Skip to main content
. 2016 Oct 14;16(10):1708. doi: 10.3390/s16101708

Table 1.

Application of e-nose for evaluation of different diseases using urine samples.

Reference Number Authors (Year) Disease Studied Detection System Data Processing Methods
[49] Pavlou et al. (2002) BC 14 CP GA, NN, PCA, DFA-cv
[50] Bruins et al. (2009) BC 1 MOS SW-MV, DTW
[51] Yates et al. (2005) BC 32 CP (Cyrano Sciences C320, Smiths Detection, Bushey, Hertfordshire, UK) MPL, ARX, RBFs, non linear ARX
[52] Aathithan et al. (2001) BC 4 CP (Osmetech Microbial Analyzer-OMA, Osmetech plc, Crewe, UK) PCA
[53] Pavlou et al. (2002) UTI 14 CP GA, NN, PCA, DFA-cv
[54] Kodogiannis et al. (2008) UTI 14 CP (Bloodhound BH-114, Bloodhound Sensors Ltd., Leeds, UK) implementation of an advanced NN
[55] Roine et al. (2014) UTI 6 MOS (ChemPro 100i, Environics Inc., Mikkeli, Finland) LDA, LR, PCA
[56] Kodogiannis et al. (2005) UTI 32 CP (Cyranose E-320, Sensigent, Baldwin Park, CA, USA ) NN, EM, SM
[57] Sabeel et al. (2013) UTI 32 CP (Cyranose E-320, Sensigent, Baldwin Park, CA, USA) PCA
[58] Persaud et al. (2005) UTI CP PCA
[59] Bernabei et al. (2007) CD 8 QCM PCA, PLS-DA
[60] Weber et al. (2011) CD 12 MOS, 12 MOSFET, 1 capacitance-based humidity sensor and 1 IR-based CO2 sensor PLS-DA
[61] Horstmann et al.(2015) CD MOS PCA
[62] D’Amico et al. (2012) CD 8 QCM PLS-DA
[63] Santonico et al. (2014) CD 8 QCM PLS-DA
[64] Asimakopoulos et al. (2014) CD 8 QCM PLS-DA
[65] Roine et al. (2014) CD 8 electrode strips and 1 MOS (ChemPro® 100, Environics Inc., Mikkeli, Finland) LDA, LOOCV
[66] Westenbrink et al. (2014) CD 8 amperometric electro-chemical sensors (Alphasense Ltd., Great Notley, Essex, UK), 2 non-dispersive IR, optical devices (Clairair Ltd., Witham, UK) and 1 photo-ionisation detector (Mocon, Minneapolis, MN, USA). LDA
[67] Satetha Siyang et al. (2012) D 8 commercial chemical gas sensors, based on change of resistance (TGS sensors) PCA, CA
[68] Ping et al. (1997) D MOS NN, fuzzy cluster pattern recognition
[69] Di Natale et al. (1999) KD QMB PCA
[70] Arasaradnam et al. (2012) BD 6 MOS, 1 optical IR sensor, 1 pellistor, 6 electrochemical sensors PCA, LDA
[71] Arasaradnam et al. (2013) BD 18 MOS (Fox 4000, AlphaMOS, Toulouse, France) PCA
[72] Covington et al. (2013) BD 10 MOS PCA, LDA
[73] Mohamed et al. (2013) exposure to toxic agents 10 MOS (PEN3, Airsense Analytics GmbH, Schwerin, Germany) PCA

Abbreviations: Genetic algorithms (GA), neural networks (NN), principal components analysis (PCA), discriminant function analysis and cross-validation (DFA-cv), Sliding Window-Minimum Variance matching adaptation of the Dynamic Time Warping algorithm (SW-MV, DTW), Multilayer perceptron (MLP), autoregressive exogenous type (ARX), Radial basis functions (RBFs), parametric Discriminant Function Analyses and cross validation (DFA-cv), linear discriminant analysis (LDA), logistic regression (LR), Expectation Maximization algorithm (EM), Split and Merge (SM), partial least squares-discriminant analysis (PLS-DA), leave-one-out cross-validation (LOOCV), cluster analysis (CA), bacteria cultures (BC), urinary tract infections(UTI), cancer diseases (CD), diabetes (D), kidney diseases (KD), bowel diseases (BD), metal oxide semiconductors (MOS), quartz microbalances (QMB or QCM), metal oxide semiconductor field effect transistor (MOSFET), conducting polymer (CP).