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Abstract

The purpose of this study was to explore the relationship between audio descriptors for

groove-based electronic dance music (EDM) and raters’ perceived cognitive, affective, and

psychomotor responses. From 198 musical excerpts (length: 15 sec.) representing 11 sub-

genres of EDM, 19 low-level audio feature descriptors were extracted. A principal compo-

nent analysis of the feature vectors indicated that the musical excerpts could effectively be

classified using five complex measures, describing the rhythmical properties of: (a) the

high-frequency band, (b) the mid-frequency band, and (c) the low-frequency band, as well

as overall fluctuations in (d) dynamics, and (e) timbres. Using these five complex audio

measures, four meaningful clusters of the EDM excerpts emerged with distinct musical

attributes comprising music with: (a) isochronous bass and static timbres, (b) isochronous

bass with fluctuating dynamics and rhythmical variations in the mid-frequency range, (c)

non-isochronous bass and fluctuating timbres, and (d) non-isochronous bass with rhythmi-

cal variations in the high frequencies. Raters (N = 99) were each asked to respond to four

musical excerpts using a four point Likert-Type scale consisting of items representing cog-

nitive (n = 9), affective (n = 9), and psychomotor (n = 3) domains. Musical excerpts falling

under the cluster of “non-isochronous bass with rhythmical variations in the high frequen-

cies” demonstrated the overall highest composite scores as evaluated by the raters. Musi-

cal samples falling under the cluster of “isochronous bass with static timbres” demonstrated

the overall lowest composite scores as evaluated by the raters. Moreover, music prefer-

ence was shown to significantly affect the systematic patterning of raters’ responses for

those with a musical preference for “contemporary” music, “sophisticated” music, and

“intense” music.

PLOS ONE | DOI:10.1371/journal.pone.0163938 October 31, 2016 1 / 23

a11111

OPENACCESS

Citation: Wesolowski BC, Hofmann A (2016)

There’s More to Groove than Bass in Electronic

Dance Music: Why Some People Won’t Dance to

Techno. PLoS ONE 11(10): e0163938.

doi:10.1371/journal.pone.0163938

Editor: Andreas B Eder, University of Würzburg,

GERMANY

Received: November 19, 2015

Accepted: September 16, 2016

Published: October 31, 2016

Copyright: © 2016 Wesolowski, Hofmann. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data is

accessible on the University of Performing Arts

Vienna servers. Please find the DOI information for

our data access: DOI:10.21939/8891b05c-3c41-

4fc7-8e7d-4861c01652bc. http://dx.doi.org/10.

21939/8891B05C-3C41-4FC7-8E7D-

4861C01652BC?noredirect=on

Funding: Funded by University of Georgia Wilson

Center Faculty Grant (http://willson.uga.edu/

opportunities/fellowships-grants/willson-grants-

awards/), University of Georgia President’s Venture

Fund (http://president.uga.edu/index.php/office/

venture_funding), The Austrian Science Fund FWF:

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0163938&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.21939/8891b05c-3c41-4fc7-8e7d-4861c01652bc
http://dx.doi.org/10.21939/8891b05c-3c41-4fc7-8e7d-4861c01652bc
http://dx.doi.org/10.21939/8891B05C-3C41-4FC7-8E7D-4861C01652BC?noredirect=on
http://dx.doi.org/10.21939/8891B05C-3C41-4FC7-8E7D-4861C01652BC?noredirect=on
http://dx.doi.org/10.21939/8891B05C-3C41-4FC7-8E7D-4861C01652BC?noredirect=on
http://willson.uga.edu/opportunities/fellowships-grants/willson-grants-awards/
http://willson.uga.edu/opportunities/fellowships-grants/willson-grants-awards/
http://willson.uga.edu/opportunities/fellowships-grants/willson-grants-awards/
http://president.uga.edu/index.php/office/venture_funding
http://president.uga.edu/index.php/office/venture_funding


Introduction

Operational definitions of groove include “a pleasant sense of wanting to move with music” [1]
and “a quality of music that makes people tap their feet, rock their head, and get up and dance”
[2]. However, sensorimotor coupling is not a necessary component to the experience of groove
[3]. Groove can also be described as one’s ability to simply derive a satisfaction and enjoyment
through the understanding and appreciation of the rhythmic aesthetic of a particular style of
music [4]. The act of listening to music, without movement, can therefore result in an experi-
ence of groove [1]. Human responses to groove-basedmusic, therefore, can be categorized into
three distinct dimensions: (a) formal-syntactic-intellectual (i.e., cognitive response), (b) expres-
sive-emotional (i.e., affective response), and (c) and embodied response (i.e., psychomotor
response) [5–7]. In this study, we explored the relationship between raters’ perceived cognitive,
affective, and psychomotor responses and the audio descriptors for groove-basedmusic. In
particular, we sought to investigate electronic dance music, a music specifically composed for
evoking dance movement.

Cognitive Response

From a cognitive perspective, Toussaint [8] indicates that, “. . . rhythm perception emerges
from the interplay between bottom-up, data-driven, outer stimuli emanating from the world,
and the top-down, conceptually-driven, inner response mechanisms of the mind’s ear” (p. 10).
Elicitingmeaning frommultisensory input, however, is a contextually driven, top-down sen-
sory process requiring a system of complex auditory abilities to extract, organize, and interpret
acoustic information [9]. Cognitive interpretation and recognition of rhythmic structure in
groove-basedmusic is an interaction between two schemes [10]. The first scheme includes the
personal and subjective representation to non-sounding “virtual reference structures,” whereby
a listener has identified then internalized the rhythmic syntax of a given musical idiom [3].
These virtual reference structures include perceptually driven, organizing principles such as (a)
formal units (e.g., motives and phrases); (b) temporal units of hierarchically nested intervallic
timing systems (e.g, beats and subdivisions), and (c) surface features (e.g., harmonic, melodic,
and rhythmic tension) [11,12]. Structuralmeaning in groove-basedmusic is elicited by the lis-
tener through the identification of idiomatic variations within each of these rhythmic struc-
tures. More specifically, this includes the subtle deviations of four particular expressive
dimensions of sound (i.e., auditory cues): (a) intensity, (b) intonation, (c) articulation, and (d)
timbre [4,11]. The second scheme includes the personal and subjective representation to actual
acoustic events. In the listening experience, acoustical events related to rhythmic structure are
used to make a perceptual judgment that is associated with the categorical/structural compo-
nent [13].

Affective Response

Psychological investigation into affective behavior includes the evaluation of dimensions of
feeling aroused by a stimulus. Specifically, affect can be defined as a broad term applied to a
wide variety of human feeling behaviors as well as the type or level of arousal resulting from a
musical listening experience [14]. In groove-basedmusic, the nature of how one perceives
groove as being good or bad, groovy or not groovy, is based upon subjective reception [3]. Posi-
tive affect in groove music may be based upon a “reward system,” that “arises from interactions
between cortical loops that enable predictions and expectancies to emerge from sound patterns
and subcortical systems responsible for reward and valuation.” [15] (p. 1). Momentary viola-
tions of temporal expectancy evoke arousal through delayed gratification [16–19]. More specif-
ically, the relationship between rhythmic complexity and valuation of groove is in the form of
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an inverted U-shaped curve, indicating that positive affect is optimized when the music
involves an intermediate degree of rhythmic complexity [7].
The ability to move in rhythmic synchrony to an isochronous musical pulse is a universal

and relatively unique human quality [20,21]. The theory of embodied cognition supports the
notion that auditory motor coupling emerges from real-time interactions between the body’s
nervous system as well as perceptions of events. Action and perception are intertwined in the
music listening experience and share a common representational domain [22]. The parity
between perception and action is supported in common coding theory [23] under two assump-
tions: (a) actions are coded in terms of the perceivable events [24]; and (b) the perception of an
action should activate action representations to the degree that the perceived and the repre-
sented action are similar [25]. Multisensory input (i.e., cognitive and affective information) are
guided by motor images of the bodily experience,where cognitive structures can emerge from
recurrent sensorimotor patterns. Therefore, cognitive and affective information is an impor-
tant component to the physical engagement of a music listening experience in groove-based
contexts.

Psychomotor Response

A positive drive toward sensorimotor coupling is an important factor in how listeners emotion-
ally engage with and enjoy groove-basedmusic. This plays a prominent role in evaluating lis-
teners’ experiences and the strength of engagement with groove-basedmusical stimuli [26].
Pressing [27] refers to the physical response to groove-basedmusic as a “kinetic framework for
reliable prediction of events and time pattern communication. . .” where “. . . its power is
cemented by repetition” (p. 306). According to Zbikowski [28]:

Listeners who respond physically to a groove have succeeded in selecting salient features out
of a sequence of sounds and related these features in such a manner that they were able to
identify a sense of regularity, differentiation, and cyclicity in the music. (p. 279)

Organizing principles of rhythmic structure are based upon cognitive interpretation, whereas
enjoyment of groove-basedmusic is based upon affective interpretation. As a consequence, the
sense of wanting to move to groove-basedmusic is a result of interplay between cognitive and
affective interpretations. Therefore, the study of cognitive, affective, and psychomotor responses
to groove-basedmusic requires a multi-leveled attention to human perception [3].

Electronic Dance Music (EDM)

The advent of electronic dance music (EDM) began in the 1980s, when music producers and
composers started using digital sequencers and electronic instruments for the production of
groove-basedmusic. This enabled them to produce quantized grooves with a higher temporal
precision than human drummers could play. This new aesthetic lead to the origin of the elec-
tronic dance music (EDM) (see Butler [29] for an overview). It became popular for DJs to cre-
ate remixed dance versions of traditional rock and pop music by sampling the original tracks,
aligning these to the time grid of a software sequencer and to add quantized beats. In these
instances, reinterpretations of the rhythmic groove pertained to variations and layering of met-
rical patterns, accents, and timbres, thereby providing new avenues for many subgenre classifi-
cations [30,31].
Berger [32] suggests that in groove-basedmusic, “Each [musical] style has a vocabulary of

grooves, based upon a variance of patterns of notes and accents under a specifiedhierarchy of
perceived strong and weak beats within a time signature framework.” Butler [29] provides a
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specific classification system for EDM based on two rhythmic characteristics: (a) the synco-
pated 'breakbeat' styles, and (b) the 'four-on-the-floor' styles. 'Breakbeats' are sampled drum
patterns of real percussion instruments mostly stemming from funkmusic of the 1970s. These
‘breakbeats’ are characterized by syncopations that de-emphasize the strong beats and their
deviations from total isochrony. In contrast, 'Four-on-the-floor' genres are based on pro-
grammed drummachine beats that emphasize the strong 4/4 beats with the bass drum sound.
Although EDM can be broadly described as having a repetitive beat based on a 4/4 time-

grid and simple phrase lengths of 2, 4, 8, or 16 bars, hundreds of subtle subgenres exist [30].
These subgenres have characteristic aesthetics containing both similarities and differences in
their metrical patterns, accents, and timbres. It is argued that the subgenre labels of EDM are
not concretely defined, thereby providing an unclear representation of structural cues based
upon genre labeling [30,31,33]. Therefore, in order to evaluate human response to various sub-
genres of EDM, it is necessary to first develop a more clear understanding of the specific audio
signal properties of the wide variety of EDM subgenres.
Gjerdingen and Perrott [34] provided evidence that listeners were able to categorize music

samples into genres within a quarter of a second. From these observations, they hypothesized
that this rapid recognition of the genre is based on decoding component features of the sound
instead of a classification of melody, harmony and rhythm. They acknowledge that a discrimi-
nation of sub-genres is a more difficult task, but individuals who are familiar with a preferred
genre are more likely to find subtle distinctions than others (i.e., "Fisheye-Lens Effect").
Rocha, Bogaards, and Honingh [35] used timbre features to find similarities and differences

between EDM songs in a large music database. They created a feature vector comprising prop-
erties of the spectral envelope, the spectral flatness and the spectral roughness. Based on this
feature vector, they created a similarity map of the audio clips. In a follow-up report published
on their project web-site, they also added rhythmic similarity to their feature vector to gain bet-
ter discriminatory results [36].
Madison, Gouyon, Ullén, and Hörnströ [37] investigated in how far low-level audio descrip-

tors can predict groove in music clips of five different genres (e.g., Greek, Indian, Jazz, Samba,
West African). Out of five descriptors (beat salience, fast metrical levels, event density, system-
atic microtiming, and unsystematic microtiming) they found two descriptors function: a) beat
salience, a measure for the repetitive rhythmical patterning; and b) event density, a measure for
the density of sound events. They reported that rhythmical descriptors played a larger role in
predicting groove than the systematic and unsystematic microtiming descriptors that have
been considered to create a sensation of groove for many years. In our study, where the pool of
stimuli consists of repetitive, quantized, electronic groove music, basic low level audio descrip-
tors like timbre and event density are considered to be useful tools to characterize the stimuli.
The overall purpose of this study is to explore the relationship between audio signal proper-

ties of electronic dance music (EDM) and raters’ perceived cognitive, affective, and psychomo-
tor responses. Specifically, this study was guided by the following research questions:

1. Which low level audio descriptors (LLD) meaningfully classify the musical excerpts taken
from different electronic dance music subgenres?

2. Does a meaningful typology of the musical excerpts of electronic dance music (EDM) exist
based upon their audio signals?

3. How do rating scale items representing cognitive, affective, and psychomotor domains vary
for the musical stimuli?

4. Domeaningful response patterns emerge for groups of raters based upon musical
preference?
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Psychometric Considerations for Rater Responses

The measurement of music perception and cognition with raters is fraught with difficulties, as
non-observable phenomena are the object of measurement [38]. Therefore, as Keller and Schu-
bert [5] note, cognitive and affective research literature related to raters’ enjoyment of music,
moderated by perceived emotional content and complexity, are “not always consistent”
(p. 144). When using rater data as a method for quantifying objects of measurement such as
musical stimuli, ratings are associated with characteristics of the raters and not necessarily with
the musical samples themselves [39]. Therefore, threats to construct-irrelevant variability exist
that may obscure what is intended to be measured, the use of the measurement apparatus itself,
and the resulting observed scores [40,41]. Developments in modernmeasurement theory offer
improved methods for systematically measuring attitudes and perceptions mediated by raters
in meaningful and objective ways [42].
Raschmeasurement theory [43] was used in this study for the psychometric evaluation of

rater data and audio features. Raschmodels use probabilistic distributions of responses as a
logistic function of person (or in this specific context, a musical stimulus) and item parameters
in order to define a unidimensional latent trait. The understanding and detection of unidimen-
sionality in the context of this study is of importance. In this study, we were interested in mea-
suring raters’ responses to musical stimuli. A multidimensional approach that examines and
interprets various interaction effectsmay potentially skew the interpretation of the data. The
Raschmeasurement model was specifically chosen as a suitable method for analysis as it is
grounded in principles of fundamental measurement that emphasizes the measurement of one
dimension at a time [44–46].
The major benefit of the Raschmodel is that when adequate fit to the model is observed,

five requirements for rater-invariant measurement are achieved [40]. The five requirements for
rater-invariant measurement include: (a) rater-invariant measurement of persons (i.e., the
measurement of musical stimuli must be independent of the particular raters that happen to be
used for the measuring); (b) non-crossing person response functions (i.e., higher qualifying
musical stimuli must always have a better chance of obtaining higher ratings from raters than
lower qualifying stimuli); (c) person-invariant calibration of raters (i.e., the calibration of the
raters must be independent of the particular musical stimulus used for calibration); (d) non-
crossing rater response functions (i.e., any musical stimulus must have a better chance of
obtaining a higher rating from lenient raters than from more severe raters); and (e) musical sti-
muli and raters must be simultaneously located on a single underlying dimension.When the
data fit the requirements of the Raschmodel, then it becomes possible to support rater-invari-
ant measurement of the musical stimuli. In other words, construct-irrelevant factors such as
the unique characteristics of musical stimuli, raters, or rating scale items do not contribute any
interference between observeddata and expectations of the Raschmodel. Therefore, the Rasch
measurement model approach is considered a powerful tool for providing a comprehensive
view of the validity of raters’ scores, the meaning of the scores, and the scores’ utility through
the use of a rigorous set of measurement requirements. This method provides a valid mecha-
nism to explore the relationship between the audio signal properties of electronic dance music
(EDM) and raters’ perceived cognitive, affective, and psychomotor responses.

Method

Participants

Raters (N = 99; n = 63, male; n = 36, female) were non-music university students from a large
southern state university in the United States. All of the participants had experience playing
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musical instruments in a concert band setting. The average age of participants was 20.68 (range
18–24). Participants were solicited on a volunteer basis and did not receive any reward or pay-
ment for their participation.

Stimuli

Electronic dance music samples (N = 198) were gleaned from Beatport.com’s Top 100 charts of
the year 2014 representing each the following subgenres: Breakbeats (n = 18), Chillout
(n = 18), DeepHouse (n = 18), Drum and Bass (n = 18), Dubstep (n = 18), ElectroHouse
(n = 18), House (n = 18), Progressive House (n = 18), Tech House (n = 18), Techno (n = 18),
Trance (n = 18). The complete list of musical stimuli can be found in S1 Table.
Musical samples were examined for sections that contained only a repetitive groove in order

to avoid the influence of ratings via changes in rhythm, other auditory cues, or lyrics [47–50].
Each sectionwas parsed into a sixteen-measure (approximately 15 seconds) sample, containing
no breaks or lyrics, but representative of the groove. The audio files were normalized in volume
and edited to include a three second fade in and a three second fade out using Logic Pro X (by
Apple Inc.).

Rater Evaluation Plan

The structure of how the raters evaluated the musical stimuli was carefully constructed based
upon an incomplete assessment network as recommended by Wright and Stone [51] and Lina-
cre andWright [52]. According to Linacre andWright, implementation of the collected data:

. . . does not require that every examinee [in this case, musical sample] be rated by every
judge on every item. It is only necessary that observations are designed to create a network
through which every parameter can be linked to every other parameter, directly or indi-
rectly, by some connecting observations. The network enables all measures and calibrations
estimated from the observations to be placed on one common scale.” (Linacre &Wright,
2004, p. 300).

In this study, each rater evaluated four randommusical stimuli, chosen at random with the
constraint that the stimuli came from four different subgenres. From the four musical samples,
two samples were linked to the previous rater and two samples were linked to the next rater. As
an example, Rater 01 evaluated samples 001, 002, 003, 004; Rater 02 evaluated samples 003,
004, 005, 006; Rater 03 evaluated samples 005, 006, 007, 008, etc. The last rater (i.e., Rater 99)
evaluated musical samples 197, 198, 001, and 002, thereby linking to Rater 01 and creating a
connection between all other raters in the model. This connectivity allowed for independent
calibrations of all musical stimuli, rating scale items, and raters, and allowing each to be com-
pared unambiguously [53]. Each musical stimulus within each subgenre was nominated for use
in the study using a separate random number generator for each genre.

Apparatus

To measure cognitive, affective and psychomotor responses, two measurement instruments
were chosen and extended. First, Bartel’s Cognitive-AffectiveResponse Test (CART-M) [54]
was used as a measurement instrument. Bartel’s CART-M was chosen suitable for this study as
the construct the instrument purports to measure paralleled this study: cognitive/affective
response to music. The instrument consists of 18 items representing two dimensions of
response: cognitive (items, n = 9) and affective (items, n = 9). Bartel developed the instrument
through a series of three instrument validation studies using a factor analytic approach to scale
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construction. The final form of the instrument was developed in Bartel’s third validation study
using six replications, explaining 49.89% of the variance in ratings for the utilized sample of
raters and musical samples with internal consistency (Cronbach’s Alpha) calculated at .80 for
the cognitive dimension and .93 for the affective dimension (See S2 Table). The original
CART-M response set was a 7-point semantic differential. In this study, the response set was
changed to a 4-point Likert scale, with options including “Strongly Agree,” “Agree,” “Disagree,”
and “Strongly Disagree” in order to better represent category counts, average measures, thresh-
olds, and category fit statistics. Each rater was provided the two words from the semantic dif-
ferential in order to contextualize the meaning of the item. Raters were then asked to respond
solely to the positive word (i.e., “This musical sample is structured” for Item C1, unstructured-
structured; “This musical sample is joyful” for Item A8, sad-joyful). The positive words were
selected in order to maintain all positive directionality, as negatively worded items often dem-
onstrate a response bias and a mix of positive and negative words often demonstrate inatten-
tion and confusion [55]. A four-point scale was specifically chosen in order to eliminate
neutral response options and provide a better measure of intensity of participants’ responses
[51], to provide a better chance of rater reliability [56], and to optimize rating scale category
effectiveness through better distribution and use of the four Likert response options [56–59].
Each volunteer rater completed the 18 items of the CART-M for each musical sample.
In order to measure psychomotor effects of the musical stimuli on the participants, partici-

pants were additionally asked to respond to the following three statements using the same
4-point Likert scale: (a) “This music makes me want to tap my feet,” (b) “This music makes me
want to nodmy head”, and (c) “This musical sample makes me want to dance.” These three
items were added to the survey based upon Burger, et. al’s [60] investigation into music
inducedmovement, indicating that whole bodymovement, feet tapping, and head movement
play a significant role in the embodiment of groove-basedmusic.
Music preference has been linked to significant differences in cognitive styles [61], personal-

ity [62] and emotion [63]. Therefore, it was advantageous in this study to consider music pref-
erence as an important moderator variable and to collectmusic preference information from
the participants. The second apparatus used was the five-factorMUSIC model [63,64]. Partici-
pants were asked to rank order their musical preference (1, favorite -5, least favorite) based
upon the five musical dimensions of the MUSIC model: (a) mellow, (b) unpretentious, (c)
sophisticated, (d) intense, and (e) contemporary. Participants were provided subgenre descrip-
tions and examples for each musical dimension in order to more clearly understand the label-
ing system (e.g. intense = classic rock, punk, heavy metal, power pop). For the purpose of this
study, participants were categorized by their favorite musical dimension of the MUSIC model
(See S3 Table).

Procedure

Rater Evaluation of the Stimuli. Participants were each tested sitting at a desktop com-
puter (iMac, by Apple Inc.) with headphones (MDR-7506, by Sony Inc.) on. the iTunes
(12.0.1.26)Music playback software was used to present the stimuli to the raters. Sound was
checked prior to beginning for equitable volume and equalizer settings across each computer.
Using an online questionnaire (Google Forms, by Google Inc.), participants were first asked to
read ethics approval information and enter background information (e.g., age and gender).
Once completing the initial responses, participants were provided an electronic rater folder
with four musical samples (audio files in.mp3 format) in the iTunes playback software.
Participants were instructed to listen to the first sample as many times as needed before and

while responding to the items in the online questionnaire. Once completing the items for the
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first stimulus, they were instructed to move on to the second stimulus and continued to process
through all four musical samples. The author stayed in the room and was available to address
any technical problems. All participants participated with written consent through the online
survey system. The University of Georgia Institutional ReviewBoard of Human Subjects spe-
cifically approved this study.

Audio Analysis of Stimuli. To extract low level audio features of the stimuli used in the
listening experiment, we followed a procedure similar to that of Rocha et al. [35] Audio files
were down sampled to 11025 Hz to reduce the size of the data, fade-ins and fade-outs were
removed. We calculated the RootMean Square Energy of the signal (RMS), using Sonic Visual-
izer 1.9 (BBC vamp plug-ins). This function creates a vector describing the energy for each
audio frame comprising 1024 audio samples and a reference to the actual time in the audio file.
From this vector we calculated the average loudness of each stimulus (a = rmsMean). Further-
more, we calculated the standard deviation of all RMS values from the audio frames of each
stimulus (b = rmsSD) to provide a measure for the dynamical fluctuations in the sound.
To characterize the timbre of each stimuli we calculated two measures: (1) the Spectral Cen-

troid, as the center of the spectral energy [65]; and (2) the Spectral Flux, a measure for the
amount of spectral fluctuations over time (Sonic Visualizer, BBC vamp plug-ins). From these
time series, we calculated the arithmetic mean (c = centMean, d = fluxMean) and the standard
deviation (e = centSD, f = fluxSD) to use as a descriptor for each stimulus. As an example, a
low bass note (80 Hz) with a following punchy snare drum (with overtones up to 5000 Hz)
would result in a higher centMean (= 990 Hz) and fluxMean (= 422 Hz), than just a bassline
with sine tones of 80 Hz and 120 Hz centMean (= 106 Hz), and fluxMean (= 92).
Another descriptor, also introduced by Rocha [36], describes the auditory roughness (dirti-

ness) of the sounds in an audio sample. We used the roughness (g) function by Vassilakis from
the Matlab MIRtoolbox [66] to extract this feature from our stimuli.
Following the methodologyof Rocha [36], we calculated rhythmical descriptors for different

frequency bands by splitting the spectrumof the audio samples into four frequency bands: Low
(20–200 Hz), Mid1 (200–800 Hz), Mid2 (800–3200 Hz) and Hi (3200–5512.5Hz, the nyquist
frequency of the audio clips). We extracted note-onsets for all four frequency bands by apply-
ing an onset-detection algorithm [67] available as a plugin for Sonic Visualizer. From these
note-onsets, we calculated an Event Density measure, following the basic concept of calculating
the ratio of onsets per time unit (here in seconds) for each band (h = evDensityLow,
i = evDensityMid1, j = evDensityMid2, k = evDensityHi).
From the tempo information of each track, we were able to calculate the metrical level of the

note-onsets of each frequency band by (evDensityMetrLevel (l–m) = Event Density (h, i, j, k) � 60 /
Tempo). Here, a value of 1 corresponds to note-events at the quarter note level, values less than 1
indicate lower metrical levels, and values greater than 1 indicate highermetrical levels. For exam-
ple, this descriptor could indicate a four-on-the-floor bass drum, by giving a value of 1 for the
Low frequency band note onsets (evDensityMetrLevelLow = 1).
Lastly, we calculated the inter-onset intervals of consecutive onsets for each frequency band

by using the derivative of the onset time series. The standard deviation (SD) of the IOI
sequence describes the regularity of the onsets for each frequency band (IOI-SD(p-s)). An
IOI-SD close to zero corresponds to very regular events, whereas larger values indicate irregu-
lar events. In total we extracted 19 low-level audio descriptors to characterize each stimulus.

Factor Analysis of Low LevelAudio Descriptors. To remove redundancy or duplication
from the set of 19 audio descriptors, a principal components factor analysis was conducted.
Defining the characteristics of the audio descriptors through latent factor groupings managed
multicollinearity between the individual audio descriptors [68]. Additionally, by describing
components of the stimuli more broadly based upon the latent factors, a better independent
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representation of structural properties of the music emerged. These broad groupings of struc-
tural properties allowed us to gain better insight into their roles in rater judgment.

Clustering of Musical Stimuli. Cluster analyses is a data mining technique that assigns
cases to a set of groups so that the cases within each group are similar and those clustered into
other groups are dissimilar. Cluster analysis was first used in order to explore the patterns (i.e.,
Euclidian distances) between the stimuli based upon their factor scores resulting from the fac-
tor analysis. Hierarchical clustering is fruitful as an initial exploratory summarymethod
because it only requires a measure of similarity between groups of data points. Hierarchical
clustering was first used as an exploratory approach to investigate how the audio signal analy-
ses grouped together to define the musical excerpts. A non-hierarchical k-means cluster analy-
sis was then conducted as a method for forming the most meaningful interpretation of clusters
from the hierarchical cluster analysis. Specifically, the non-hierarchical clustering technique
optimizes the results of the hierarchical clustering technique using the dissimilarity measure as
a starting criterion.

Results

Research Question 1: Which Low Level Audio Descriptors Meaningfully

Classify the Musical Excerpts Taken from Different Electronic Dance

Music Subgenres?

A principal components factor analysis was conducted in R statistics software using the psych
package in order to explore the relationships and dimensionality between the 19 low-level audio
descriptors. In order to test for the factorability of the data, several assumptions were checked: (a)
all communalities were above .30 [69]; (b) audio features with inter-item correlations which did
not meet the criteria to be between .30 and .80 were removed [70] (e.g., evDensityMetrLevel-
Mid1, evDensityMetrLevelMid2, evDensityMetrLevelHi), allowing 16 audio features to remain
in the vector for further calculations; (c) the Kaiser-Meyer Olkin sampling adequacymeasure
(.82) was above the recommended value of .50; [70] (d) Bartlett’s test of sphericity was significant
(χ2 = 5812.92, p< .001) [70]; and (e) the subject-to-variable ratio (i.e., music samples to audio
features) was 198:19, above the recommendedminimum ratio of 3:1 [70]. A principal component
analysis with oblimin oblique rotations based upon Eigenvalues above 1.00 and an examination
of a scree plot indicated a five-factor solution that explained 79% of the variance.
The result indicating a five-factor solution is provided in Table 1. The five distinct audio

meta descriptor measures were labeled as follows: (I) high-frequencyband rhythmical descrip-
tors, (II) low-frequency band rhythmical descriptors, (III) dynamic descriptors, (IV) mid-fre-
quency band rhythmical descriptors, and (V) timbre descriptors (referring to the low-level
audio descriptors comprised in each factor). Using the five audio meta descriptor factors, factor
scores were calculated for each of the 198 stimuli.

Research Question 2: Does a Meaningful Typology of the Musical

Excerpts of EDM Exist Based upon Their Audio Signals?

A hierarchical cluster analysis was conducted in R statistics software (hclust function) using the
five derived factors for each of the 198 musical samples. Squared Euclidian distances served to
maximize intra-class similarity and minimize interclass similarity. Using Ward’s method, a
total of nine clusters were gleaned from the analysis. In order to target an appropriate number
of clusters, Mardia, Kent, and Bobby’s “rule of thumb” [71] was considered, where the number
of clusters (k) is approximately equal to the square root of n divided by k. Additionally, Thorn-
dike’s elbowmethod [72] was considered. Lastly, the discernable and reasonable nature of
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substantive trends within the nine clusters was considered. Cluster solutions ranging from
2–12 were examined. Based upon the best substantive interpretation, a four-cluster solution
was chosen. Four clusters were then successfully formed and validated using a k-means non-
hierarchical clustering method based upon the seeds derived from the hierarchical clustering
analysis (see Fig 1).
Table 2 provides the final four cluster centers based upon the five audio meta-descriptor fac-

tors. The four clusters were labeled based upon the weights of the five factors. Characteristic of
the first cluster and the second cluster is a strong influence of the ‘low frequency band rhythmi-
cal descriptors’ (factor II). This factor comprises audio features describing the event density in
the low frequencies (factor load ‘evDensityLow’ = 0.9) comprising primarily regular events
(factor load ‘IOILowSD’ = -0.83). Both clusters (1 and 2) have different weightings for the
‘Timbre descriptors’ factor V, whereas a negative weighting indicates a more static timbre for
cluster 1 (-1.18) then for cluster 2 (0.2). Furthermore cluster 2 is characterized by the strongest
weight of the ‘Mid frequency band rhythmical descriptors’ factor IV (0.69).
In comparison to cluster 1 and cluster 2, the clusters 3 and 4 score highest with the ‘timbre

descriptors’ factor an indicator for fluctuations in the timbre. Furthermore, both clusters show

Table 1. Pattern Factor Loading, Communalities, Variance, and Factor Correlations Based Upon a Principal Components Analysis (PCA) Factor-

ing with Oblim Oblique Rotations for 16 Audio Feature Variables. Grey areas indicate the low-level audio descriptors that characterize the respective

factor.

Factor

I II III IV V

Low-level Audio

Descriptors

High Frequency Band

Rhythmical Descriptors

Low Frequency Band

Rhythmical Descriptors

Dynamic

Descriptors

Mid Frequency Band

Rhythmical Descriptors

Timbre

Descriptors

h2

IOIMid2SD 0.97 0.02 0.05 0.14 -0.04 0.79

IOIHiSD 0.84 0.00 0.02 -0.15 -0.07 0.83

evDensityHi -0.65 0.05 0.21 0.20 -0.08 0.79

evDensityMid2 -0.56 0.02 0.18 0.34 -0.05 0.78

evDensityLow 0.07 0.90 -0.12 0.08 0.09 0.81

evDensMetrLevelLow 0.07 0.84 0.04 0.06 0.09 0.72

IOILowSD 0.10 -0.83 -0.10 0.18 0.16 0.74

rmsMean -0.04 0.06 -0.93 0.18 0.04 0.78

rmsSD -0.13 0.12 0.78 0.10 -0.18 0.85

centSD 0.03 0.01 0.59 0.30 0.47 0.71

IOIMid1SD 0.02 -0.04 0.07 -0.90 0.09 0.84

evDensityMid1 -0.09 0.04 -0.01 0.87 -0.05 0.87

fluxMean -0.14 0.05 -0.12 -0.12 0.92 0.87

centMean 0.39 -0.16 0.10 -0.13 0.65 0.80

roughnessMeanFull 0.21 -0.05 -0.32 -0.35 0.49 0.81

fluxSD -0.23 0.00 0.39 0.28 0.47 0.62

Percentage of total variance

accounted for

0.25 0.18 0.19 0.21 0.17

Cumulative variance

accounted for

0.19 0.34 0.49 0.66 0.79

Factor intercorrelations

I 1.000

II -0.21 1.000

III -0.27 0.05 1.000

IV -0.51 0.27 0.35 1.000

V 0.14 -0.13 -0.03 -0.15 1.000

doi:10.1371/journal.pone.0163938.t001
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a negative weighting of the ‘low frequency band rhythmical descriptors’ factor II. This can be
interpreted as an inversion of the negative IOILowSD factor load, pointing now towards irregu-
lar bass events. Cluster 4 is clearly centered around factor I (‘high frequency band rhythmical
descriptors’) which is characteristic for rhythmic variations in the upper frequency range (800–
5512.5 Hz) of the audio signal.
Fig 2 provides frequency counts of cluster memberships, where each musical sample was

given a cluster assignment. The distribution for each of the 11 sub-genres to the clusters is pro-
vided. Cluster 1 comprises most of the ‘Techno’ and ‘Chill Out’ subgenres, whereas cluster 2 is
primarily associated with ‘House’, ‘Deep House’ and ‘Tech House’. The third cluster is associ-
ated with the majority of ‘Drum and Bass’, ‘Progressive House’ and ‘Electro House’ samples,
whereas the fourth cluster is predominately assigned to ‘Dubstep’ samples.

Fig 1. Results of K-means clustering of the stimuli for musical samples. (A) Results are derived from the five factor scores gained from the low-level

audio descriptors (see Table 1). Stimuli are labeled with their Track IDs and plotted in a 2-dimensional representation (Component/Factor 1 and 2) of the four

clusters (1 = black, 2 = grey, 3 = green, 4 = pink) presented in Table 2.

doi:10.1371/journal.pone.0163938.g001

Table 2. Final Four Cluster Centers by Five Factors comprising 19 low-level audio descriptors.

I II III IV V

Cluster High Frequency Band

Rhythmical Descriptors

Low Frequency Band

Rhythmical Descriptors

Dynamic

Descriptors

Mid Frequency Band

Rhythmical Descriptors

Timbre

Descriptors

Cluster 1: Isochronous Bass /

Static Timbre

-0.38 0.31 -0.14 0.38 -1.18

Cluster 2: Isochronous Bass /

Varying Dynamics / Mid Freq.

Variations

-0.49 0.52 1.07 0.69 0.20

Cluster 3: Varying Timbres / non-

iso. Bass

-0.04 -0.31 -0.58 -0.18 0.62

Cluster 4: High Freq. Variations /

non-iso. Bass

1.81 -0.86 -0.45 -1.67 0.33

doi:10.1371/journal.pone.0163938.t002
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In summary, four meaningful clusters of EDM emerged with distinct musical attributes: (a)
isochronous bass and static timbres, (b) isochronous bass, fluctuating dynamics and rhythmi-
cal variation in mid-frequency ranges, (c) non-isochronous bass and fluctuating timbres, and
(d) non-isochronous bass with rhythmical variations in the high frequencies.

Research Question 3: How Do Rating Scale Items Representing

Cognitive, Affective, and Psychomotor Domains Vary in Ratings for the

Clusters of Musical Stimuli?

Summary Statistics. Rasch analyses were conducted using the FACETS [73] computer
program. Summary statistics for the MFR-RS Model are found in Table 3. The model analysis
indicated overall significance for musical samples (χ2(176) = 1582.10, p< .01), raters (χ2(98) =
1036.30, p< .01), subgenres (χ2(10) = 126.10, p< .01), cluster (χ2(3) = 9.40, p = .02), music pref-
erence (χ2(4) = 51.80, p< .01), and items (χ2(18) = 1345.80, p< .01). The reliability of separa-
tion for musical samples (RELmusicalsamples = 0.89) can be interpreted similarly to traditional
test reliability (Cronbach’s Alpha). More specifically, it refers to the reproducibility of relative
measure location. Reliability of separation for raters (RELraters = 0.91), clusters (RELclusters =
0.67), subgenres (RELsubgenres = 0.91) and items representing the cognitive, affective and psy-
chomotor responses (RELItems = 0.99) is the ratio of truemeasure variance to observedmeasure
variance. It can be substantively interpreted as the hierarchy of classification evidencedby the
spread of each individual rater, each individual musical stimulus, each individual rating scale
item, and each individual musical cluster within each respective facet (a facet can be conceptu-
alized as a variable). Separation statistics for rater, item, and subgenre demonstrate a suffi-
ciently wide range of measures. The separation statistic for the clustering, although not
unproductive or degrading, implies that the scale may not distinguish as clearly between the
high and low clusters [74]. This is most likely due to the small number of clusters (n = 4) and
the collapsing of significantlymore subgenres (N = 11) into fewer clusters (N = 4). This is to be
expected as the analysis consists of only one genre of music with an analysis consisting of only
five acoustical property measures. Although a lower separation of reliability is demonstrated
for the clusters, RELclusters 0.67 is still considered productive for measurement [75].
Overall reasonable infit and outfit mean-square (MSE) ranges provide evidence of good

model data. Outfit MSE represents outlier-sensitive fit where under- and over-fit for observa-
tions of model variance is detected. In other words, this statistic is sensitive to unexpected
observations that are less of a threat to the measurement process. Infit MSE represents inlier-
pattern sensitive fit where over- and under-fit for Guttman probabilistic patterns are detected.

Fig 2. Distribution of the musical stimuli. (A) Musical stimuli are drawn from 11 sub-genres of EDM across the 4 clusters derived from the

audio descriptors.

doi:10.1371/journal.pone.0163938.g002
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In other words, this statistics represents idiosyncrasies that are hard to diagnose and remedy
and present more of a threat to the measurement process. Expected values for parameter-level
mean square fit statistics are to center around 1.00 with an acceptable range of .05 to 1.50 for
rating scale surveys. Infit and outfit mean square values below .05 indicate responses too pre-
dictable (i.e., muted responses, redundancy, data over-fit to the model). Infit and outfit mean
square values above 1.50 indicate responses that are too unpredictable (i.e., noisy responses,
data under-fit to the model). Standardized infit and outfit statistics are t-tests, reported as z-
scores, that test the hypothesis of perfectmodel data fit for the predictability of data. The
expected score for standardized infit and outfit statistics is 0.00 [75]. Less than 0.00 indicates
predictability and above 0.00 indicates lack of predictability. Good overall model data fit is evi-
denced as it fits the range of reasonable predictability (-1.9 to 1.9). For the purpose of this
study, data will be referenced according to infit and outfit mean square statistics.

Calibration of the Item Facet. Fig 3 is a visual representation of the spread of the 21 items
along the latent continuum. On the right end of the scale in Fig 3 is cognitive item 9 (subtle–
obvious), which was the most difficult for raters to endorse as evidenced by a logit location of
0.98. In contrast, on the left end, cognitive item 1 (unstructured–structured) was the easiest
item for raters to endorse as evidence by the -0.74 logit location. Table 4 provides the details of
the Rasch calibrations of the item facets (i.e., item ratings). To interpret item fit, the threshold
of 0.5–1.5 was used to evaluated infit and outfit MSE [76]. Expected values for facet-level mean
square fit statistics are to center around 1.00 with an acceptable range of .06 to 1.40 for rating

Table 3. Summary Statistics from the MFR-RS Model showing overall significance for all 6 facets (Musical Sample, Rater, Items, Subgenres,

Musical Preference and Clusters derived from the Audio Analysis).

Facets

Musical Sample Rater Item Subgenre Music Pref Cluster

Measure (Logits)

Mean 0.07 0.00 0.00 0.09 0.06 .07

SD 0.19 0.49 0.54 0.16 0.10 .05

N 198 99 19 11 5 4

Infit MSE

Mean 0.99 0.98 0.99 0.99 0.97 1.01

SD 0.33 0.35 0.29 0.11 0.09 0.08

Std. Infit MSE

Mean -0.20 -0.30 -0.50 -0.30 -0.70 -0.10

SD 1.70 2.40 4.70 2.20 2.60 2.40

Outfit MSE

Mean 1.00 0.99 1.00 0.99 0.98 1.02

SD 0.34 0.34 0.30 0.11 0.09 0.07

Std. Outfit MSE

Mean -0.10 -0.30 -0.40 -0.10 -0.40 0.20

SD 1.70 2.30 4.70 2.20 2.60 2.10

Separation Statistics

Reliability of Separation 0.89 0.91 0.99 0.91 0.87 0.67

Chi-Square 1582.10* 1036.30* 1345.80* 126.10* 51.80* 9.4**

Degrees of Freedom 176 98 18 10 4 3

* p < 0.01

** p = .02

doi:10.1371/journal.pone.0163938.t003
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scale surveys [75]. According to these standards, item C9 (subtle–obvious; infitMSE = 1.43,
outfitMSE = 1.57) and item C4 (simple–complex; infitMSE = 1.41, outfitMSE = 1.40) demon-
strated responses too unpredictable for meaningfullymeasuring raters’ reponses. Items A5
(distasteful–delightful; infitMSE = 0.55, outfitMSE = 0.56), item A7 (dejected–elated; infit
MSE = 0.55, outfitMSE = 0.56), A8 (sad–joy; infitMSE = 0.59, outfitMSE = 0.61), and C7
(plain–ornate; infitMSE = 0.59, outfitMSE = 0.60) demonstrated responses too predictable to
be productive for meaningfullymeasuring raters’ responses. Essentially, items demonstrating
under- or over-fit cannot be used in a way that is appropriate nor substantively meaningful for
measurement.

Calibration of the Cluster Facet. Fig 3 visually depicts the spread of the four clusters on
the latent continuum based upon ratings. Table 5 indicates the empirical calibrations of overall
ratings of the four clusters from high to low. Cluster 4 received the highest ratings (0.16 logits)
and cluster 1 received the lowest ratings (0.01 logits). Based uponWright and Linacre’s [75]
threshold standards for infit and outfit evaluation, all clusters exhibit goodmodel fit.
In summary, results indicated that affective, cognitive, and psychomotor items were very

much mixed in their ratings and ranged from -0.45 logits to 0.98 logits. The calibration of clus-
ters ranged from 0.01 (Cluster 1) to 0.16 logits (Cluster 4), and varied based upon one mean-
ingful item: Item C8 (inartistic–artistic).On average, all clusters were endorsed as being
structured (C1), enlivening (A6), ornate (C7), orderly (C3), joyful (A8), conducive to tapping
feet (P1), balanced (C2), clear (C6), conducive to nodding head (P2), elated (A7), thrilling
(A4), and hot (A9). Cluster 4 (i.e., high frequency variations) was the only cluster to be
endorsed as artistic. This means that in order to better make a distinction between clusters 1, 2,
and 3, new items with greater precision would have to be added and tested for meaningfulness
in measurement. More specifically, all four clusters can be statistically differentiated on the
logit scale; however, there are not enough items in the same range of the clusters (e.g., 0.01–
0.08 logits) to substantively differentiate between the clusters using rater responses.

Fig 3. Visual depiction of the cluster calibration in relation to item calibration on the logit scale. (A) Cluster spread ranged from 0.01 logits to 0.16

logits and demonstrated significant distinction according to one fit item: Inartistic/Artistic (C8).

doi:10.1371/journal.pone.0163938.g003
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Research Question 4: Do Meaningful Response Patterns Emerge for

Groups of Raters Based upon Musical Preference?

Music Preference and Items Representing the Cognitive, Affective and Psychomotor
Responses. A differential rater functioning (DRF) analysis was conducted by crossingmusical
preference with all fit items. Overall differential achievement measures for each item were cal-
culated based upon each item’s standardized rating. The analysis indicated overall statistically
significant group differences (χ2 = 2196.70, p = .02). Pairwise interaction analyses demon-
strated four cases (4.76% of total possible interactions) of differential severity and/or leniency.
Table 6 provides the interactions for all groups of raters associated with a particularmusic pref-
erence exhibiting differential severity and or leniency (i.e., |Z| +/- 2.0). Raters identifying the
sophisticated dimension as their favorite musical dimension (i.e, classical, operatic, avant-
garde, world beat, traditional jazz) systemically overestimated musical samples using item C1

Table 4. Calibration of the Item Facet. Items (C = cognitive, A = affective, P = psychomotor) are ordered by their endorsability. Most difficult item to rate

(C9) on top, easiest (C1) on bottom. C, A, and P items are mixed in their ratings and spread across the logit scale.

Item Observed Average Rating Measure SE Infit MSE Std. Infit MSE Outfit MSE Std. Outfit MSE

C9 (Subtle-Obvious) 2.03 0.98 0.07 1.43 5.80 1.57 7.18

C5 (Delicate-Rugged) 2.07 0.92 0.07 1.16 2.37 1.22 3.06

A1 (Unemotional-Emotional) 2.19 0.74 0.07 1.14 2.14 1.15 2.20

A2 (Unforgettable-Forgettable) 2.23 0.68 0.07 0.91 -1.34 0.95 -0.79

C4 (Simple-Complex) 2.30 0.57 0.06 1.41 5.71 1.40 5.55

P3 (Dance) 2.31 0.56 0.06 1.29 4.21 1.27 3.87

C8 (Inartistic-Artistic) 2.57 0.18 0.06 0.73 -4.58 0.73 -4.60

A5 (Distasteful-Delightful) 2.69 0.00 0.07 0.55 -8.25 0.56 -7.95

A9 (Cold-Hot) 2.73 -0.06 0.07 0.86 -2.16 0.86 -2.14

A4 (Boring-Thrilling) 2.75 -0.09 0.07 0.79 -3.39 0.78 -3.54

A7 (Dejected-Elated) 2.81 -0.19 0.07 0.55 -8.16 0.56 -7.86

P2 (Nod head) 2.86 -0.26 0.07 1.38 5.07 1.34 4.59

C6 (Indefinite-Clear) 2.87 -0.29 0.07 1.12 1.76 1.11 1.55

C2 (Unbalanced-Balanced) 2.93 -0.37 0.07 1.05 0.76 1.06 0.87

P1 (Tap feet) 2.93 -0.38 0.07 1.12 1.69 1.08 1.15

A8 (Sad-Joyful) 2.94 -0.39 0.07 0.59 -7.00 0.61 -6.52

C3 (Disorderly-Orderly) 2.94 -0.39 0.07 1.27 3.68 1.26 3.49

C7 (Plain-Ornate) 2.95 -0.41 0.07 0.59 -6.98 0.60 -6.75

A6 (Deadening-Enlivening) 2.95 -0.42 0.07 0.73 -4.38 0.74 -4.05

A3 (Depressing-Exciting) 3.08 -0.64 0.07 0.78 -3.28 0.76 -3.25

C1 (Unstructured-Structured) 3.14 -0.74 0.07 1.33 4.19 1.33 4.11

Note. The items are arranged in measure (endorsability) order, from low to high.

doi:10.1371/journal.pone.0163938.t004

Table 5. Calibration of the Cluster Facet. Spread of the clusters across the logit scale.

Cluster Observed Average

Rating

Measure SE Infit

MSE

Std. Infit

MSE

Outfit

MSE

Std. Outfit

MSE

Cluster 4 (High Freq. Variations / non-iso. Bass) 2.81 0.16 0.04 1.13 3.17 1.13 2.97

Cluster 3 (Varying Timbres / non-iso. Bass) 2.68 0.08 0.03 0.98 -0.90 0.98 -0.88

Cluster 2 (Isochronous Bass / Varying Dynamics / Mid

Freq. Variations)

2.68 0.04 0.03 0.91 -3.40 0.93 -2.66

Cluster 1 (Iso. Bass / Static Timbre) 2.60 0.01 0.03 1.02 0.78 1.04 1.21

doi:10.1371/journal.pone.0163938.t005
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(unstructured-structured,z = 2.18). On average, observed scores were 132.00, but expected to
be 121.81 (a standardized residual of 0.26 logits). Raters identifying the sophisticated dimen-
sion as their favorite musical dimension also systematically overestimated musical samples
using item C3 (disorderly–orderly, z = 2.07). On average, observed scores were 124.00, but
expected to be 113.80 (a standardized residual of 0.26 logits). Raters identifying the sophisti-
cated dimension as their favorite musical dimension also systematically underestimatedmusi-
cal samples using item C4 (simple–complex, z = -2.54). On average, observed scores were
211.00, but expected to be 233.28 (a standardized residual of -0.22 logits). Lastly, raters identi-
fying the intense dimension as a their favorite musical dimension systematically underesti-
mated musical samples using item P3 (This music makes me want to dance, z = -2.68). On
average, observed scores were 211.00, but expected to be 233.28 (a standardized residual of
-0.22 logits).

Music Preference and the Clusters of Stimuli. A differential rater functioning (DRF)
analysis was conducted by crossing musical preference with all four clusters containing stimuli
with certain similarities in their low-level audio descriptors. Overall differential achievement
measures for each item were calculated based upon each item’s standardized rating. The analy-
sis indicated overall statistically insignificant group differences (χ2 = 13.60, p = .85). Therefore,
pairwise analyses were not conducted.
In summary, music preference was found to play an important role in some raters’ system-

atic patterning of ratings in some specific items. In considering scale items, participants that
nominated sophisticatedmusic (i.e., classical, operatic, avant-garde, world beat, traditional
jazz) as their favorite music found the musical samples to be overly structured (item C1), too
orderly (item C3), and too simple (item 4). Additionally, participants that nominated intense
music (i.e., classic rock, punk, heavy metal, power pop) as their favorite music found the musi-
cal samples to not evoke the urge to dance (item P3).

Discussion

This study offers a new perspective into the complex relationship between audio events and
psychological effects (i.e., positive and negative valence of cognitive, affective, and psychomo-
tor dimensions) of groove-basedmusic by seeking to define a latent, unidimensional construct
in a systematic and objective way. In this study we focused on EDM, music specifically pro-
duced to be played on the dance floor. However, as no rules or instructions exist how to move
the feet, arms or hands to this music, the dance moves to EDM are freely improvised by the lis-
teners and must be encoded into the audio events of the music. To decode the audio events, we
extracted low-level audio descriptors and defined clusters of stimuli, which were then mapped
to a unifying logit scale, using the RaschMeasurement Model. From the factoring of the audio
descriptors we found that stimuli in clusters 1 and 2 were characterized by an isochronous,

Table 6. Summary of Differential Facet Functioning Statistics (Music Preference Interactions) for Item Exhibiting | Z | > = 2.0. Showing only

selected items, which were significantly overrated by listeners with specific musical preferences.

Music Pref. Infit MSQ Outfit MSQ Item Total Observed Total Expected Stand. Mean Residual (obs-

exp)

Bias Logit SE Z

Sophisticated 1.00 1.00 C1 (Unstru-

Struct)

132.00 121.81 0.26 0.53 0.22 2.18

Sophisticated 1.30 1.30 C3 (Disord-Ord) 124.00 113.80 0.26 0.46 0.22 2.07

Intense 1.40 1.40 P3 (Dance) 211.00 233.28 -0.22 -0.33 0.12 -2.68

Sophisticated 1.00 0.90 C4 (Simp-

Compx)

76.00 89.11 -0.34 -0.52 0.21 -2.54

doi:10.1371/journal.pone.0163938.t006
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four-on-the floor bass and less variation in the timbre, in comparison to stimuli in cluster 3
and 4 (variations in timbre, complex rhythmical patterns, non-isochronous bass). The cluster
calibration showed that musical samples falling into cluster 3 and 4 were more likely to make
listeners want to dance, than it was the case for the tracks falling into cluster 1 and 2. These
results support the observationsmade by Burger [60] who usedmotion capture systems to
evaluate dancer movements and found that variations of the stimulus’ timbre were related to
the amount and the speed of head and hand movements in the dances, whereas their feet were
mainly stepping to the pulse.
The Rasch analysis provided evidence that all four clusters could be statistically separated

on the logit scale. However, the separation was quite narrow (a range of 0.35 logits). Taking
into account that all tracks in the pool of stimuli were popular EDM tracks from the year 2014
may explain this cluster distribution, as similar musical features such as timbre, effects, and
rhythmic layering often are associated with multiple subgenres of EDM in given time periods
[30]. Even the stimuli falling in cluster 1, which received the lowest overall ratings to the cogni-
tive, affective, and psychomotor responses, were indeed popular songs in their specific EDM
sub-genres as they too were gleaned from a list of 100 of the most popularly downloaded tracks
on the Beatport.comdownload charts. However, the participants aptly rated these stimuli to
have a clear rhythmical structure (Item C6), but perceived these as less 'artistic' (Item C4) than
the other stimuli as well as being boring (Item A4) to listen to.
Nevertheless, a clear pulse in the low frequencies allows an easier synchronization of dance

moves, also for a larger group of inexperienceddancers [77]. The evolutionary advantage of
rhythmically synchronized groups has been discussed in several fields ranging frommusic edu-
cation [78] to sport science [79]. Moreover, Phillips-Silver [80] showed that even a subject
diagnosed as ‘beat deaf ’was able to dance to the simple rhythm laid down by the strong pulse
in the low frequencies characteristic of four-on-the-floor ‘Techno’ music. So why are these
tracks less likely to make listeners dance to?
In our case, where the tracks with a non-isochronous bass showed higher ratings towards

rhythmical entrainment, it might reflect that the listeners enjoyed if they had to extract the
pulse from a more ‘complex’ (C4) metrical structure. This supports the theory of Huron [17]
that syncopations and missing downbeats can evoke powerful and positive emotions when lis-
tening to music. This is also evidenced as the highest endorsed cluster (cluster 4) being differ-
entiated from the other clusters by the inartistic-artistic item.
Furthermore, the musical preference of the listeners has to be taken into account. In this

study we found significant differences between the ratings of participants with different musi-
cal preferences. Classical, avant-garde and jazz listeners perceived EDM as too structured, too
orderly and too simple, whereas punk, heavy metal and rock listeners were not motivated to
dance to EDM although they perceived the music as likely to nod your head to or tap with the
feet to it.
From a measurement and scale construction perspective, the raters and clusters could be

statistically separated on the logit scale. However, the items used on the scale were only slightly
productive in terms of substantive meaning. If the purpose of the measurement is to describe
the difference between the clusters based upon items, only one item was meaningful: Item C8
(inartistic–artistic).Furthermore, it was only productive in separating cluster 4 (high frequency
variations, non-isochronous bass) from clusters 1, 2, and 3. Therefore, if substantive differenti-
ation between clusters is to be achieved via scale items, the refinement and redevelopment of
new items is necessary. The four clusters were all measured above the 13 items marked with
the lowest logit measures (items C1, A3, A6, C7, C3, A8, P1, C2, C6, P2, A7, A4 and A9).
Although these items were important in describing and contextualizing all of the stimuli, they
were not meaningful in differentiating the clusters. Similarly, all four clusters were measured

There’s More to Groove than Bass in Electronic Dance Music

PLOS ONE | DOI:10.1371/journal.pone.0163938 October 31, 2016 17 / 23

http://Beatport.com


below the 6 items marked with the highest logit measures (items C9, C5, A1, A2, C4, P3).
Although these items were important in describing and contextualizing all of the clusters, they
too were not meaningful in differentiating the clusters. This is not to say that the individual
musical samples were not differentiated by the items, as the individual musical samples ranged
from 1.61 logits to -1.63 logits (See S4 Table.). However, with respect to the four clusters, devel-
oping new items to target the logit range of 0.01 to 0.36 would provide a substantive differentia-
tion between clusters. Nevertheless, the narrow location of the four clusters on the logit scale
might also be an indicator that the extracted low-level audio descriptors were not precise
enough to capture all the relevant information in the audio signals. For example, sound design
effects like a specific reverb, a unique filter sweep or special settings on the level-compressor
for one instrument are characteristic for the EDM genre but are very difficult to extract from a
complex audio signal. Using source separation techniques to investigate single instruments
might improve the discrimination of the musical stimuli and result in more distinctive cluster
solutions.
The same is true from an item perspective. In viewing Fig 3, we see some areas on the line

where many items are clustered close together (i.e., items C3, A8, P1, and C2 in the range of
-0.39 to -0.37 logits).We also see areas on the line where no items exist (logit location 0.19
through 0.56). If objects of measurement such as clusters, items, or raters fall within the -0.39
to -0.37 logit location, they will be able to be substantively differentiated by those items. How-
ever, if objects of measurement fall within the range of 0.19 to 0.56 logits, no substantitive dif-
ferentiation can be made. In considering the three psychomotor items, there is a considerable
logit space between them: Item P1 Tap feet (-0.38 logits), P2 Nod Head (-0.26 logits) and P3
Dance (0.56 logits).
As discussed earlier in this manuscript, the use of Raschmeasurement implies the strict

requirements of invariant measurement, whereby the items function together conceptually to
operationally define a unidimensional construct. In this study, we proposed to operationally
define the construct as cognitive, affective, and psychomotor responses. Invariant measure-
ment was achieved in our study as evidencedby overall goodmodel-data fit. Furthermore, the
principle of invariant measurement posits that the measurements of the items are not affected
by the specificmusical samples and the measurements of the musical samples are not affected
by the items. Therefore, because goodmodel data fit was observed in the context of this study,
we would expect the items to function similarly across different evaluation contexts with differ-
ent musical samples representing a different musical genre. The question would then remain as
to how the items function in relationship between different types of groove- (or even non-
groove) basedmusic genres. Overall, the clusters in our study were dispersed in a rather nar-
row, isolated area of the construct. An interesting follow-up study would be to investigate how
different genres of groove-basedmusic (e.g., rock, jazz, funk, etc.) function in relation to the
construct. In particular, interest would include how the position of various genres fall in rela-
tion to the clusters observed in this study and how their acoustic properties relate to those of
the clusters.
A considerable improvement to the scale would be to deeply investigate existing research

into specific relationships between bodymovement and musical structure ([60,81] for
instance) and develop a rating scale from the existing literature. A research study that entails
the development and validation for such a construct would improvement the measurability of
the strength of relationships betweenmusical structure and bodymovement, both from an
experimental and self-reported perspective. Another important followup to this study is the
investigation of listeners’ specificmethods of listening. A deeper analysis into the individual
rater’s specific listening behaviors is warranted. As indicated by Kreutz, Schubert, and Mitchell
[82], listening styles can be categorized by two general cognitive styles: empathizing and
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systemizing. An investigation into the relationship between rater behaviors, rating scale use,
and musical stimuli that includes both quantitative and qualitative methodologiesmay provide
a more holistic understanding of listener behavior.
Application of the Raschmeasurement with fundamental measurement properties, provides

a metric characteristic that is sample-independent [43]. The implication of this is a more con-
sistent connection between research studies. In particular, it can provide an item pool mea-
sured using invariant properties that are not limited by the sample (and their individual biases
and judgmental idiosyncrasies) evaluating them. In particular, in considering raters’ responses
to musical samples, the methodological application of Raschmeasurement theory provides a
mechanism for calibrating musical samples, items, and raters in a manner that is sample inde-
pendent [43]. This allows future studies the ability to use one existing scale in a way that can
meaningful connect and interpret results. For future studies, the use of this scale in conjunction
with musical feature extractionmethods and movement feature extractionmethods (such as
Burger, et. al. [60]) may provide an evenmore thorough picture of how perceptions of groove-
basedmusic and sensorimotor engagement with groove-basedmusic are connected.
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