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Scanu, and colleagues cloned and sequenced the LPA gene 
coding for apo(a) (4, 5), a protein with homology to plas-
minogen, which accounts for the difference between an 
Lp(a) particle and an LDL particle. These observations 
generated a huge scientific interest in Lp(a), leading to an 
exponential growth in the number of articles published, 
which then later declined again.

Renewed interested in Lp(a) came in 2009 from Pia  
Kamstrup et al. (6) with genetic evidence from Mendelian 
randomization that high Lp(a) is causally associated with 
cardiovascular disease, from the Emerging Risk Factors 
Collaboration led by John Danesh that Lp(a) epidemio-
logically is continuously and independently associated with 
cardiovascular disease risk (7), and from Robert Clarke et al. 
(8) that of 2,100 candidate genes for cardiovascular disease, 
genetic variation in the LPA gene was the strongest genetic 
cardiovascular risk factor. Following the publication of these 
studies, high concentrations of Lp(a) have been considered 
to be a direct cause of cardiovascular disease, just like high 
LDL cholesterol concentrations. Genetic evidence largely 
free of confounding and fully free of reverse causation, two 
major problems of observational epidemiology, is what has 
cemented the understanding of causality of Lp(a) for car-
diovascular disease.

These novel and important findings led the European 
Atherosclerosis Society to publish a 2010 consensus panel 
statement recommending screening for elevated Lp(a) in 
individuals at intermediate, high, or very high cardiovascu-
lar risk, and suggested a desirable plasma concentration of 
less than 50 mg/dl (9). Of note, we naturally were fully 
aware that the risk of cardiovascular disease increases al-
ready at Lp(a) levels above 30 mg/dl, but to get the atten-
tion of the clinical community, we believed it was the best 
strategy to start focusing on individuals with the highest 
cardiovascular risk, that is, the 20% of individuals with con-
centrations above 50 mg/dl.
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now strongly supports that elevated lipoprotein (a) [Lp(a)] is 
a causal risk factor for cardiovascular disease, that is, for 
myocardial infarction, atherosclerotic stenosis, and aortic 
valve stenosis. The Mendelian randomization approach used 
to infer causality is generally not affected by confounding 
and reverse causation, the major problems of observational 
epidemiology. This approach is particularly valuable to study 
causality of Lp(a), as single genetic variants exist that explain 
27–28% of all variation in plasma Lp(a). The most important 
genetic variant likely is the kringle IV type 2 (KIV-2) copy 
number variant, as the apo(a) product of this variant influ-
ences fibrinolysis and thereby thrombosis, as opposed to the 
Lp(a) particle per se. We speculate that the physiological 
role of KIV-2 in Lp(a) could be through wound healing dur-
ing childbirth, infections, and injury, a role that, in addition, 
could lead to more blood clots promoting stenosis of arteries 
and the aortic valve, and myocardial infarction. Randomized 
placebo-controlled trials of Lp(a) reduction in individuals 
with very high concentrations to reduce cardiovascular dis-
ease are awaited.  Recent genetic evidence documents  
elevated Lp(a) as a cause of myocardial infarction, athero-
sclerotic stenosis, and aortic valve stenosis.—Nordestgaard, 
B. G., and A. Langsted. Lipoprotein (a) as a cause of cardio-
vascular disease: insights from epidemiology, genetics, and 
biology. J. Lipid Res. 2016. 57: 1953–1975.

Supplementary key words  apolipoproteins • atherosclerosis • choles-
terol • dyslipidemias • inflammation • low density lipoprotein • lipids • 
plasminogen • vascular biology

The first articles on lipoprotein (a) [Lp(a)] were pub-
lished in 1963 by Kåre Berg from Norway, describing Lp(a) 
in human plasma as a heritable trait (1–3). Over the next 
more than 20 years, the scientific interest in this lipopro-
tein was modest. Then in 1987, Richard Lawn, Angelo 
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intima of arteries and aortic valve leaflets. Lp(a) or apo(a) 
is indeed found within the lesioned intima of human arter-
ies and coronary artery bypass vein grafts removed at reop-
eration (41–46), as well as within the lesioned intima of 
monkey arteries (47) and arteries in rabbits and mice after 
intravenous injection of human Lp(a) (48, 49) or after 
transgenic modification with human Lp(a) (50). Likewise, 
apo(a) is found within early to end-stage lesions of human 
aortic valve stenosis (51).

In vivo kinetic studies show that radiolabeled human 
Lp(a) enters the intima at similar rates to LDL in normal 
and atherosclerotic arteries in humans and rabbits (49, 52, 
53), which appears to be like other lipoproteins, through a 
simple molecular sieving not involving any receptors, but 
dependent on lipoprotein plasma concentrations and on 
lipoprotein particle size, blood pressure, and on arterial 
wall permeability (54). Importantly, however, as the plasma 
concentration of LDL is much higher than that of Lp(a) in 
most  individuals,  the mass  intimal  influx of LDL was 15-
fold that of Lp(a) in humans (52). Again using kinetic 
studies in vivo, the rates of relative removal of Lp(a) and 
LDL from the arterial intima were similar, while the trap-
ping of both lipoproteins was higher in lesioned compared 
with normal intima (53); it cannot entirely be excluded 
that there may be preferential trapping of Lp(a) in settings 
where lesion formation is ongoing and/or more advanced. 
Also, degradation in vivo of human Lp(a) was higher in 
atherosclerotic compared with nonlesioned rabbit intima 
(55).

Surprisingly, when the arterial intima in a rabbit model 
was subjected to a balloon injury, radiolabeled human 
Lp(a) accumulated in vivo 2- to 3-fold greater than that of 
radiolabeled human LDL in the balloon-injured aortic in-
tima, but not in the adjacent uninjured arterial intima 
(56). As removal of intact endothelial cells would not ex-
plain why Lp(a) preferentially accumulates, because entry 
into the intima would be enhanced for LDL and Lp(a) 
equally, this can most likely occur because of prolonged 

Although some cardiologists suspected for many years, 
as far back as the mid-1990s, that Lp(a) was a risk factor for 
aortic valve stenosis, a further novel development was the 
documentation by George Thanassoulis et al. (10) in 2013 
that genetic variation in the LPA gene is strongly associated 
with aortic valve calcification and stenosis. It was later 
shown that high plasma Lp(a) concentrations are likewise 
causally associated with high risk of aortic valve stenosis 
(11). Taken together therefore, the genetic evidence now 
firmly demonstrates that high plasma Lp(a) concentration 
is a direct cause of cardiovascular disease, that is, myocar-
dial infarction, atherosclerotic stenosis, and aortic valve 
stenosis (Fig. 1).

Although mainly recent genetic research has firmly estab-
lished the claim for causality for high Lp(a) concentrations 
to cardiovascular disease, these findings have only been pos-
sible due to the many other excellent scientific works on 
Lp(a) published from 1963 until today, produced by a large 
number of dedicated researchers within this field. In this 
review, it will not be possible to do justice to all the impor-
tant scientific discoveries on Lp(a) in relation to cardiovas-
cular disease published during the 50 years. That said, with 
our own personal touch to the story and with focus on evi-
dence from human studies, we will try our best, in a histori-
cal perspective, to cover insights in epidemiology, genetics, 
and biology that led to the understanding of Lp(a) as a 
cause of cardiovascular disease. Many classic and more re-
cent reviews, viewpoints, and meta-analyses cover related 
areas (5, 7, 9, 12–40), include even more references, and, 
together with the present review, provide a comprehensive 
coverage of Lp(a) as a cause of cardiovascular disease.

Lp(a) IN NORMAL, ATHEROSCLEROTIC, AND 
INJURED INTIMA

A necessary condition for Lp(a) to cause cardiovascular 
disease is its ability to enter into and accumulate in the 

Fig. 1. Summary of the strongest causal genetic 
evidence linking high Lp(a) concentrations with cor-
responding small apo(a) size due to low number of 
KIV-2 repeats to risk of disease.
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of other lipoproteins are often affected by life-style and 
physiological factors, whereas Lp(a) concentrations re-
main stable inter-individually throughout life, indirectly 
suggesting that Lp(a) concentrations are mostly genetically 
determined.

In very early studies, Lp(a) was suggested to be an inher-
ited trait with autosomal dominant inheritance (2, 3, 75–
77) and a major gene and polygenic factors were proposed 
as contributors to the variation in Lp(a) concentrations 
(78–80). Hasstedt et al. (78) found that the major gene 
and the polygenic factors accounted for 95% of the varia-
tion in plasma Lp(a) concentrations. Following this, a 
number of studies primarily led by Gerd Utermann and 
colleagues revealed that apo(a) varied in size due to krin-
gle IV type 2 (KIV-2) copy number variation, and that the 
number of KIV-2 copies were inversely correlated to 
plasma Lp(a) concentrations (81–87) (Fig. 2, middle and 
lower panel). However, the correlation between the apo(a) 
size polymorphism and Lp(a) plasma concentrations was 
found to vary greatly among individuals of different eth-
nicity, as do plasma Lp(a) concentrations (69, 70, 73, 74, 
88). One study found that the apo(a) allele frequencies 
were different among different populations (69). In that 
study, the size variation of apo(a) explained from 19% in 
Sudanese to 77% in Malays of the variability in plasma 
Lp(a) concentrations.

In 49,615 individuals from the Copenhagen General 
Population Study, the KIV-2 number of repeats in the LPA 
gene coding for the apo(a) size polymorphism explained 
27% of the variation in plasma Lp(a) concentrations (Fig. 
2, lower panel); however, the KIV-2 number of repeats was 
measured as both alleles combined and does not take dif-
ferent expression of alleles into account, suggesting that 
the 27% should be viewed as a minimal estimate for Danes. 
Therefore, the measurements of KIV-2 in these studies do 
not necessarily reflect the dominant isoform that is associ-
ated with the highest Lp(a) concentrations. For Mendelian 
randomization studies, the most important genetic variant 
is likely the KIV-2 copy number variation, or corresponding 
apo(a) size polymorphism, as this causal variant possibly is 
the direct cause of cardiovascular disease (39). However, 
although genotyping of this variant can be done in large-
scale-studies, it requires, at present, quantitative polymerase 
chain reaction (6) or even more complicated techniques 
(39). Importantly, for now, it is not possible to determine 
for sure whether it is the KIV-2 copy number variation or 
the associated plasma Lp(a) concentration that is causally 
associated with cardiovascular disease.

In 2009, Robert Clarke et al. (8) published an article using 
a gene chip with 48,742 SNPs in 2,100 candidate genes exam-
ining individuals with coronary disease and controls. They 
found that the rs10455872 and rs3798220 SNPs in the LPA 
gene explained 25% and 8% of the variation in plasma Lp(a) 
concentrations, and each was associated with high risk of 
coronary heart disease. Importantly, in numerous other stud-
ies, including genome-wide linkage and association studies, 
multiple genetic variants in or around LPA on chromo-
some 6q27 were also found to be major determinants of 
plasma Lp(a) concentrations (39, 89–93). For Mendelian 

residence time, e.g., enhanced binding of Lp(a) selectively 
to the matrix in the intima. A simple explanation for this 
observation could be that the balloon-injury removes the 
endothelial cells and thus exposes the intima directly to 
flowing  blood,  favoring  deposition  of  fibrin.  Thereby 
Lp(a), unlike LDL, can bind to small blood clots rapidly 
forming at the injured sites, or to exposed glycosaminogly-
cans (21, 56, 57). Preferential accumulation of Lp(a) com-
pared with LDL at injured sites could thus be related to the 
greater capacity of Lp(a) than LDL to bind to fibrin (58) or 
glycosaminoglycans (59). Indeed, Lp(a) compared with 
LDL appeared to be preferentially immobilized via fibrin 
binding in human arterial tissue (44).

Taken together, these data suggest that Lp(a) accumula-
tion at sites of injury could be a primary mechanism by 
which elevated Lp(a) causes cardiovascular disease. That 
said, there is also evidence that Lp(a) can be taken up by 
macrophages to produce foam cells (60–62), a mechanism 
by which LDL and triglyceride-rich lipoproteins are be-
lieved to cause the development of atherosclerosis (63–65). 
Interestingly, in coronary artery bypass vein grafts and rela-
tive to plasma concentrations, Lp(a) accumulated 2.4-fold 
more than all apoB-containing lipoproteins combined, 
that is, LDL, Lp(a), and triglyceride-rich lipoproteins, and 
unlike apoB that was found mainly at atherosclerotic  
core regions, this was not the case for Lp(a) (43). The lat-
ter suggests that the intimal accumulation of Lp(a) is by a 
different mechanism than that of other apoB-containing 
lipoproteins, and that Lp(a) accumulation is throughout 
the intima, while other apoB-containing lipoproteins mainly 
are found at atherosclerotic lesions.

PLASMA CONCENTRATIONS AND GENETICS

The fact that plasma concentrations of Lp(a) are mainly 
genetically determined (14, 39) has been instrumental in 
the study of causality of Lp(a) for cardiovascular disease. 
Because of this, the genetic evidence for causality in car-
diovascular disease is much stronger for Lp(a) than for 
most other cardiovascular risk factors (8, 30, 66). It is also 
of huge importance for Mendelian randomization studies 
that single genetic variants exist that explain 27–28% of all 
variation in plasma Lp(a), and that these variants can be 
genotyped in large-scale studies (6, 8, 10, 11, 67). There-
fore, a brief discussion of plasma Lp(a) concentrations  
and the genetic principles used in Mendelian randomiza-
tion studies is given below. An in depth review of this 
topic is presented elsewhere in this Thematic Review  
Series (39, 68).

In the general population, plasma concentrations of 
Lp(a) vary to a great extent among individuals (14). Con-
centrations also differ between different ethnicities, with 
higher concentrations in individuals of African compared 
with European and Asian descent (14, 68–74). In Europe-
ans and Asians, Lp(a) concentrations are highly skewed 
with a tail toward higher concentrations (Fig. 2, top panel), 
and in the Copenhagen General Population Study, we ob-
served concentrations as high as 387 mg/dl. Concentrations 
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Fig. 2. Distribution of and correlation between 
plasma Lp(a) concentrations and KIV-2 number of 
repeats in the Danish general population.

randomization studies, however, the most important SNP is 
LPA rs10455872, as this variant explains up to 28% of varia-
tion in plasma Lp(a) concentrations in the general popula-
tion of Whites (11, 67), and this variant, unlike the KIV-2 

copy number variation, is very easy to genotype in large-scale 
studies. Even though this SNP is not causal for high Lp(a) 
(39), it can still be an excellent instrument to examine causal-
ity of high Lp(a) concentrations per se.
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is unlikely to lead to increased risk of diabetes. Importantly 
however, more evidence using even better genetic instru-
ments is needed before this can be concluded definitively 
(67, 97).

GENETIC STUDIES TO INFER CAUSALITY: THE 
MENDELIAN RANDOMIZATION APPROACH

Genetic studies, like randomized intervention trials, are 
completely free of reverse causation and largely free of 
confounding. Therefore, if a genetic variant or a drug 
leads to higher or lower concentrations of a lipoprotein 
and this further leads to higher or lower risk of cardiovas-
cular disease, then it is quite likely that it is the lipoprotein 
that causes the effect on cardiovascular disease. In essence, 
this is the principle of the Mendelian randomization ap-
proach. In contrast, results from observational epidemiology 
can mislead through confounding and reverse causation. 
Confounding is when a third factor influences both lipo-
protein concentrations and cardiovascular disease risk, 
while reverse causation implies that cardiovascular disease 
leads to changes in lipoprotein concentrations, rather than 
vice versa.

Taken together, the LPA KIV-2 copy number variation 
and the LPA rs10455872 SNP have so far been the best ge-
netic instruments in large-scale Mendelian randomization 
studies, each explaining 27–28% variation in plasma Lp(a) 
concentrations. Because KIV-2 copy number variation di-
rectly measures apo(a) size differences as opposed to 
rs10455872, which marks both apo(a) size differences and 
Lp(a) concentrations unrelated to this genetic variation 
(67), the combined use of both has the potential to ex-
plore whether it is the KIV-2 copy number variation or the 
Lp(a) particle, per se, that is the direct cause of cardiovas-
cular disease.

While KIV-2 number of repeats above 40 and rs10455872 
noncarrier state both mark very low Lp(a) concentrations, 
heterozygosity and homozygosity for rs10455872 mark very 
different plasma Lp(a) concentration profiles than inter-
mediate or low number of KIV-2 number of repeats (Fig. 3). 
Using these two genetic variants simultaneously has previ-
ously been used by us to suggest that the well-documented 
slightly higher risk of type 2 diabetes in those with the  
lowest Lp(a) concentration (67, 94–96) is possibly ex-
plained by the KIV-2 copy number variation rather than 
the Lp(a) particle per se (67). In other words, these data 
indirectly suggest that lowering of Lp(a) pharmacologically 

Fig. 3. Distribution of plasma Lp(a) concentra-
tions as a function of LPA KIV-2 number of repeats 
and of LPA rs10455872 in the Copenhagen General 
Population Study. Green and red parts correspond 
to the bottom 80% and top 20% of the entire popu-
lation distribution of plasma Lp(a) concentrations 
(see Fig. 3).
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potential limitation of observational studies is reverse cau-
sation, that is, the possibility that cardiovascular disease 
leads to high Lp(a) concentrations, rather than vice versa 
(Fig. 5, left panel). In the Mendelian randomization study 
design, reverse causation is simply not possible, as cardio-
vascular disease cannot change your genes (Fig. 5, middle 
and right panels). In other words, the Mendelian random-
ization study design can be used to infer causality just like 
a randomized double-blind placebo-controlled Lp(a)-re-
ducing trial and these two types of studies share many ad-
vantages and have similar limitations [see Fig. 5 in (65)]. 
Unfortunately however, so far no randomized double-
blind placebo-controlled Lp(a)-reducing trials to prevent 
cardiovascular disease have been published or even initi-
ated. Therefore, for now, the human evidence to suggest 
that high Lp(a) causes cardiovascular disease has to de-
pend on genetics and the Mendelian randomization ap-
proach. While these approaches are powerful, it is naturally 
the totality of evidence that counts in understanding 
causality.

Another limitation of observational studies is the prob-
lem of regression dilution bias (109, 110) because risk fac-
tors typically are only measured once, and therefore the 
association observed will only represent a single point esti-
mate (Fig. 5, left panel). Regression dilution bias means 
that the effect size of the risk estimate is underestimated, 
although  this  bias  does  not  influence  statistical  signifi-
cance. In contrast, SNPs used in the Mendelian randomiza-
tion design generally are measured precisely and have less 
of a problem with regression dilution bias (Fig. 5, right 
panel). The exception here is KIV-2 number of repeats 
measured using quantitative polymerase chain reaction, as 
this measurement will vary due to measurement error just 
like plasma Lp(a) concentrations and likewise is affected 
by regression dilution bias (Fig. 5, middle panel), suggest-
ing that the effect sizes for KIV-2 number of repeats for 
causal associations with cardiovascular disease should be 
viewed as minimal estimates (6, 11, 67, 111–113).

Mendelian randomization studies using human genetics 
have many similarities with randomized double-blind pla-
cebo-controlled trials and, thus, advantages over traditional 
observational studies (Fig. 5). Like in randomized trials, 
Mendelian randomization studies are double-blind and 
confounding and reserve causation are circumvented due 
to nature’s own randomization method during distribution 
of alleles at meiosis. Mendelian randomization studies have 
the additional advantage over conventional epidemiology 
that genetics typically capture a life-long effect (Fig. 5, mid-
dle and right panels), while observational studies only in-
clude the time between risk factor assessment and end of 
follow-up. Like a drug in randomized trials, genetics can 
have the problem of pleiotropic effects; however, while this 
can be a problem with SNPs as markers of high Lp(a) con-
centrations, direct measurement of KIV-2 number of re-
peats or corresponding apo(a) size polymorphism will not 
have this problem (Fig. 5, right and middle panels).

Another potential problem of Mendelian randomization 
studies includes linkage disequilibrium with other caus-
ative genetic variants in other genes; however, this is not a 

There are several early examples of studies that suggest 
the idea that if a risk factor is elevated or reduced due to 
genetic variation, and if such genetic variation is or is not 
associated with a disease of interest, then it would be pos-
sible to infer or exclude causality of the risk factor (98–
100).  This  idea  involving  the  causal  genetic  influence  of 
high Lp(a) concentrations on risk of coronary heart dis-
ease was already presented in 1992 by Gerd Utermann and 
colleagues (101, 102). However, the concept of the Mende-
lian randomization approach, including in-depth discus-
sion of strengths and limitations, mainly crystallized due to 
many insightful publications from George Davey Smith 
and colleagues (103–108), publications that can be used as 
a “starter’s kit” to understand the Mendelian randomiza-
tion approach. Growing out of the awareness of the limita-
tions of observational epidemiology, it was suggested that 
Mendelian randomization, that is, the random assortment 
of genes from parents to offspring that occurs during gam-
ete formation and conception, would provide a method for 
assessing the causal nature of risk factors on disease. The 
clear  formulation  of  these  ideas  has  substantially  influ-
enced thinking on how to understand disease causality, es-
pecially in cardiovascular medicine and most importantly 
for the role of Lp(a) as a cause of cardiovascular disease.

Epidemiology alone cannot determine causality due to 
potential problems with confounding and reverse causa-
tion (Fig. 4, double-pointed arrow #1). Thus, potential 
confounders, including life-style factors, may be unevenly 
distributed between those with high and low Lp(a) con-
centrations, and such confounders may be the real expla-
nation for the high risk of cardiovascular disease in those 
with high Lp(a) (Fig. 5, left panel). In contrast, in the 
Mendelian randomization study design, such confounders 
are always evenly distributed between those with high and 
low Lp(a), and therefore, cannot explain the high cardio-
vascular risk in those with genetically high Lp(a) concen-
trations (Fig. 5, middle and right panels). The other major 

Fig. 4. The four different statistical parts of a complete Mende-
lian randomization study design to examine causality from high 
plasma Lp(a) concentrations to high risk of cardiovascular disease. 
Potential limitations are shown with question marks.
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(KIV-2 or a SNP) on Lp(a) concentration is documented 
and the extent of variation on plasma concentrations de-
termined by genotype is quantified. This allows assessment 
of the value of the genotype as an instrument in the Men-
delian randomization study design (Fig. 4, single-pointed 
arrow #2). At this stage, it is also important to exclude 
pleiotropic effects, that is, genotype should not be associ-
ated with any other factor that might cause cardiovascular 
disease (Table 1). Third, genotype is then directly associ-
ated with cardiovascular disease, using a study with suffi-
cient statistical power to document or reject the causal 
association (Fig. 4, single-pointed arrow #3). Fourth, the 
formal test of causality involves running an instrumental 
variable analysis (Fig. 4, single-pointed arrows #4) that inte-
grates the effect of genotype on Lp(a) concentrations (ar-
row #2) with the effect of genotype on cardiovascular 
disease risk (arrow #3). Observational and genetic causal 
risk estimates can then be compared directly, as arrows #1 
and #4 will be on the same scale, that is, for Lp(a) per, for 
example, a 30 mg/dl higher concentration either observa-
tionally or genetically.

For research on Lp(a) as a cause of cardiovascular  
disease, it can be argued that even conventional epidemiol-
ogy will suffice in understanding causality of Lp(a), as the 

problem for KIV-2, although it can be a problem for SNPs 
associated with high Lp(a) concentrations. Also, popula-
tion admixture can be a major problem if both genotype 
and the disease studied are found preferentially in certain 
subpopulations; however, this potential problem can be 
largely circumvented by studying ethnically homogeneous 
populations or by adjusting for different ethnicity using ge-
netic information. Finally, it is essential to use genetic varia-
tion with sufficiently large effect sizes, which has been done 
in Lp(a) causality research more than for any other cardio-
vascular risk factor: the LPA KIV-2 copy number variation 
and the LPA rs10455872 SNP, which can be used for geno-
typing large-scale studies, each explain 27–28% of the vari-
ation in plasma Lp(a) concentrations.

Technically, what is done in a complete Mendelian ran-
domization study is depicted in Fig. 4. Published examples 
of this complete design that are easy to follow for the non-
specialist include that low concentrations of vitamin D are 
causally associated with high all-cause mortality (114), and 
that low concentrations of nonfasting triglycerides are 
causally associated with low all-cause mortality (115).

First, the well-known observational association is shown 
in the study population (Fig. 4, double-pointed arrow #1). 
Second, the causal association between LPA genotype 

Fig. 5. Comparison of observational studies and 
Mendelian randomization studies to help under-
stand causality from high plasma Lp(a) concentra-
tions to high risk of cardiovascular disease.

TABLE 1. Baseline characteristic in individuals from the Copenhagen General Population and the Copenhagen 
City Heart Study combined

Characteristic

Observational (N = 58,232), 
Plasma Lp(a)

Genetic (N = 98,941), LPA  
KIV-2 Number of Repeats

Genetic (N = 104,366),  
LPA rs10455872 SNP

High 80% Low 20% Low 20% High 80% Non-carrier 86% Carrier 14%

Age, years 58 (49–68) 59 (50–68) 58 (48–67) 58 (48–67) 58 (48–67) 58 (48–67)
Women, % 54 57 55 55 55 55
Hypertension, % 67 68 66 66 66 66
Diabetes, % 4 4 4 4 4 4
Smoking, % 17 17 17 19 17 17
Cholesterol-lowering  

therapy, %
11 17 13 11 11 14

Body Mass Index, kg/m2 26 (23–28) 26 (23–28) 26 (23–28) 26 (23–29) 26 (23–28) 26 (23–28)
Total cholesterol,  

mmol/l
5.5 (4.8–6.2) 5.7 (5.0–6.4) 5.6 (4.9–6.3) 5.5 (4.8–6.3) 5.5 (4.8–6.3) 5.6 (4.9–6.4)

Triglycerides, mmol/l 1.4 (1.0–2.0) 1.4 (1.0–2.1) 1.4 (1.0–2.1) 1.4 (1.0–2.1) 1.4 (1.0–2.1) 1.4 (1.0–2.1)

Values are median (interquartile range).
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concentrations when small isoforms are present (148–150). 
Further, many of these early studies used Lp(a) samples 
that had been frozen for several years, which might affect 
the structure of Lp(a) and thereby lead to incorrect mea-
surement of plasma Lp(a) concentrations (151). Also, 
most previous studies did not estimate risk in individuals 
with extremely high Lp(a) concentrations, the concentra-
tions that would seem most relevant clinically. Finally, 
many early studies did not correct for regression dilution 
bias (109, 110) and, therefore, effect sizes for risk of myo-
cardial infarction and ischemic heart disease likely were 
underestimated.

After publication of yet another six prospective popula-
tion-based studies (152–157), we published in 2008 the re-
sults of the Copenhagen City Heart Study with 9,330 
individuals followed for 10 years during which time 498 
developed a myocardial infarction (158). We measured 
Lp(a) concentrations in 1991–1994 shortly after sampling 
using an apo(a) isoform-insensitive assay. Risk estimates 
were corrected for regression dilution bias, and we focused 
on the risk of myocardial infarction in those with the  
extremely high concentrations. Specifically, we chose myo-
cardial infarction as the endpoint, as this disease is reg-
istered correctly 99.5% of the time in the Danish registries 
and the follow-up in this population is 100% complete (6). 
In women, multifactorially adjusted hazard ratios for myo-
cardial infarction for high Lp(a) concentrations were 1.1 
(95% CI: 0.6–1.9) for 5–29 mg/dl, 1.7 (95% CI: 1.0–3.1) 
for 30–84 mg/dl, 2.6 (95% CI: 1.2–5.9) for 85–119 mg/dl, 
and 3.6 (95% CI: 1.7–7.7) for above 120 mg/dl versus con-
centrations below 5 mg/dl (158). Corresponding hazard 
ratios in men were 1.5 (95% CI: 0.9–2.3), 1.6 (95% CI: 
1.0–2.6), 2.6 (95% CI: 1.2–5.5), and 3.7 (95% CI: 1.7–8.0), 
respectively. Also, absolute 10 year risks of myocardial in-
farction were 10 and 20% in smoking hypertensive women 
aged above 60 years with Lp(a) concentrations of below  
5 mg/dl and above 120 mg/dl, respectively, with corre-
sponding values in men of 19 and 35%.

The Emerging Risk Factors Collaboration included indi-
vidual records for 126,634 participants from 36 prospective 
studies, recorded 9,318 myocardial infarctions and coro-
nary deaths, corrected for regression dilution bias, and also 
focused on the risk of myocardial infarction and coronary 
death in those with the extremely high Lp(a) concentra-
tions (7) (Fig. 6, right panel). In that study, risk was higher 
after approximately 30 mg/dl and the age- and sex-adjusted 

concentrations of this lipoprotein are largely genetically 
determined (14, 39) and minimally confounded by envi-
ronmental variables (Table 1). Although this seems to be a 
valid statement, experience has shown that it was mainly 
the large-scale genetic Mendelian randomization studies 
published from 2009 and onwards that paved the path for 
a general understanding that high concentrations of Lp(a) 
are a direct cause of myocardial infarction, atherosclerotic 
stenosis, and aortic valve stenosis (Fig. 1).

MYOCARDIAL INFARCTION AND ISCHEMIC HEART 
DISEASE

Early retrospective case-control studies found that Lp(a) 
concentrations were higher in patients with myocardial in-
farction and ischemic heart disease (coronary heart dis-
ease), than in individuals without these diseases (116–118). 
Later on, many similar studies followed (102, 119–130), the 
majority with the same conclusion that Lp(a) was higher in 
those with than in those without myocardial infarction and 
ischemic heart disease. On hindsight, with the current un-
derstanding of the Mendelian randomization approach, 
this is an impressive set of studies; however, at the time of 
publication of these studies evidence from prospective 
population-based studies was needed.

Early population-based prospective cohort and nested 
case-control studies (131–140) were summarized in a meta-
analysis by Wendy Craig et al. (141) in 1998. In these stud-
ies dominated by White participants, 12 of 14 prospective 
studies found that Lp(a) concentrations were higher in 
subjects who later developed ischemic heart disease than in 
those who did not. After addition of six more prospective 
population-based studies (142–147), John Danesh and col-
leagues updated the meta-analysis in 2000 to show that af-
ter including 4,044 deaths from coronary heart disease or 
nonfatal myocardial infarction during a mean follow-up of 
10 years in 18 studies, individuals in the top versus bottom 
third of the Lp(a) concentration distribution had a com-
bined risk ratio of 1.7 [95% confidence interval (CI): 1.4–
1.9] (23).

Different results in some of the early studies could be 
because measurement of Lp(a) is complicated by the vary-
ing isoform sizes of apo(a), that is, assays that are not isoform 
independent might overestimate Lp(a) plasma concentra-
tions when large isoforms are present and underestimate 

Fig. 6. Observational associations between high 
plasma Lp(a) concentrations and risk of cardiovas-
cular disease in the Copenhagen City Heart Study 
and Copenhagen General Population Study com-
bined (left panel) and in the Emerging Risk Factors 
Collaboration (right panel). Hazard ratios in the left 
panel were estimated by Cox proportional hazard 
regression models and were adjusted for age and sex 
and corrected for regression dilution bias. Right 
panel was adapted from (7).
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Population Study combined to achieve maximal statistical 
power (Fig. 7, top panel). In instrumental variable analy-
ses, a doubling in plasma Lp(a) concentrations caused a 
15% (95% CI: 11–20%) higher risk ratio for myocardial 
infarction using LPA KIV-2 number of repeats and a 10% 
(95% CI: 6–13%) higher risk ratio using LPA rs10455872 
SNP. This should be compared with the corresponding ob-
servational estimate of 9% (95% CI: 7–12%). Importantly, 
as Lp(a) concentrations vary up to a 1,000-fold between 
individuals (14), then Lp(a) can double many times. LPA 
genotypes were largely unconfounded by conventional 
cardiovascular risk factors (Table 1), which was also close 
to being the case for plasma Lp(a) concentrations.

Many recent large-scale genetic studies also strongly sup-
ported high Lp(a) concentrations as a cause of myocardial 
infarction and ischemic heart disease (8, 66, 159, 160); 
however, these publications did not include a complete 
Mendelian randomization approach, but mainly provided 
data for the direct association between genotypes and risk of 
disease (Fig. 4, arrow #3). Most importantly, Robert Clarke 
et al. (8) identified two common LPA variants, rs10455872 
with a per allele odds ratio for coronary heart disease of 1.70 
(95% CI: 1.49–1.95; allele frequency 0.07) and rs3798220 
with a per allele odds ratio of 1.92 (1.48–2.49; allele fre-
quency 0.02).

Also important was a 2010 meta-analysis on apo(a) iso-
forms and risk of coronary heart disease (24). The 34 in-
cluded studies of mainly White and Asian individuals used 
either phenotyping (69, 70, 102, 127, 139, 156, 161–182), 
that is, gel migration speed of plasma Lp(a) and molecular 
weight determination of apo(a), or genotyping of KIV-2 
number of repeats (6, 183). For the 30 studies using phe-
notyping and including 7,382 cases and 8,514 controls, 
relative risk of coronary heart disease for smaller versus 
larger apo(a) isoforms was 2.08 (95% CI: 1.67–2.58). The 

risk ratio was 1.5-fold in those with Lp(a) above 100 mg/dl 
versus below 4 mg/dl. There were continuous, indepen-
dent, and modest associations of Lp(a) concentration with 
risk of coronary heart disease that appeared exclusive to 
vascular outcomes. Importantly however, this meta-analysis 
included many former studies using frozen samples and 
nonoptimal Lp(a) assays, likely partly explaining the rela-
tively modest overall effect sizes observed. Also, this may 
partly be explained by nondifferential misclassification of 
events from study to study, as myocardial infarction and 
coronary death events were classified according to the In-
ternational Classification of Diseases or, where this was not 
available, on study-specific classification systems.

For use specifically in this review, we updated our former 
epidemiological studies (6, 112, 158) based on the Copen-
hagen City Heart Study and the Copenhagen General Pop-
ulation Study combined to achieve maximal statistical 
power (Fig. 6, left panel). We included 58,340 individuals, 
measured Lp(a) concentrations in fresh samples using 
apo(a)-insensitive assays, corrected for regression dilution 
bias, recorded 1,897 validated myocardial infarctions, and 
also focused on the risk in those with the extremely high 
Lp(a) concentrations. In this new analysis, the risk was 
again higher after approximately 30 mg/dl and the age- 
and sex-adjusted hazard ratio for myocardial infarction was 
2.4-fold in those with Lp(a) above 100 mg/dl versus below 
5 mg/dl, and thus more pronounced than in the Emerging 
Risk Factors Collaboration (compare Fig. 6, left and right 
panels).

A complete large-scale Mendelian randomization study 
was first published by us in 2009 (6), although the basic 
idea had been suggested previously (101, 102). For use spe-
cifically in this review, we updated our former Mendelian 
randomization studies (6, 67, 112) based on the Copen-
hagen City Heart Study and the Copenhagen General 

Fig. 7. Observational and causal genetic associa-
tions between high plasma Lp(a) concentrations 
and risk of cardiovascular disease in the Copenha-
gen City Heart Study and Copenhagen General  
Population Study combined. Hazard ratios for obser-
vational analyses of plasma Lp(a) concentrations 
were estimated by Cox proportional hazard regres-
sion models and were adjusted for age and sex. 
Causal risk ratios for analyses of genetically deter-
mined plasma Lp(a) concentrations were estimated 
by instrumental variable analyses and were adjusted 
for age and sex.
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genotyping studies were dominated by our own study men-
tioned above in the complete Mendelian randomization 
study design (6). It is also important to note that individu-
als carrying LPA loss-of-function alleles with low Lp(a) con-
centrations have low risk of cardiovascular disease (184, 
185). Although relatively few Blacks have been studied in 
the past, a study in 2012 documented that risk of coronary 
heart disease is also higher in Black individuals with high 
plasma Lp(a) concentrations (186).

Taken together, there is now overwhelming evidence 
from epidemiology and genetics that high Lp(a) concen-
trations cause high risk of myocardial infarction. It could 
be argued that the same is true for ischemic and coronary 
heart disease, but the findings for these disease endpoints 
could be driven largely by that for myocardial infarction 
and for atherosclerotic stenosis as described below.

ATHEROSCLEROTIC STENOSIS

When high Lp(a) concentrations lead to high risk of 
myocardial infarction and ischemic heart disease, then au-
tomatically almost everybody will think that this must be 
because Lp(a) is atherogenic. However, there are other 
possible explanations and one could be that high Lp(a) 
leads to thrombosis causing myocardial infarction and to 
atherosclerotic stenosis causing angina pectoris, rather 
than Lp(a) causing atherosclerosis per se (111, 187, 188). 
To us, the latter idea became more plausible when it was 
suddenly documented that high Lp(a) concentrations also 
cause aortic valve stenosis (10, 11). However, it can be ar-
gued that this is a poor analogy. Indeed, the pathophysiol-
ogy of “stenosis” in a coronary artery is complex and due to 
atherosclerotic mediated narrowing of the arterial lumen, 
some smooth muscle cell proliferation, and likely some ele-
ment of thrombosis. Thus, the process of atherosclerotic 
stenosis is very complex and possibly very different than 
what goes on in aortic valve stenosis. Nevertheless, let us 
review the human evidence for this idea.

In a study by Kamstrup, Tybjærg-Hansen, and Nordest-
gaard (111) in the Copenhagen Ischemic Heart Disease 
Study, the Copenhagen Carotid Stroke Study, and the Co-
penhagen City Heart Study, the highest versus lowest ter-
tile of Lp(a) was associated with high risk of coronary, 
carotid, and femoral atherosclerotic stenosis; that the find-
ings were similar for the lowest versus highest tertile of 
KIV-2 number of repeats supports that these findings rep-
resent causal relationships. For risk of coronary atheroscle-
rotic stenosis, the age- and sex-adjusted odds ratio for 
highest versus lowest tertile of Lp(a) was 5.0 (95% CI: 3.9–
6.5) (Fig. 8, top panel). Corresponding odd ratios were 1.7 
(95% CI: 1.2–2.5) for carotid atherosclerotic stenosis (Fig. 8, 
middle panel) and 1.6 (95% CI: 1.3–2.0) for femoral ath-
erosclerotic stenosis (Fig. 8, bottom panel).

Many other studies have also found an association be-
tween high concentrations of Lp(a) or LPA risk genotypes 
and high risk of coronary, carotid, and femoral atheroscle-
rotic stenosis (101, 102, 121, 160, 189–207). For example, 
in a cohort of 504 patients, Sam Tsimikas, Joe Witztum, and 

Fig. 8. Observational associations between high plasma Lp(a) 
concentrations and risk of coronary, carotid, and femoral athero-
sclerotic stenosis in the Copenhagen Ischemic Heart Disease Study, 
Copenhagen Carotid Stroke Study, and Copenhagen City Heart 
Study, respectively. Odds ratios were estimated by logistic regression 
models and were adjusted for age and sex. CIHDS, Copenhagen 
Ischemic Heart Disease Study; CCSS, Copenhagen Carotid Stroke 
Study; CCHS, Copenhagen City Heart Study. Adapted from (111).
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also found to be the best genetic causal risk factor for aortic 
valve calcification and stenosis: the per allele odds ratio 
for aortic valve calcification was 2.05 (95% CI: 1.63–2.57). 
This finding was replicated in additional White European, 
African-American, and Hispanic-American cohorts. In pro-
spective analyses, this LPA SNP had a per allele hazard ratio 
for incident aortic valve stenosis of 1.68 (95% CI: 1.32–
2.15) and 1.60 (95% CI: 1.12–2.28) in Swedish and Danish 
cohorts of the general population.

In a subsequent study in 2014 based on the Copenhagen 
City Heart Study and the Copenhagen General Population 
Study combined, we showed a stepwise higher risk of aortic 
valve stenosis with stepwise higher extreme concentrations 
of Lp(a) (Fig. 9) (11). Multivariable adjusted hazard ratios 
for aortic valve stenosis were 1.2 (95% CI: 0.8–1.7) for 5–19 
mg/dl, 1.6 (95% CI: 1.1–2.4) for 20–64 mg/dl, 2.0 (95% CI: 
1.2–3.4) for 65–90 mg/dl, and 2.9 (95% CI: 1.8–4.9) for 
above 90 mg/dl, versus Lp(a) concentrations below 5 mg/
dl. Also, combining LPA rs10455872, rs3798220, and KIV-2 
number of repeats, instrumental variable analysis yielded a 
genetic causal risk ratio for aortic valve stenosis of 1.6 (95% 
CI: 1.2–2.1) for a 10-fold higher Lp(a) concentration, com-
parable to the observational hazard ratio of 1.4 (95% CI: 
1.2–1.7) for a 10-fold higher plasma Lp(a) concentration. 
Interestingly, as observed in the same individuals from Co-
penhagen and for a comparable doubling in Lp(a) concen-
trations, the risk estimated for aortic valve stenosis appeared 
slightly higher than for myocardial infarction, with concor-
dance between observational and causal genetic risk esti-
mates (Fig. 7, compare middle and upper panels).

Even more studies have now confirmed that high Lp(a) 
concentrations observationally and genetically represent 
strong causal risk factors for aortic valve calcification, ste-
nosis, and stenosis progression (218–223). This is true for 
Whites and Asians alike.

colleagues showed a strong association between high oxi-
dized phospholipids and high Lp(a) concentrations with 
the presence and extent of coronary artery disease, de-
tected by coronary angiography as the number of vessels 
with a stenosis of more than 50% of the luminal diameter 
(190). Also, in the InCHIANTI Study, 1,002 individuals 
aged above 60 years had their ankle-brachial index assessed 
over a 6 year period, and the authors found that high Lp(a) 
was an independent risk factor for peripheral arterial dis-
ease of the lower limbs (192). Finally, in a large case-con-
trol study, the odds ratio per LPA rs10455872 or rs3798220 
risk alleles was 1.47 (95% CI: 1.33–1.62) for peripheral ar-
terial disease (N = 5,215 cases) (160).

In contrast, high Lp(a) concentrations or LPA risk al-
leles have not been associated with early atherosclerosis 
measured as modest intima-media thickening in carotid or 
femoral arteries (160, 208–213); however, there is contro-
versy as to whether such intima-media thickness represents 
atherosclerosis per se. For example, in the Young Finns 
Study, including 939 men and 1,141 women, data from ob-
servational and Mendelian randomization analyses provided 
no support for early atherogenic effects of high Lp(a) con-
centrations (211). Also, after pooling two studies and in-
cluding 3,714 individuals, LPA rs10455872 or rs3798220 
risk alleles were not associated with carotid intima-media 
thickness (160).

Taken together, a large number of studies unanimously 
show that high plasma Lp(a) concentrations are associ-
ated with high risk of coronary, carotid, and femoral athero-
sclerotic stenosis, with concordance between observational 
and causal genetic risk estimates. In contrast, there is no 
human evidence to support that high Lp(a) concentra-
tions should cause early atherosclerosis in the form of 
increased intima-media thickness. That said, many re-
searchers likely disagree with us on this topic, and many 
view aortic stenosis and carotid, femoral, or coronary ste-
nosis as separate pathological entities.

AORTIC VALVE STENOSIS

In a 1995 study from Japan, it was observed in 347 men 
and 437 women that high age and high plasma Lp(a) con-
centrations were the best risk factors for aortic valve steno-
sis (sclerosis) (214). Likewise, in 1997, it was observed in 
5,201 US individuals aged 65 and above, that age, male sex, 
and high plasma Lp(a) concentrations were the most im-
portant factors to discriminate between individuals with 
and without calcific aortic valve stenosis (disease) (215). 
High Lp(a) concentration as an important risk factor for 
aortic valve stenosis was later confirmed (216, 217), and 
interestingly, in individuals with both high Lp(a) and high 
Chlamydia pneumoniae IgG antibodies the risk was particu-
larly high (216). Probably not too many noticed these early 
findings, and after all, this was observational evidence be-
lieved to be prone to confounding and reverse causation.

Then in 2013, Thanassoulis et al. (10) discovered that 
the LPA rs10455872 SNP, well-known as a high risk factor 
for myocardial infarction and coronary heart disease, was 

Fig. 9. Observational associations between high plasma Lp(a) 
concentrations and risk of aortic valve stenosis in the Copenhagen 
City Heart Study and Copenhagen General Population Study com-
bined. Hazard ratios were estimated by Cox proportional hazard 
regression models and were multivariable adjusted for age, sex, to-
tal cholesterol, HDL cholesterol, systolic blood pressure, smoking, 
and diabetes. Lp(a) in milligrams per deciliter is shown as median 
(interquartile range). Adapted from (11).
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with fibrinolysis and likely promotes thrombosis (34), it 
seems logical that high Lp(a) should also be a strong 
causal risk factor for venous thromboembolism, that is, 
deep venous thrombosis and pulmonary embolism. In-
terestingly however, this is probably not the case except 
at extremely high Lp(a) concentrations (111). Impor-
tantly, Lp(a) likely does not have inherent pro-throm-
botic properties, but it may be anti-fibrinolytic, i.e., a clot 
has to be forming for Lp(a) to potentially affect growth. 
This implies a first hit of some other pro-thrombotic risk 
factor that is worsened by Lp(a), which might explain 
why different results on venous thromboembolism have 
been reported.

Kamstrup, Tybjærg-Hansen, and Nordestgaard (111) 
found that highest versus lowest tertile of Lp(a) did not 
associate with high risk of venous thrombosis; however, the 
extreme top 5% versus the lowest 22% of the concentra-
tion distribution of Lp(a) yielded an odds ratio of 1.7 
(95% CI: 1.2–2.3) for risk of venous thrombosis. For the 
purpose of the present review, we updated this analysis 
and now included 53,908 individuals from the Copenha-
gen General Population Study and the Copenhagen City 
Heart Study with a total of 2,501 events of venous throm-
boembolism, and correspondingly found at extremely 
high Lp(a) concentrations above 100 mg/dl compared 
with concentrations below 5 mg/dl, a hazard ratio of 1.33 
(95% CI: 1.06–1.69) for risk of venous thromboembolism 
(Fig. 10).

A meta-analysis from 2007, including six case-control 
studies with 1,826 patients with venous thromboembo-
lism and 1,074 controls, found an odds ratio for venous 
thromboembolism of 1.8 (95% CI: 1.1–2.8) for Lp(a) 
concentrations above versus below 30 mg/dl (224). Three 
of the studies in the meta-analysis found individually 
higher risk of venous thromboembolism (225–227), whereas 
three studies had insignificant results (228–230). Further, 
the Longitudinal Investigation of Thromboembolism 
Etiology (LITE) study, including 19,921 participants with 
no venous thromboembolism at baseline, observed 327 ve-
nous thromboembolic events in Whites and 83 in African 
Americans during follow-up: the hazard ratio for risk of 
venous thromboembolism at Lp(a) above versus below 
30 mg/dl was 1.12 (95% CI: 0.55–2.27) for Whites and 
1.31 (95% CI: 0.69–2.47) for African Americans (231). In 
addition, several studies have been carried out in chil-
dren with respect to high Lp(a) concentrations and risk 

Together, these studies document high Lp(a) concen-
trations as one of the strongest causal risk factors for aortic 
valve stenosis, with risk estimates slightly higher than for 
myocardial infarction. As both these diseases are among 
the main causes of heart failure, high Lp(a) concentrations 
may also be a strong causal risk factor for this condition.

HEART FAILURE

Given the role of high Lp(a) concentrations in myocar-
dial infarction and aortic valve stenosis, it seemed natural to 
explore the impact of Lp(a) on the end product of these 
two diseases in the form of heart failure. We combined the 
Copenhagen City Heart Study and the Copenhagen Gen-
eral Population Study with 98,097 Danish individuals, of 
whom 4,122 were diagnosed with heart failure from 1976 
through 2013. High Lp(a) concentrations were associated 
with multivariable adjusted hazard ratios for heart failure 
of 1.10 (95% CI: 0.97–1.25) for 8–19 mg/dl, 1.24 (95% CI: 
1.08–1.42) for 20–67 mg/dl, 1.57 (95% CI: 1.32–1.87) for 
68–153 mg/dl, and of 1.79 (95% CI: 1.18–2.73) for concen-
trations above153 mg/dl, versus Lp(a) concentrations 
below 8 mg/dl. Of all heart failure in the population, high 
Lp(a) had a population-attributable fraction of 9%. This 
means that if high Lp(a) was not present in the Danish pop-
ulation, then heart failure prevalence would be 9% lower 
than current levels.

By combining all LPA risk genotypes, instrumental vari-
able analysis yielded a genetic causal risk ratio for heart 
failure of 1.18 (95% CI: 1.04–1.34) per 10-fold higher 
Lp(a) concentrations, which was comparable to the corre-
sponding observational hazard ratio of 1.22 (95% CI: 1.11–
1.35). Finally, in mediation analysis, 63% (95% CI: 45–99%) 
of heart failure risk due to high Lp(a) was mediated via 
myocardial infarction and aortic valve stenosis combined. 
Although 63% is a very high number in a mediation analy-
sis, we naturally cannot exclude that high Lp(a) could lead 
to heart failure via yet another mechanism, e.g., through 
occlusion of small blood vessels in the myocardium.

VENOUS THROMBOEMBOLISM

Because high Lp(a) is a causal factor for myocardial in-
farction, and as there is ample evidence that Lp(a) interferes 

Fig. 10. Observational associations between high 
plasma Lp(a) concentrations and risk of venous 
thromboembolism in the Copenhagen City Heart 
Study and Copenhagen General Population Study 
combined. Hazard ratios were estimated by Cox pro-
portional hazard regression models and were ad-
justed for age and sex. Lp(a) in milligrams per 
deciliter is shown as median (interquartile range). 
HR, hazard ratio.
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SPECULATIONS ON POSSIBLE MECHANISMS IN 
PHYSIOLOGY AND PATHOPHYSIOLOGY

Given the evidence presented above, it is worth consider-
ing what human epidemiologic and genetic evidence can 
teach us about mechanisms, that is, how high Lp(a) con-
centrations can cause disease and, conversely, whether that 
will tell us something about the physiological role of Lp(a). 
Certainly, as Lp(a) has developed twice in evolution in two 
different forms, around 140 million years ago in the hedge-
hog and around 40 million years ago in Old World mon-
keys, apes, and humans (14), Lp(a) likely must have had an 
important function on survival.

Physiologically, it was proposed by Michael Brown and Joe 
Goldstein (12) in 1987 that Lp(a) may play a role in wound 
healing, an idea that has been elaborated on (14, 27, 245–
247). The physiological mechanism suggested is that Lp(a) 
binds to fibrin by its kringle structures and thereby spe-
cifically is transported to sites of injury, to facilitate wound 
healing via fibrinolysis inhibition and perhaps providing 
cholesterol for cell proliferation during tissue repair. If the 
latter hypothesis is true, it would seem natural that high 
Lp(a) concentrations should lead to low risk of bleeding.

From an evolutionary perspective in a context without 
modern medicine, it is easy to envision how protection 
from major fatal bleeds at a young age facilitated by high 
plasma Lp(a) concentration could have had a positive in-
fluence on  survival  (Fig. 11, left part). Improved survival 
due to reduced bleeding would seem highly likely for 
mother and child during childbirth, during infectious dis-
eases, including tuberculosis, and from injuries during war 
or from dangerous animals and insects, or just in ordinary 
everyday life.

Until now, no convincing large-scale human data have 
been presented to support the hypothesis of improved 
wound healing at high Lp(a) concentrations. However,  
in a study including 109,169 individuals from the Copenha-
gen City Heart Study and the Copenhagen General Popula-
tion study combined, we found that high Lp(a) concentrations 

of venous thromboembolism, with conflicting results 
(232–242).

As for genetic association of high Lp(a) with venous 
thromboembolism, one study found that after combining 
the LPA rs10455872 and rs3798220 SNPs, both of which 
are associated with high Lp(a) concentrations, there was 
no association of the LPA risk score with venous thrombo-
embolism (N = 4,607 cases) (160). Also, another study among 
21,483 women found similar results (243).

Calculated for the present review, among 104,601 indi-
viduals in the Copenhagen General Population Study and 
the Copenhagen City Heart Study combined, we find, us-
ing instrumental variable analyses, that the LPA rs10455872 
SNP has a causal risk ratio of 1.03 (95% CI: 0.99–1.07) per 
doubling in Lp(a) for risk of venous thromboembolism 
(Fig. 7, bottom panel). A recently published study, includ-
ing 516 patients with venous thromboembolism and 1,117 
healthy controls, found that LPA KIV-2 number of repeats 
was independently associated with venous thromboembo-
lism and that KIV-2 number of repeats was lower in pa-
tients than in controls (244). This is in contrast to what we 
find in 94,638 individuals in the Copenhagen General 
Population Study and the Copenhagen City Heart Study 
combined, where the LPA KIV-2 in instrumental variable 
analysis had a causal risk ratio of 1.01 (95% CI: 0.96–1.06) 
per doubling in Lp(a) concentrations for risk of venous 
thromboembolism (Fig. 7, bottom panel), also in accor-
dance with previously published data on our studies (111).

Taken together, it seems likely that extremely high Lp(a) 
concentrations lead to modestly higher risk of venous 
thromboembolism. However, over the major part of the 
concentration range of Lp(a), risk of venous thromboem-
bolism does not seem to be higher. Certainly, when com-
pared directly using the same roughly 100,000 individuals 
from Copenhagen, then high Lp(a) is a much stronger 
causal factor for risk of myocardial infarction and aortic 
valve stenosis than for risk of venous thromboembolism, 
with concordance between observational and causal ge-
netic risk estimates (Fig. 7).

Fig. 11. Speculations on physiological role and 
pathophysiology of high plasma Lp(a) concentra-
tions, with corresponding small apo(a) size due to 
low number of KIV-2 repeats.
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An evolutionary advantage at a young age, like wound 
healing, could at an old age lead to more thrombosis and 
related diseases (Fig. 11, right part). As apo(a) has homol-
ogy with plasminogen (4, 39), Lp(a) may promote throm-
bosis by competing with plasminogen and thereby 
inhibiting the role of plasmin in dissolving fibrin clots (34, 
255–257). This could then, through fibrin deposition, lead 
to progressive aortic valve and atherosclerotic stenosis. We 
speculate that Lp(a) could bind to fibrin and be trans-
ported to and accumulate at sites of vulnerable plaques, 
and thereby deliver cholesterol via its LDL-component to 
sites of tissue healing, and as such is part of a wound heal-
ing process leading to progressive narrowing at atheroscle-
rotic stenoses in coronary, carotid, and femoral arteries. If 
Lp(a) accumulates at sites of wound healing during rup-
ture of vulnerable plaques, then it can further be specu-
lated that Lp(a) might also accumulate at sites of minor 
injury during  turbulent blood flow with beginning aortic 
valve and atherosclerotic stenosis, enhancing the deposi-
tion of cholesterol and possibly thrombi (12, 258), each of 
which may lead to further stenosis.

In support of this idea, Lp(a), compared with LDL, pref-
erentially accumulates at sites of arterial injury, but not in 
adjacent uninjured arteries (56). Also, high Lp(a) concen-
tration was a strong predictor of vein graft stenosis after 
coronary artery bypass surgery (259), although this was not 
the case after percutaneous transluminal coronary angio-
plasty (260). The exact molecular mechanism by which 
high Lp(a) concentrations and small apo(a) size may cause 
aortic valve and atherosclerotic stenosis, e.g., by oxidized 
phospholipids through pro-inflammatory and pro-calcifying 
effects, is discussed in other articles in this Thematic Re-
view series (34, 261). Importantly, a recent study suggests 
that Lp(a) induces monocyte trafficking to the arterial 
wall and mediates pro-inflammatory responses through its 
oxidized phospholipid content, pointing at a possible 
novel mechanism by which Lp(a) mediates cardiovascular 
disease (253).

As Lp(a) consists of a LDL cholesterol-rich particle co-
valently bound to an apo(a) glycoprotein, another possi-
ble mechanism involves that Lp(a), after transfer from the 
blood stream into the wall of aortic valve leaflets and the 
arterial intima (49, 52, 53), leads to cholesterol deposition 
in the manner similar to LDL and remnant cholesterol 

were associated with low risk of major bleeding observation-
ally and causal, genetically (A. Langsted, P.R. Kamstrup, B.G. 
Nordestgaard, unpublished observations). To us, this sup-
ports that Lp(a) physiologically may play a role in wound 
healing, although the hypothesis, at present, is mainly 
speculative.

In support of our findings, a prospective cohort study of 
the Japanese general population, including 10,494 indi-
viduals, found that the highest versus the lowest tertile of 
Lp(a) was associated with a hazard ratio for risk of cerebral 
hemorrhage of 0.34 (95% CI: 0.15–0.76) for men and of 
0.44 (95% CI: 0.21–0.96) for women (249). Also, a previous 
study showed that Lp(a) particles with small apo(a) iso-
forms [and thus high Lp(a) concentrations] may inhibit 
fibrinolysis (250), and another study showed that high 
Lp(a) concentrations or small apo(a) sizes were associated 
with the formation of dense fibrin clots of reduced clot per-
meability and prolonged clot lysis time (251).

Further, a proteomic study identified Lp(a)-associated 
proteins to be assigned to wound healing, including the 
processes of coagulation, complement activation, and in-
flammatory  response,  implying  that  Lp(a)  might  have  a 
role in the wound healing process (252). Interestingly 
though, although high Lp(a) concentrations may be in-
volved in inflammation locally at sites of injury, e.g., locally 
in the arterial wall (253), genetically high Lp(a) concentra-
tions (like genetically high LDL cholesterol concentra-
tions) were not associated with high concentrations of 
C-reactive protein in individuals in the general population 
(Fig. 12) (112); in contrast, high triglyceride-rich lipopro-
teins measured as high remnant cholesterol led to low-
grade inflammation on a whole body level (254).

The exact molecular mechanism by which high Lp(a) 
concentrations and small apo(a) size inhibit fibrinolysis 
and thereby possibly may promote thrombosis and facili-
tate wound healing, is discussed in another article in this 
Thematic Review series (34). If wound healing is indeed 
promoted by high Lp(a) concentrations, then it could 
even be speculated that the higher Lp(a) concentrations in 
individuals of African descent compared with individuals 
of European or Asian descent (14), could specifically, in an 
African context, present a survival advantage, e.g., through 
less bleeding during childbirth, infectious diseases, and in-
jury, as speculated in Fig. 11.

Fig. 12. Observational and causal genetic associa-
tions between high Lp(a) cholesterol, high LDL 
cholesterol, and high remnant cholesterol with  
C-reactive protein concentrations. Observational 
changes were by linear regression and causal ge-
netic estimates were by instrumental variable analyses. 
Adapted from (112, 254).
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279). In other words, high Lp(a) concentrations make risk 
of cardiovascular disease even worse in those already at 
extremely high risk due to the high LDL associated with 
FH. In accordance with this, European Atherosclerosis So-
ciety consensus panel statements made it a priority to 
screen all FH patients for high Lp(a) concentrations (9, 
271, 280, 281).

On this background, we recently tested the hypotheses 
that high Lp(a) cholesterol and LPA risk genotypes are a 
cause of clinical FH, and that individuals with both high 
Lp(a) and clinical FH have the highest risk of myocardial 
infarction (113). In 46,200 individuals from the Copenha-
gen General Population Study, we used the Dutch Lipid 
Clinic Network criteria to diagnose FH clinically.

It should be recognized that the conventional measure-
ment of “LDL cholesterol” contains the cholesterol con-
tent of both LDL as well as that found in the LDL 
component of Lp(a). Using routine LDL cholesterol mea-
surements, e.g., unadjusted LDL cholesterol, mean Lp(a) 
concentrations were 23 mg/dl in individuals unlikely to 
have FH, 32 mg/dl in those with possible FH, and 35 mg/
dl in those with probable or definite FH (P < 0.0001 for 
trend) (113). However, when adjusting LDL cholesterol 
for Lp(a) cholesterol content by subtracting 30% of the 
total Lp(a) mass from LDL cholesterol, the corresponding 
values were 24, 22, and 21 mg/dl, respectively (P = 0.46 for 
trend). Thus, the contribution of high Lp(a) cholesterol to 
the unadjusted LDL cholesterol measurement accounted 
for a quarter of all individuals diagnosed with clinical FH. 
Further, LPA risk genotypes were more frequent in clinical 
FH, whereas Lp(a) concentrations were similar in those 
with and without FH mutations in LDLR and APOB genes.

The hazard ratios for myocardial infarction compared 
with individuals unlikely to have FH and Lp(a) concen-
tration below 50 mg/dl were 1.4 (95% CI: 1.1–1.7) in 
those unlikely to have FH and Lp(a) concentrations above 
50 mg/dl, 3.2 (95% CI: 2.5–4.1) in those with possible, 
probable, or definite FH and Lp(a) concentration below 
50 mg/dl, and 5.3 (95% CI: 3.6–7.6) in those with possible, 
probable, or definite FH and Lp(a) concentration above 
50 mg/dl (113). In analyses using Simon Broome or 
MEDPED criteria, results were similar to those using Dutch 
Lipid Clinic Network criteria to diagnose clinical FH.

Taken together, plasma Lp(a) concentrations are higher 
in individuals with clinically diagnosed FH, but this is not 
due to FH mutations in LDLR and APOB genes. Rather, 
because Lp(a) cholesterol contributed to LDL cholesterol 
in the clinical diagnosis of FH, 25% of all clinically defined 
FH is due to high Lp(a) concentrations. The combined evi-
dence strongly supports that all individuals with FH should 
have their Lp(a) measured in order to identify those with 
the highest concentrations, and as a result, the highest risk 
of myocardial infarction.

CONCLUSION AND PERSPECTIVES

Research and clinical interest in Lp(a) has had its ups 
and downs since its initial discovery in 1963 (1). The first 

(63, 65). This would then cause a thickening of aortic valve 
leaflets  and  the  arterial  intima.  However,  as  mentioned 
above, there is no human evidence to support that high 
Lp(a) concentrations promote early atherosclerosis (160, 
208–213), at least in the form of increased intima-media 
thickness.

We speculate that the physiological role of KIV-2 in 
Lp(a) could be through wound healing during childbirth, 
infections, and injury, a role that at an old age could lead 
to more blood clots promoting stenosis of arteries and the 
aortic valve, and to myocardial infarction at sites of vulner-
able plaques. Although many speculations are involved in 
this chain of events, this scenario seems to us to be the most 
straightforward explanation for the human data available 
today. We recognize that many experts in the field of Lp(a) 
research will find the proposed function of Lp(a) to pro-
mote wound healing as overemphasized here; nevertheless, 
we feel this subject should be presented in this Thematic 
Review so that the full range of ideas may be presented. 
The many other possible functions that might be equally or 
even more important are discussed in other articles in this 
Thematic Review series.

FAMILIAL HYPERCHOLESTEROLEMIA

Many early studies have demonstrated that Lp(a) con-
centrations are particularly high in those with clinically 
diagnosed heterozygous or homozygous familial hyper-
cholesterolemia (FH) (122, 262–267), while others have 
not been able to document this (268, 269). FH with geneti-
cally very high LDL cholesterol is an autosomal dominant 
condition found in almost 1 in 200 individuals (270–274). 
Kinetic studies in subjects with homozygous FH found that 
Lp(a) is not catabolized via the LDL-receptor (275), dem-
onstrating that the mechanism for high Lp(a) concen-
trations in FH is not the same as that for high LDL 
concentrations. In fact, plasma Lp(a) concentrations are 
mainly determined by production rates (276). Studies of 
genetic variation in both the LDLR and LPA genes have 
nevertheless supported that the observed high Lp(a) in 
those with clinically diagnosed FH is biologically based 
(268, 277).

Individuals diagnosed clinically with FH are prone to as-
certainment bias (278), that is, individuals with the most 
extreme risk factors are most likely to be referred to hospi-
tal clinics. It is therefore possible that the high Lp(a) con-
centrations in individuals with clinically defined FH simply 
is the additional risk factor making the person attend a 
lipid clinic. In accordance with this idea, nonaffected fam-
ily members of clinically diagnosed FH patients had higher 
Lp(a) concentrations than individuals in a reference popu-
lation (267).

As reviewed above, it is now well demonstrated that high 
Lp(a) concentration is a causal risk factor for cardiovascu-
lar disease in the average person (6, 8, 9), irrespective of 
the concentration of LDL cholesterol (7, 158), and studies 
in FH patients demonstrate that high Lp(a) is also an im-
portant cardiovascular risk factor in this population (125, 
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golden age in Lp(a) research started in 1987 with the clon-
ing and sequencing of the LPA gene coding for apo(a) in 
Lp(a) (4), leading to a huge increase in scientific interest 
in Lp(a). Then 22 years later in 2009, new genetic evidence 
that Lp(a) was a direct cause of cardiovascular disease just 
like LDL, started the second golden age in research and 
clinical interest in Lp(a) (6, 8), an interest that is only un-
raveling right now. We hope to experience a third golden 
age, a period in which, hopefully, randomized trials of 
Lp(a) reduction in individuals with very high concentra-
tions can document reduction in cardiovascular disease. 
Only then will the clinical interest in Lp(a) become wide-
spread. Certainly, for LDL cholesterol this is what hap-
pened after the 4S trial of statin therapy documented that 
reduction in LDL cholesterol lead to reduced cardiovascu-
lar disease and reduced all-cause mortality (282).
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