Skip to main content
. 2016 Oct 13;16(10):1701. doi: 10.3390/s16101701

Table 3.

Comparing network intrusion detection results for the six datasets (%).

Dataset Model Normal DoS Probe U2R R2L Acc Recall ER
Dataset 1 SVM 98.21 83 66.01 0.88 3.14 81.52 77.72 18.48
BP 96.51 89.49 46.18 9.21 1.93 85.66 83.48 14.34
RF 93.65 96.62 59.27 0 0 90.44 91.08 9.56
Bayes 91.51 95.59 61.35 4.39 3.56 89.48 92.57 10.52
SCDNN 97.21 96.87 80.32 11.4 6.88 91.97 91.68 8.03
Dataset 2 SVM 96.22 97.1 65.84 0 0.05 91.39 90.52 8.61
BP 91.44 97.42 62.69 7.02 5.41 90.93 92.88 9.07
RF 98.23 96.48 38.26 0 0 90.95 89.51 9.05
Bayes 95.92 95.98 62.55 4.82 4.38 90.69 91.07 9.31
SCDNN 98.42 97.2 70.64 3.51 1.57 92.03 91.35 7.97
Dataset 3 SVM 95.87 97.23 64.86 0 0.06 91.41 90.59 8.59
BP 81.53 96.95 8.81 6.14 7.26 88.03 90.05 11.97
RF 99.57 96.57 0 0 0 90.76 89.37 9.24
Bayes 96.38 96.29 59.15 7.02 7.46 91.12 90.95 8.88
SCDNN 97.61 97.23 65.96 4.39 6.59 92.1 92.23 7.9
Dataset 4 SVM 95.54 70.18 57.37 0 1.63 70.73 53.26 29.27
BP 96.35 71.17 65.55 0 0.58 72.16 57.79 27.84
RF 99.63 63.11 7.23 0 0 64.57 40.45 35.43
Bayes 93.9 72.18 41.02 0 0 68.73 52.78 31.27
SCDNN 96.17 75.84 53.37 3 3.01 72.64 57.48 27.36
Dataset 5 SVM 98.57 18.93 49.89 0 0.11 54.1 20.45 45.9
BP 91.79 7.63 66.58 1.5 2.43 49.53 27.56 50.47
RF 99.69 62.64 48.99 0 0 68.93 46.43 31.07
Bayes 99.06 61.65 35.4 0 0 66.87 44.28 33.13
SCDNN 97.19 74.51 48.37 5 0.62 71.83 55.08 28.17
Dataset 6 SVM 95.81 41.5 43.67 0 0 41.46 30.6 58.54
BP 74.72 4.61 88.67 0 1.53 33.59 30.6 66.41
RF 99.72 36.15 6.74 0 0 32.73 18.9 67.27
Bayes 82.16 48.25 28.52 0 0 38.37 30.08 61.63
SCDNN 84.2 50.02 52.66 1.5 0.98 44.55 37.85 55.45