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Abstract

OBJECTIVE—Generalization is the application of existing knowledge to novel situations. 

Questions remain about the precise role of the hippocampus in this facet of learning, but a 

connectionist model by Gluck and Myers (1993) predicts that generalization should be enhanced 

following hippocampal damage.

METHOD—In a two-category learning task, a group of amnesic patients (n=9) learned the 

training items to a similar level of accuracy as matched controls (n=9). Both groups then classified 

new items at various levels of distortion.

RESULTS—The amnesic group showed significantly more accurate generalization to high-

distortion novel items, a difference also present when compared to a larger group of unmatched 

controls (n=33).

CONCLUSIONS—The model prediction of a broadening of generalization gradients in amnesia, 

at least for items near category boundaries, was supported by the results. Our study shows for the 

first time that amnesia can sometimes improve generalization.
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INTRODUCTION

Generalization is central to the application of knowledge, because most situations we 

encounter are in some way novel. For example, you might identify an object as a “cup”, even 

if you have not seen that specific object before. The degree to which novel and less typical 

stimuli are perceived as belonging to a common category can be measured in terms of 

generalization gradients (Buss, 1950; Grice & Saltz, 1950; Wills & McLaren, 1997), such as 

those shown in Figure 1. A generalization gradient plots some performance measure, in this 

case classification accuracy, across a range of test stimuli, from stimuli similar to previously 

encountered examples, to quite dissimilar items.

Gluck and Myers (1993) predicted that a hippocampal-region lesion prior to learning would 

lead to broader generalization to novel items, relative to controls. Figure 1 illustrates this 

prediction in the context of a two-category learning task. As the average of the training 

items, the prototype items are maximally similar to them. Low-distortion and high-distortion 

items are more and less similar to the training items respectively, but both have a correct 

answer, as they are more similar to one of the trained categories than the other. Finally, 

random items are unclassifiable, being equally similar to each of the two trained categories. 

The striking prediction for a two-category task is that hippocampal lesions lead to superior 

(more accurate) generalization, relative to controls (as illustrated in Figure 1).

Gluck and Myers's prediction emerges a priori from their connectionist model of cortico-

hippocampal interaction (Gluck & Myers, 1993). In fact, Figure 1 is the output of simulating 

a hippocampal-region lesion in their model in the context of the specific experiment reported 

below. Full details of the simulation, including source code, are available at [maskedlink]. In 

informal terms, the Gluck-Myers model makes this prediction because of two assumed 

functions of the hippocampal region. The first, redundancy compression, acts to increase the 

perceived similarity of stimuli that belong to the same category. The second, predictive 

differentiation, acts to decrease the perceived similarity of stimuli that belong to different 

categories. Both processes are considered to have a number of adaptive advantages (see 

Gluck & Myers, 1993, for a discussion). However, in the current case, they cause 

generalization to drop off more rapidly, leading to inferior performance on high-distortion 

test items. Hippocampal-region lesions eliminate these redundancy compression and 

predictive differentiation processes, leading to broader generalization gradients that, in the 

context of the current experiment, lead to a prediction of more accurate/superior 

generalization performance in amnesics, relative to controls.

Some other accounts of the effects of hippocampal damage on category learning are 

compatible with this prediction of the Gluck-Myers model. For example, Nosofsky and Zaki 

(1998) characterized the effects of amnesia on category learning through the assumption that 

all stimuli appear more similar to each other for amnesics than controls (instantiated in their 

formal model as a reduction in the sensitivity parameter for amnesics). In cases where 

amnesics show similar performance to controls on the training items, such an account 

predicts superior performance on high-distortion test items for amnesics, because these 

items appear more similar to the training items than is the case for controls. Of course, the 

high-distortion items become more similar to both the correct and the incorrect category 
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under this account, but non-linearities in the way their model calculates similarity (an 

exponential decay function) means that an overall effect of improved generalization can be 

accommodated by the Nosofsky-Zaki account.

There is no existing data set that is well-suited to examine this prediction of the Gluck-

Myers model. The majority of studies of category learning in amnesia (Kitchener & Squire, 

2000; Knowlton & Squire, 1993; Reed et al, 1999; Squire & Knowlton, 1995) train only one 

category. It is not possible to test the prediction of superior generalization performance 

under amnesia in a one-category task because, in a one-category task, there are no correct or 

incorrect answers to novel items. Participants are exposed to a number of stimuli, all of 

which belong to the same category. They are then shown some novel items, which vary in 

similarity to the trained items. In the absence of a second contrast category any novel item, 

however dissimilar, could reasonably be classified as belonging to the trained category. This 

is not a criticism of the above studies, as they were not designed to test the Gluck-Myers 

prediction, but it does mean their data are not ideal to examine whether this prediction is 

correct. However, we note in passing there are some other problems in interpreting the 

results of one-category tasks (“learning-at-test” effect; Palmeri & Flanery, 1999) which are 

resolved through the introduction of a second contrast category (Homa et al., 2011).

Turning to experiments with more than one trained category, Kolodny (1994) compared 

amnesic and control performance in three-category tasks. However, no generalization 

gradient was reported. Zaki et al. (2003) used a two-category task, and reported a 

generalization gradient. However, in their study, amnesics perform substantially less well on 

the training items than did controls. Under such circumstances, the Gluck-Myers model does 

not predict superior generalization in the amnesic group. In summary, no existing data set 

speaks to the Gluck-Myers prediction of superior amnesic generalization in a two-category 

task.

In the current study, we employed the two-category task developed by Wills and associates 

(Wills & McLaren, 1997). This task is well-suited to examining the Gluck-Myers prediction, 

for two reasons. First, we know that normal adults acquire the training categories quickly 

and to a high level of accuracy in this task (e.g. Jones et al., 1998, Experiment 2). On this 

basis, we predicted that, with sufficient training, both amnesics and controls would show 

high and comparable accuracy on the training items. Second, the task produces orderly 

generalization gradients under a range of conditions (Jones, Wills & McLaren, 1998; Wills, 

2002; Wills & McLaren, 1997; Wills et al., 2000) – an essential property for testing the 

Gluck-Myers prediction. Note that based on previous data using these task materials (Wills 

& McLaren, 1997), categorization accuracy of low-distortion items is expected to be close to 

ceiling. Group differences in generalization accuracy therefore should be more pronounced 

for less easy high-distortion items.

METHODS

Participants

We tested 9 patients with bilateral hippocampal damage due to hypoxic brain injury (age 

range = 27–57, female = 2). Structural MRI (n=7) confirmed bilateral hippocampal volume 
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reductions compared to age-appropriate norms. We also tested 9 healthy controls (age range 

= 36–57, female = 5), matched for mean age, reading, and executive function. In the Rey-

Osterrieth Complex Figure (ROCF) test, both groups performed equally in the copy 

condition, but the hippocampal-region lesion (HL) group performed worse than controls (M 

= 23.9) in the delayed condition (M = 13.5), t(16) = 2.99, p < .01, conforming to the 

characteristic explicit memory deficits of amnesia.

Materials and Procedure

Figure 2A shows some example training items for this task. Each training item is composed 

of 12 different coloured icons, whose position varies randomly from trial to trial. There are 

12 icons that are characteristic of category A, and 12 that are characteristic of category B. In 

creating a category A training item, one starts with all 12 category-A icons, and then gives 

each an independent 10% chance of being replaced by a category-B icon. A corresponding 

process is used to create category B training items. Hence, the training items have some 

variability, but the two categories differ substantially and thus are relatively easy to acquire. 

Virtually all training items contain between 9 and 12 category-characteristic icons.

During 60 training trials (half from each category), participants were asked to categorize 

exemplars as A or B, with feedback provided (Figure 2B). They then received 130 test (no-

feedback) trials, where they categorized novel items. There were four types of novel item: 

prototypes, low-distortion, high-distortion, and random. Prototypes contained all 12 icons of 

one category, and zero icons of the other. Prototypes are the central tendency of the trained 

item of a category, and hence performance is expected to be good on these items. Low-

distortion items, although novel, were typical of the training items. Specifically, low-

distortion items contained between 9 and 11 icons characteristic of one category, with the 

remainder from the other category. In contrast, high-distortion items were very atypical of 

the training items, containing 7 or 8 icons characteristic of one category, with again the 

remainder coming from the other category. Nevertheless, high-distortion items can in 

principle be classified correctly, because they contain more icons characteristic of one 

category than the other. Finally, random items contained 6 category-A icons, and 6 category-

B icons. Thus, there is no correct classification of these items and, in the absence of a 

response bias for one category, accuracy is expected to be around 50%. Overall, the test 

phase comprised 130 test items: 20 prototypes, 60 low-distortion items, 40 high-distortion 

items, and 10 random items. The order of presentation of the test items was random. The 

number and distribution of test items is identical to most previous applications of this 

particular category-learning procedure (e.g. Jones et al., 1998: Wills 2002; Wills & 

McLaren, 1997).

RESULTS

No significant group difference in classification accuracy was observed during training, 

t(14.9) = .724, p = .480. Figure 2C shows the generalization gradients for the HL and control 

groups. A significant effect of distortion level (excluding random items) on categorization 

accuracy was found F(2,32) = 48.44, p < .001. The condition-by-group interaction was 

marginally significant, F(2,32) = 2.81, p = .075. Categorization accuracy for high-distortion 
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items was significantly higher for the HL group (M = 63.9, SE = 3.09) than for controls (M 
= 53.9, SE = 2.54), p = .014, one-tailed, using a permutation test1. A permutation test is 

appropriate given the small (although not atypical) sample sizes. A one-tailed test is 

appropriate given the directional nature of our a priori prediction, although the result 

remains significant two-tailed, and also after Bonferroni corrections to accommodate the fact 

that Figure 1 also predicts an effect for low-distortion items, which is not observed. An 

ANCOVA revealed that group remained a significant predictor of between-group difference 

in high-distortion classification accuracy when including age as a covariate, F(1,15) = 5.79, 

p = .03.

In order to further test the robustness of this effect, we recruited an additional 24 unmatched 

controls (age range=19–34, female=18) from a younger student population. With a total of 

33 control participants, the superior performance of the HL group on high-distortion test 

items remained marginally significant, p = .052, one-tailed permutation test. The unmatched 

control group showed superior training-phase accuracy relative to the HL group, t(14.4) = 

2.45, p = .03. This is perhaps to be expected given younger people acquire categories faster 

(Krishna et al. 2012), and it makes the finding of superior generalization in the HL group 

relative to an unmatched control group containing many young people, all the more striking.

Data archive

Trial-level raw data for the unmatched control group are available at [maskedlink] with an 

MD5 checksum2 of 0783fd6357fbaccdc07a996bda15aa75. All analysis scripts are available 

at the same location. Data from the HL and age-matched control groups is available from the 

authors on request.

DISCUSSION

Overall, the current study provides some evidence for the Gluck-Myers’ model prediction 

that amnesics can show superior generalization in a two-category learning task, relative to 

controls. Nevertheless, our experiment has a few limitations, which future research may 

wish to address. For example, a skeptic might reasonably argue that the predictions of the 

Gluck-Myers model are not fully supported by the current experiment, as an effect was 

expected for both low- and high-distortion items, but was only observed for high-distortion 

items. However, it should be pointed out that that the low-distortion null effect represents an 

absence of evidence, not evidence of absence. It would therefore be incorrect to describe it 

as evidence against the model.

One explanation for this apparent deviation between model predictions and observed data is 

a lack of power. Performance on low-distortion items is closer to ceiling than for high-

distortion items, and hence may be harder to detect. Large-scale independent replication 

would resolve this issue one way or the other, and we encourage others to attempt this. If 

future studies replicate this finding of a difference in high-, but not low-, distortion items, 

this might call for some revision of the model.

1Asymptotic exact test, using the perm package (Fay & Shaw, 2010), within the R environment R Core Team, 2015).
2Publication of an MD5 checksum allows the reader to independently confirm that the raw data in the archive is unchanged.
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Another apparent discrepancy between model and data is that, compared to the Figure 1 

simulation, the observed accuracy levels are somewhat lower. We advise against over-

interpreting this difference. Figure 1 is an illustration of the ordinal direction of effects - the 

absolute accuracy scores from the simulation are dependent on the choice of parameters 

used in modelling. A relatively parameter-free prediction of the model is that performance 

on distorted items will be ordinally better for HL than for controls.

Another potential criticism of the current study is that the stimulus set we used is relatively 

novel and less well understood compared to, for example, the dot-pattern stimuli used in 

some previous research (e.g. Knowlton & Squire, 1993). There were good reasons for our 

choice of procedure (see Introduction); nevertheless, future researchers may wish to examine 

the generality of this result with other stimulus sets.

Finally, although this experiment provides evidence for an a priori prediction of the Gluck 

and Myers (1993) cortico-hippocampal model, it seems likely that some other competing 

accounts can also accommodate this result (e.g. Nosofsky & Zaki, 1998). Future research 

might seek to investigate further predictions of these accounts. For example, the Gluck-

Myers model makes the prediction that the effect is driven by the presence of category 

labels. If instead an unsupervised training phase was used (i.e. exposure to the training items 

without feedback, see e.g. Homa & Cultice, 1984; Wills & McLaren, 1998), no such effect 

would be expected under the Gluck-Myers account. This is because the processes of 

differentiation and compression assumed by the Gluck-Myers model are driven by the 

presence of category labels in their account. In other words, things that have the same label 

are made more similar, and things that have different labels are made more different. 

Without the labels, this doesn’t happen. In contrast, the sort of increased memorial 

confusability account offered by Nosofsky and Zaki is a static representational difference 

between amnesics and controls that is not specifically tied to the presence of category labels.
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Figure 1. 
Predictions of the cortico-hippocampal model (Gluck & Myers, 1993). Control: Intact 

model. HL: model with hippocampal-region lesion. Proto: prototype, Low-Dist: low 

distortion, High-Dist: high distortion, Rand: random (50% accuracy expected).
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Figure 2. 
A: Example category items for a participant, two examples from each category (A on left, B 

on right). B: Example training trial in which a different participant (hence, different random 

allocation of icons to categories) correctly responds “A” and positive feedback appears. C: 
Generalization gradients for each group. Error bars are 95% CI, adjusted for between-

subject variance (Baguley, 2012). Labels on the abscissa are as per Figure 1.
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