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The identification of tumor subpopulations that adversely affect
patient outcomes is essential for a more targeted investigation into
how tumors develop detrimental phenotypes, as well as for person-
alized therapy. Mass spectrometry imaging has demonstrated the
ability to uncover molecular intratumor heterogeneity. The challenge
has been to conduct an objective analysis of the resulting data to
identify those tumor subpopulations that affect patient outcome.
Here we introduce spatially mapped t-distributed stochastic neighbor
embedding (t-SNE), a nonlinear visualization of the data that is able
to better resolve the biomolecular intratumor heterogeneity. In an
unbiased manner, t-SNE can uncover tumor subpopulations that are
statistically linked to patient survival in gastric cancer and metastasis
status in primary tumors of breast cancer.

intratumor heterogeneity | mass spectrometry imaging | t-SNE |
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Mass spectrometry imaging (MSI) is a technology that si-
multaneously provides the spatial distribution of hundreds

of biomolecules directly from tissue (1, 2). The two most common
techniques, matrix-assisted laser desorption and desorption elec-
trospray ionization, lead to minimal loss of histological information.
Accordingly, the same tissue section can be histologically assessed
and registered to the MSI dataset. In this manner, the mass spec-
tral signatures of specific cell types or histopathological entities
(e.g., tumor cells) can be extracted from the often highly het-
erogeneous tissues encountered in patient tumors (3). This high
cellular specificity is behind the increasing popularity of MSI in
cancer research and its proven ability to identify diagnostic and
prognostic biomarkers (4).
There is growing awareness that MSI also can be used to an-

notate tissues based on the local mass spectrometry profiles and
thereby differentiate tissues/regions that are not histologically dis-
tinct. Deininger et al. (5) were the first to report that MSI may
reveal the biomolecular intratumor heterogeneity associated with a
tumor’s clonal development. A hierarchical cluster analysis of the
MSI data revealed a patchwork of molecularly distinct regions,
which were postulated to reflect the tumor’s clonal evolution. It was
recently demonstrated that such an approach, using multivariate
analysis of the MSI data to identify regions with distinct mass
spectral signatures and then linking these molecularly distinct re-
gions to patient outcome, enables the identification of tumor sub-
populations that are statistically associated with poor survival and
tumor metastasis (6).
All methods used to date for revealing intratumor heteroge-

neity have been linear dimensionality-reduction techniques, but
this linearity constraint focuses the results on the global char-
acteristics of the data space at the expense of finer details (7).
Accordingly, linear methods might not be sensitive to the subtle
changes expected to demarcate the clonal progression of tumors,

in which the molecular differences between nearly sequential
subpopulations may be minor.
Nonlinear multivariate methods can preserve both local detail

and the global data structure in a lower-dimensional representation
by emphasizing similarities between data points. A technique known
as t-distributed stochastic neighbor embedding (t-SNE) has rapidly
established itself as a method of choice for summarizing high-
dimensionality datasets owing to its ability to overcome the “crowding
problem,” in which some of the higher-dimensional data similarities
cannot be faithfully represented in a single map (7). t-SNE has been
applied to high-dimensionality imaging data and has been shown to
outperform other dimensionality-reduction techniques in several
life-science applications. Mahfouz et al. (8) used it to visualize the
spatial organization of gene expression across the mammalian brain.
Ji (9) used it to study the relationship between gene expression and
neuroanatomy in the developing mouse brain, demonstrating that
the developmental neuroanatomy is preserved in transcriptome
data. Fonville et al. (10) introduced t-SNE to the MSI field, dem-
onstrating its superiority over linear multivariate methods for de-
marcating regions of tissues with different mass spectral signatures.

Significance

Mass spectrometry imaging provides untargeted spatiomolecular
information necessary to uncover molecular intratumor hetero-
geneity. The challenge has been to identify those tumor sub-
populations that drive patient outcomes within the highly
complex datasets (hyperdimensional data, intratumor heteroge-
neity, and patient variation). Here we report an automatic, un-
biased pipeline to nonlinearly map the hyperdimensional data
into a 3D space, and identify molecularly distinct, clinically rele-
vant tumor subpopulations. We demonstrate this pipeline’s abil-
ity to uncover subpopulations statistically associated with patient
survival in primary tumors of gastric cancer and with metastasis
in primary tumors of breast cancer.
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The foregoing examples testify to the ability of t-SNE to sum-
marize the relationships among the molecular signatures from
different subpopulations. Here we introduce a method, known as
spatially mapped t-SNE, to automatically highlight the molecular
intratumor heterogeneity revealed by MSI, and demonstrate that
the different subpopulations can be statistically associated with
different clinical outcomes. The key components of the method
are (i) nonlinear dimensionality reduction using t-SNE, using the
Barnes–Hut–SNE implementation for faster analysis of large,
high-dimensionality datasets (11); (ii) visualization of the molec-
ular intratumor heterogeneity revealed by the t-SNE embedding;
and (iii) unbiased, image-driven clustering of the t-SNE maps to
reveal distinct molecular tumor subpopulations.
In this paper, we report an automatic data-driven approach to

reveal the intratumor heterogeneity of tumor tissue samples
detected by MSI (SI Appendix, Materials and Methods). We ap-
plied this method to MSI datasets of tissue samples from 63
patients with gastric cancer and 32 patients with breast cancer
after virtual microdissection, to focus the analysis on the MSI
data of tumor areas. Linking the t-SNE clusters to the clinical

outcomes of the patients revealed the subpopulations associated
with survival and metastatic status.

Results
t-SNE Visualizes Molecular Tumor Heterogeneity in a Single Map.
The t-SNE map of the gastric cancer dataset (Fig. 1A) represents
the intertumor and intratumor heterogeneity within the tumor-
specific MSI data of the entire 63-patient cohort. To illustrate this,
SI Appendix, Fig. S1 shows scatterplots of the first and third t-SNE
dimensions; A and B highlight three patient samples whose MSI
datasets exhibit high intratumor heterogeneity, with data points
scattered throughout the t-SNE data space, whereas C and D show
three patient samples with lower intratumor heterogeneity, result-
ing in samples lying close to each other in the t-SNE map.

Spatially Mapped t-SNE Identifies Tumor Subpopulations Associated
with Survival in Gastric Cancer. To assess whether the structure
revealed by t-SNE could be linked to clinical outcome, and
thereby identify phenotypic tumor subpopulations, we clustered
the t-SNE dataspace. First, we tested the ACCENSE algorithm

Fig. 1. Nonlinear clustering of tumor cell-specific MSI data from 63 patients with gastric cancer. (A) The t-SNE scatterplot reveals clear structural separations
based on molecular heterogeneity. (B) In the t-SNE image, each pixel is colored according to its location in the 3D t-SNE space using L*a*b* color coordinates,
revealing a patchwork of subpopulations throughout the tumors. (C) Illustration of the discretization process of the spatially mapped t-SNE. (Upper) The
molecularly distinct regions found by t-SNE are separated in the t-SNE space, yielding transitional boundaries in the image that can be highlighted using the
Canny edge detector. (Lower) The same image after discretization (clustering) and Canny edge detection-based demarcation of cluster boundaries.
(D) Pearson correlation metric of the edge images of the t-SNE and k-clustered images is then used to determine the discrete representation with the greatest
correlation, here k = 3. (E) The k = 3 discrete approximation of the 63-tumor sample t-SNE image.
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(12), which is a density-based analysis of the data points in the
t-SNE space to automatically locate clusters. The large number of
clusters found by ACCENSE (more than 20) (SI Appendix, Fig. S2),
undermined the ability to identify phenotypic subpopulations with
statistical significance, because the patients were divided between
too many groups. This result reflects the fact that t-SNE preserves
the local structure of the data, and no information is used to help it
differentiate between local differences due to different clones,
different patient samples, or any measurement bias.
Consequently, we developed an alternative approach that ex-

ploits the local image structure of the MSI data. We hypothesized
that edges in MSI data are natural boundaries of molecularly
distinct subpopulations. To investigate this, we converted the 3D
t-SNE space to a L*a*b color space (i.e., t-SNE coordinates be-
come color coordinates) and colored each pixel’s data point using
these laboratory color space coordinates. The resulting t-SNE
image (Fig. 1B) clearly reveals the spatial structure of the mo-
lecularly distinct subpopulations.
We next clustered the t-SNE map. A bisecting k-means anal-

ysis (13) of the t-SNE data was applied with k ranging from 2 to
20, and k-means images were created by labeling each pixel
according to its class label. The optimum number of clusters was
defined as that in which the k-means image most closely re-
sembled the t-SNE image. The similarity between the t-SNE im-
age and the k-means images was computed by applying a Canny
edge detector (14) to both images and computing their edge
correlation (SI Appendix, Materials and Methods). Fig. 1C illus-
trates the clustering process in one of the gastric cancer tissue
samples. The edge correlations between the t-SNE image and the
corresponding k-means images for 2 ≤ k ≤ 20 are given in Fig. 1D,
showing a maximum at k = 3. Fig. 1E shows the k-means image for
k = 3, demonstrating the distribution of the molecularly distinct
tumor subpopulations in the 63 patient tissue samples.
We then investigated the clinical relevance of the tumor sub-

populations revealed by the spatially mapped t-SNE method by
examining their association with patient survival. Each patient
tissue contained one or more subpopulations. The patient sur-
vival data were assigned to a subpopulation only if it contributed
more than would be possible by chance alone (i.e., >1/k × 100%
of pixels). Fig. 2 shows Kaplan–Meier survival curves for the
three subpopulations identified by the spatially mapped t-SNE
method. There is a significant difference in survival between the
two subpopulations encompassed by clusters one and two. The
distribution of patients contributing to each of these subpopu-
lations is given in Fig. 2D as a bar plot in which the bars are
colored according to their Cox hazard ratio. The robustness of
these findings with respect to the number of subpopulations is
investigated in SI Appendix, Fig. S3, which compares the results
for the optimal k = 3 with those obtained for the second- and
third-ranked k values. The survival analysis data for all subpop-
ulations is available in SI Appendix, Fig. S4, and P values for all
pairwise comparisons of tumor subpopulations are provided in
SI Appendix, Table S3.

Spatially Mapped t-SNE Identifies Subpopulations Associated with
Metastasis in Breast Cancer. We applied the spatially mapped
t-SNE method to a breast cancer dataset of primary tumors from
32 patients, of whom 21 had lymph node metastasis (pN = 1) and
11 were metastasis-free (pN = 0). Again the MSI datasets were first
subjected to virtual microdissection to focus the analysis on tumor
regions only. Fig. 3A shows the breast cancer MSI data in t-SNE
space, with the data points colored based on their location. The
spatial organization of mass spectral similarities, local and global,
again produces a highly structured data space that reflects intra-
tumor heterogeneity and patient variation. The edge correlations
between the t-SNE image and the k-means images, for 2 ≤ k ≤ 20,
are shown in Fig. 3B, which peaks at k = 8. The t-SNE image and
the k-means image for k = 8 are shown in SI Appendix, Fig. S5 and

again reveal spatially coherent and molecularly distinct subpopu-
lations in the patient tissues.
Fig. 3C shows the contribution of metastasized and non-

metastasized patients to the eight subpopulations. It can be seen
that subpopulation 7 has an exclusively metastatic phenotype. The
data points represented by subpopulation 7 are highlighted in red
in the t-SNE plot shown in Fig. 3D. SI Appendix, Fig. S6 shows the
same bar charts and t-SNE plots for k = 7 and k = 6, which are the
k-means images with the second- and third-highest gradient cor-
relation with the t-SNE image and in which subpopulation 6 also
has an exclusively metastatic phenotype. In each case, the cluster
of data points with the metastatic phenotype is localized in the
same distinct region of the t-SNE space (for k = 6, 7, and 8),
demonstrating the efficiency of t-SNE in finding molecular sig-
natures that group together patients with similar clinical outcomes.
The foregoing results demonstrate that the molecular signatures

of tumor subpopulations with distinct phenotypes cluster together in
the t-SNE space, that the clusters can be captured using the spatially
mapped t-SNE methodology, and that the process is generalizable
to other cancers and clinical phenotypes.

Spatially Mapped t-SNE–Based Prediction of Tumor Subpopulations
and Patient Outcomes. We next investigated whether we could
build a pixel classifier that can assign clinical outcomes to pre-
viously unseen MSI data. In brief, we used significance analysis of
microarrays (SAM) (15) to determine which protein ions can
differentiate between the spatially mapped t-SNE clusters (false
discovery rate, 0.001). Using only those m/z values, we built a
k-nearest-neighbor (kNN; k = 5) classifier (16). The pixel labels
for the classifier training were those obtained from the spatially
mapped t-SNE clustering along with their clinical association (e.g.,
poor-survival subpopulation). To train and cross-validate this kNN
pixel classifier, we performed an unbiased cross-validation exper-
iment, hereinafter referred to as leave one patient out (LOPO), a
schematic of which is shown in SI Appendix, Fig. S9.
For each LOPO iteration, we set one patient apart, executed

the foregoing procedure on the remaining patients (spatially
mapped t-SNE, clustering, phenotype association, SAM analysis,
kNN classification), and then classified the pixels in the MSI data
of the withheld patient. We repeated this process for all patients,

Fig. 2. (A) Clustering the t-SNE scatterplot using the highest-ranked value
of k for the gastric cancer MSI data; k = 3. (B) Kaplan–Meier survival analysis
shows the survival distribution for each of the clusters (subpopulations).
(C) There are significant differences in survival between clusters 1 and 2;
highlighting these clusters in the t-SNE scatterplot in A shows that they are
from distinct regions of the t-SNE space. (D) The number of patients con-
tributing to each of the clusters is shown as a bar plot in which the bar is
colored according to the Cox hazard ratio.
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giving an unbiased error of the pixel-based classifier. Prediction
results are reported in Dataset S1.
We found that the breast cancer subpopulation associated with

lymph node metastasis contributed between 0% and 98% of the
withheld patient’s primary tumors, and the gastric cancer sub-
population associated with poor survival contributed between 0 and
95%. In the absence of a ground truth of the intratumor hetero-
geneity of each patient sample with which the results of the pixel
classification could be compared, we sought to use the (known)
patient outcomes for the validation. It is currently unknown what
proportion of a tumor should be represented by a phenotypic
subpopulation for it to manifest itself in the clinic (e.g., different
patient survival/lymph node metastasis). Thus, we tested a simple
patient-based classifier; if a tissue has more than t1 pixels of the
poor-outcome subpopulation and less than t2 pixels of the good-
outcome subpopulation, then we classify the patient as poor out-
come (and vice versa).
For predicting metastasis in breast cancer tissue, we used

Youden’s index (17) to set these values (i.e., t1 = 2% and t2 =
100%). Using these thresholds and predictions from our pixel
classifier, we obtained 75% correct classifications (19 metastasized
and 5 nonmetastasized), which is significant according to Fisher’s
exact test (SI Appendix, Table S4). Note that the evaluations were
performed on the patients set apart to ensure unbiased estimates.
For predicting poor survival in gastric cancer, we used t1 = 10%
and t2 = 50% for the patient-based classifier. These predictions
resulted in significant survival time differences between the pre-
dicted patient groups, as shown by Kaplan–Meier survival analysis
and the log-rank test (P = 0.0104) (SI Appendix, Fig. S10).

Spatially Mapped t-SNE Enables Identification of Discriminative m/z
Features. In the foregoing classification experiment, we per-
formed the SAM analyses to determine which protein ions dif-
ferentiated the subpopulations. In these analyses, a number of
protein ions were consistently found (>80% of LOPO runs) to
characterize the phenotypic subpopulation for gastric cancer sur-
vival—m/z = [3,374, 3,409, 3,445, 3,670, 3,711, 4,967, and 14,021]
(SI Appendix, Fig. S11A)—and for breast cancer lymph node

metastasis—m/z = [4,965, 4,999, 5,067, 5,171, 6,650, 6,980, 7,009,
9,265] (SI Appendix, Fig. S12A). This provides the opportunity to
detect the different subpopulations based on only a few targeted
protein ions (instead of analyzing the full mass spectrometry
spectrum). In SI Appendix, Figs. S11B and S12B are t-SNE maps
in which the data are colored for each of these m/z features for
gastric cancer and breast cancer, respectively. The figures confirm
that these protein ions demarcate data points in specific areas of
the t-SNE map. Of note, those features that were detected in all
LOPO runs had the highest differential expression for the detri-
mental subpopulation; for gastric cancer, this was m/z = 3,374 and
3,445 (Fig. 4A), and for breast cancer, it wasm/z = 4,965 and 4,999
(Fig. 4B). Close examination of the MSI data shows that the
spatial distributions of these ions coincided with those of the
phenotypic subpopulations revealed by the t-SNE clustering (Fig.
5). Fig. 5 also presents the histological image of the tissue section,
to demonstrate that although the subpopulations are molecularly
and phenotypically distinct, they are histologically identical. Sim-
ilar results were found for different patients and protein ions in
both the breast cancer and gastric cancer cohorts (SI Appendix,
Figs. S13 and S14).

Discussion
Identification of the tumor subpopulations that impact patient
outcomes is essential for better characterizing the molecular
changes that accompany tumor development and for optimizing
patient management (18, 19). MSI has several key characteristics
that make it well suited to this task; it is an untargeted analysis
that can simultaneously analyze hundreds of molecular ions, it can
be directly applied to tissue sections, it is inexpensive, and it is fast.
Several previous studies have reported MSI’s ability to uncover
tumor subpopulations in histologically identical regions of tumor
tissue (5, 20, 21). Here we have used dimensionality reduction
based on t-SNE followed by bisecting k-means clustering to au-
tomatically segment the tumor-specific MSI data from a patient
series into an optimum number of subpopulations. We used t-SNE
because it is a nonlinear mapping technique that preserves the
local and global similarity structure of the dataspace in a lower-
dimensionality representation. t-SNE has previously been shown
to be a superior representation for the spatial organization of MSI

Fig. 4. (A) A 3D t-SNE map of the gastric cancer MSI dataset (Fig. 1A) color-
coded with the intensities ofm/z 3,374 and 3,445, protein ions detected in all
LOPO runs, with localized overexpression in the yellow, poor-survival sub-
population (Fig. 2A). (B) A 3D t-SNE map of the breast cancer MSI dataset (SI
Appendix, Fig. S5), color-coded with the intensities of m/z 4,965 and 4,999,
protein ions detected in all LOPO runs, and with localized underexpression in
the exclusively metastatic subpopulation (Fig. 3D).

Fig. 3. (A) Nonlinear visualization of tumor cell-specific MSI data from 32
patients with breast cancer using t-SNE. (B) An edge-based image correlation
is then used to determine the discrete representation with the highest cor-
relation, here k = 8. (C) Visualization of the metastasis-associated subpop-
ulations in the breast cancer MSI data as revealed by t-SNE shows the
contributions of metastatic (black) and nonmetastatic patients (gray) to the
eight clusters in a grouped histogram. A statistical analysis found cluster 7 to
be exclusively associated with a metastatic phenotype. (D) This subpopula-
tion, highlighted in red in the t-SNE scatterplot, occupies a distinct region of
the t-SNE space.

Abdelmoula et al. PNAS | October 25, 2016 | vol. 113 | no. 43 | 12247

M
ED

IC
A
L
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510227113/-/DCSupplemental/pnas.1510227113.sd01.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510227113/-/DCSupplemental/pnas.1510227113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510227113/-/DCSupplemental/pnas.1510227113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510227113/-/DCSupplemental/pnas.1510227113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510227113/-/DCSupplemental/pnas.1510227113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510227113/-/DCSupplemental/pnas.1510227113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510227113/-/DCSupplemental/pnas.1510227113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510227113/-/DCSupplemental/pnas.1510227113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510227113/-/DCSupplemental/pnas.1510227113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510227113/-/DCSupplemental/pnas.1510227113.sapp.pdf


and gene expression data (10). We reasoned that t-SNE’s non-
linear nature would also better equip it to distinguish the mass
spectrometry differences between tumor subpopulations.
Mapping of the tumor-specific MSI data from patients with

gastric and breast cancer into the lower-dimensional t-SNE space
revealed structured 3D data spaces. The application of ACCENSE
density-based partitioning (12) to the t-SNE map led to the de-
tection of a large number of clusters, but the Kaplan–Maier curves
lacked statistical significance (SI Appendix, Fig. S2B).
Given that the spatial organization of pixels is lost in the t-SNE

map, and that neighboring pixels in the MSI data are more likely
to constitute the same tumor subpopulation, we set out to cluster
the t-SNE map using bisecting k-means clustering, with k opti-
mized on spatial congruency. We chose bisecting k-means because
it is insensitive to initial conditions, convergences to a global opti-
mum, and scales better to large datasets because it has a linear time
and memory complexity (13). To estimate the optimum number of
clusters (subpopulations), we calculated the correlation between the
t-SNE image and the k-means image. Because of the difficulty of
comparing a continuous t-SNE image with a discrete k-means cluster
image, and to focus the analysis on the borders between tumor
subpopulations, we used an edge correlation function to compare
the images. This technique is an established image analysis method
for comparing continuous and discrete imaging modalities (22).
We previously reported a clinical data-driven approach for iden-

tifying phenotypic tumor subpopulations (6). This approach was
based on the consensus of five different linear multivariate methods
(20) to locate tumor subpopulations, but required the user to pre-
specify the number of subpopulations. The resulting cluster data
were then compared with the clinical data to assess their statistical
significance. Here we developed an MSI data-driven approach to
determine the optimum number of subpopulations (even if those
subpopulations are characterized by relatively minor differences in
molecular profiles) and assess their clinical significance. We thus
exploited the greater capacity of t-SNE to reveal heterogeneity in
the MSI data, allowing automatic identification of subpopulations.
Of note, the t-SNE approach distinguishes the phenotypic sub-

populations for patient survival in gastric cancer for k = 3, whereas
our previously reported agreement analysis approach (6) begins
to identify these differences only at significantly higher values of k

(figure 4 in ref. 6). Furthermore, the prognostic signature reported
and extensively validated here for gastric cancer involves more
proteins; of the seven protein ions reported here, namely m/z =
3,374, 3,409, 3,445, 3,670, 3,711, 4,967, and 14,021, only m/z 3,445
(DEFA-1) and 14,021 (histone H2A) were reported previously. The
lower separation power of the earlier linear multivariate methods
may explain why the previously detected subpopulations had mixed
contributions from nonphenotypic as well as phenotypic subpopu-
lations. This would dilute any observable differences and thus limit
the ability to identify protein ions associated with phenotype.
Using the spatially mapped t-SNE, we were able to build a pixel

classifier and a patient-based classifier for outcome, which were
able to demarcate the intratumor heterogeneity and predict pa-
tient survival (in gastric cancer) or metastasis status (in primary
breast cancer). In all examples, the molecular and phenotypic
intratumor heterogeneity was not apparent in the conventional
histological images. This opens up much needed possibilities for
assessing the clinical impact of intratumor heterogeneity and
clonal evolution in cancer by, for example, using the pixel classi-
fication for spatially resolved sample selection for RNA sequenc-
ing of tumor subpopulations with different clinical phenotypes.

Concluding Remarks
Intratumor heterogeneity is a key factor in tumor progression,
affecting patient outcomes and treatment. Tumor subpopulations
can be histologically indistinguishable but still have molecular phe-
notypes that drive tumor progression and determine disease out-
come (18, 23). The identification of these clinically relevant tumor
subpopulations is of utmost importance for understanding cancer
development and the management of cancer patients (24). Although
localized genomic techniques have established branched evolution of
tumors (25) and single-cell transcriptional heterogeneity (26), the
cost and throughput of these techniques are prohibitive for large-
scale multisite sequencing of patient tissues. The automated identi-
fication of phenotypic tumor subpopulations reported here will allow
better targeting of these powerful genomic methods to those sub-
populations that are statistically associated with patient outcomes.

Materials and Methods
Tumor-specific signatures obtained by protein matrix-assisted laser desorption
MSI analysis of primary tumors of gastric cancer (n = 63) and breast cancer (n =
32) were nonlinearly mapped to a 3D space using t-SNE. Using the percep-
tually linear L*a*b color map to color each pixel according to its position in
the t-SNE space, a t-SNE colored image can be obtained that depicts regions
characterized by similar mass spectral profiles with similar colors. To segment
the image into a discrete number of clusters, bisecting k-means and edge-
correlation algorithms were applied. The resulting clusters, or tumor sub-
populations, were then statistically compared with the patients’ clinical data
(survival for gastric cancer and lymph node metastasis for breast cancer) to
identify the subpopulations statistically associated with patient phenotype.
LOPO pixel-based and patient-based classifiers were built to cross-validate the
identification of tumor subpopulations and patient outcomes. Detailed de-
scriptions of the clinical tissue samples, MSI experiments, data processing,
technical validation, and algorithms are provided in SI Appendix, Materials
and Methods. This study was approved by the Institutional Review Board and
the Ethics Committee of the Faculty of Medicine of the Technische Universität
München, with informed consent from all subjects and patients.
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Fig. 5. Comparison of tissue histology and MSI of α-defensin protein ion
detected at m/z 3,374. (A) Histological image of a tissue section from a pa-
tient with gastric cancer. (B) Higher-magnification image of a selected re-
gion in A showing uniform histology. (C) Close-up of a tissue section in the
k = 3 discrete approximation of the 63-tumor sample t-SNE image, showing
the presence of the poor survival subpopulation (cluster number 2, yellow).
(D) MSI of the α-defensin protein ion detected at m/z = 3,374 showing
heterogeneity within the histologically uniform tissue, in which it is highly
expressed in the poor-survival subpopulation.
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