12878 autosomes by combining the potential function with
the experimentally derived monomer type and loop annotations.
When each chromosome is simulated separately, the resulting
intrachromosomal contact map closely corresponds to the exper-
imental contact map in every case. Notably, the correspondence
for autosomes that were not used to train the potential function
was typically as close (Pearson’s r = 0.95) as the correspondence

for chromosome 10 (Fig. 2 and SI Appendix, Supplementary Text
and Figs. S2–S47).
When we examined the ensemble of 3D structures for each

individual chromosome, we observed that each chromosome
formed a compact chromosome territory. We also observed the
phase separation of chromatin types within this territory, leading
to subvolumes comprising only a single type of genomic interval
(Fig. 3A). Usually, only a single subvolume formed for each sub-
compartment, although we observed multiple subvolumes of a
single type in some cases. Similarly, we see that highly expressed
genes [as measured by RNA sequencing (28)] tend to occupy
spatial subvolumes, which is expected, given that highly expressed
genes lie predominantly in the A compartment. Overall, these

A

B

C

Fig. 3. Structural characterization of the simulated conformations for chromosome 10. (A) Chromatin of different types phase-separate, with A types localizing
at the surface and B types in the interior. (Left) Surface plot for the chromosome colored by chromatin types, with the coloring scheme shown at the side.
(Center) Radial density profiles for different chromatin types calculated from the ensemble of simulated chromosome (Top) and homopolymer (Bottom) con-
formations. ρ(r)/Ntype, normalized radial density; r/Ro, normalized radius. (Right) Probability distributions for the size of the largest cluster found for each
chromatin type from the ensemble of simulated chromosome (Top) and homopolymer (Bottom) conformations. The cluster sizes for different types are nor-
malized by the total number of genomic loci for that type. (B) Genomic loci with high gene expression spatially colocalize at the exterior of the chromosome.
(Left) Chromosome structure colored by gene expression, with red and blue representing high and low expression, respectively. (Center) Radial density profiles
for genomic loci with high and low gene expression calculated from the ensemble of simulated chromosome (Top) and homopolymer (Bottom) conformations.
(Right) Probabilities for finding the largest cluster of size N for highly expressed genomic loci from the ensemble of simulated chromosome (Top) and homo-
polymer (Bottom) conformations. (C) Simulated chromosomes adopt knot-free conformations. (Left) Chromosome structure colored by genomic distances, with
one end of the chromosome shown in blue and the other end shown in red. (Center) Probability distributions of the knot invariant measured as the minimal rope
length for the ensemble of simulated chromosome (red) and homopolymer (blue) conformations. (Right) Probability distributions of the knot invariant measured
as the Alexander polynomial for the ensemble of simulated chromosome (red) and homopolymer (blue) conformations.
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findings are consistent with the notion that different types of in-
tervals colocalize in distinct spatial compartments. Interestingly, the
A compartment tends to be less densely packed and to lie at the
periphery of the chromosome territory. These observations are
consistent with the findings of prior studies using both microscopy
and Hi-C (9, 29, 30). Notably, a control model composed of a
simple self-avoiding homopolymer chain failed to exhibit any of
these results and, instead, recapitulated the expected properties for
an equilibrium globule (Fig. 3 A and B and SI Appendix, Fig. S3).
It is commonly assumed that one essential feature of chro-

mosomes is the absence of knots, because one might suppose
that a highly knotted structure could create obstacles to the
transcription process. We studied the extent of knotting in the
ensemble of chromosome structures sampled from the optimized
energy landscape and from the homopolymer potential. To
quantify knotting in a particular conformation of the chromo-
some, we used two different knot invariants: the Alexander
polynomial and the minimal rope length required to generate a
topologically equivalent knot (15, 31). Both measures show that
the configurations produced by MiChroM are largely devoid of
knots. In contrast, the homopolymer control system tended to
form extraordinarily complex knots (Fig. 3C). This topological
feature is a direct result of inferring the energy landscape from
the three physical assumptions explained above. Remarkably, the
simple equilibrium mechanism underlying MiChroM produces
ensembles of structures that are devoid of knots.
Finally, we used MiChroM to simulate chromosomes 17 and 18

jointly (SI Appendix, Fig. S1). This simulation allowed us to explore
whether the MiChroM potential function, which was trained using a
single intrachromosomal contact map for chromosome 10, could
successfully reproduce genome architecture at a larger scale. The
resulting intrachromosomal contact maps are essentially the same
as those intrachromosomal contact maps simulated in isolation
(Pearson’s r = 0.96). The phenomenon of phase separation of
chromatin types now extends to both chromosomes, creating larger
regions of space occupied by one single type. Spatial confinement
introduces artifacts in the frequency of interchromosomal contacts;
therefore, the interchromosomal contact map from simulation
shows somewhat increased probabilities with respect to Hi-C. Even
with the biased intensity, the two-chromosome map shows a correct
pattern of interchromosomal interactions.
When we examined the 3D ensemble, we found that, despite

the extensive contacts between the chromosomes, the chromo-
somes were not entangled with one another (SI Appendix, Fig.
S1B); instead, we observed the formation of nonoverlapping
chromosome territories. This last result highlights the fact that
MiChroM can successfully recapitulate features of the nucleus as
a whole.

The MiChroM assumes that chromosomes fold under the ac-
tion of a cloud of proteins that bind with different selectivity to
different sections of chromatin, and offers a simple strategy for
recapitulating the energy landscape created by such interactions.
This energy landscape brings about transient contacts rather than
permanent ones, which is consistent with the fact that most of the
experimentally observed contacts between two genetic loci only
occur in a small fraction of cells at a given time (5, 32). Contacts
associated with loop formation tend to be more frequent; ac-
cordingly, our optimization algorithm assigns them a larger free
energy gain upon formation. In humans, we find that six types of
chromatin are sufficient to reproduce the arrangement of in-
terphase DNA in vivo. The fact that our model can be reliably
transferred from one chromosome to the rest suggests the plau-
sibility of the proposed energetic mechanism, even if the un-
derlying biochemical details remain unclear at the present time.
As shown, MiChroM is able to explain and reproduce the

results of DNA proximity ligation experiments. Nevertheless,
caution must be applied in the interpretation of these results.
Hi-C experiments are performed using millions of cells at once,
and report only a population average. We know little about what
happens in individual cells at specific moments in time. For in-
stance, a typical cell population interrogated by Hi-C may con-
tain entirely separate subpopulations, as well as fluctuating or
even oscillating configurations. These subpopulations and con-
figurations would be lost in MiChroM.
The classification of loci into chromatin types and the position

of chromatin loops, which are inputs of our model, are strongly
associated with epigenetic features (histone modifications and
bound CTCF motifs in convergent orientation) that can be di-
rectly and inexpensively assayed by ChIP sequencing. Exploiting
these associations along with MiChroM opens up the possibility of
predicting in silico the 3D structure of whole genomes starting
from 1D genomics data, which are often already publicly available.
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