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Abstract Reduced smooth muscle (SM)-specific α2 Na+ pump expression elevates basal
blood pressure (BP) and increases BP sensitivity to angiotensin II (Ang II) and dietary NaCl,
whilst SM-α2 overexpression lowers basal BP and decreases Ang II/salt sensitivity. Prolonged
ouabain infusion induces hypertension in rodents, and ouabain-resistant mutation of the α2
ouabain binding site (α2R/R mice) confers resistance to several forms of hypertension. Pressure
overload-induced heart hypertrophy and failure are attenuated in cardio-specific α2 knockout,
cardio-specific α2 overexpression and α2R/R mice. We propose a unifying hypothesis that
reconciles these apparently disparate findings: brain mechanisms, activated by Ang II and high
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NaCl, regulate sympathetic drive and a novel neurohumoral pathway mediated by both brain and
circulating endogenous ouabain (EO). Circulating EO modulates ouabain-sensitive α2 Na+ pump
activity and Ca2+ transporter expression and, via Na+/Ca2+ exchange, Ca2+ homeostasis. This
regulates sensitivity to sympathetic activity, Ca2+ signalling and arterial and cardiac contraction.
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Abstract figure legend The centrally controlled, parallel sympathetic nerve and slow neurohumoral pathways that
regulate both arterial and cardiac function and participate in the pathogenesis of hypertension and heart failure (HF).
Angiotensin II (Ang II) and high dietary salt are convergent signals that act via hypothalamic Ang type 1 receptors (AT1R)
to activate CNS sympathetic pathways. The increased sympathetic nerve activity (SNA) promotes vasoconstriction
and increases cardiac rate and contractile force. Prolonged stimulation of hypothalamic AT1Rs also activates a novel
neurohumoral pathway (box at upper right) that includes aldosterone (Aldo), mineralocorticoid receptors (MR),
epithelial Na+ channels (ENaC), endogenous ouabain (EO) and α2 Na+ pumps. This hypothalamic pathway feeds back
(dashed green line, ‘+’) to modulate Ang II-activated SNA and also promotes adrenal secretion of EO, triggered by, e.g.,
ACTH, adrenal SNA and/or Ang II. The elevated plasma EO acutely inhibits α2 Na+ pumps (NKAs) in both the heart
and arteries, and the rise in intracellular Na+ rapidly induces Na+/Ca2+ exchanger (NCX)-mediated Ca2+ gain, and
cardiotonic and vasotonic effects. Prolonged plasma EO elevation also activates an α2 Na+ pump-associated protein
kinase cascade (e.g. C-Src-mediated) that increases cardiomyocyte (CMC) and arterial smooth muscle cell (ASMC)
NCX expression, and arterial sarcoplasmic reticulum (SR) Ca2+ pump (SERCA2) expression. In arteries with tone,
NCX normally favours Ca2+ entry and helps to sustain cytosolic Ca2+ ([Ca2+]CYT) above contraction threshold. The
EO-induced NCX and SERCA2 up-regulation enhance Ca2+ signalling and help the very modestly increased SNA to
increase vascular tone and resistance, and elevate blood pressure. In the heart, NCX promotes Ca2+ extrusion during
diastole, but prolonged α2 pump inhibition by EO reduces the Na+ gradient driving force so that [Na+]CYT and
diastolic [Ca2+]CYT are both elevated; consequently, cardiac relaxation is slow and/or incomplete. Also, cardiac SERCA2
expression is usually reduced in HF (perhaps due to the high EO), as are SR Ca2+ stores and Ca2+ transients, and systolic
function is impaired. The diastolic dysfunction and attenuated cardiac contraction and stroke volume help explain HF.
This review describes research on mice with genetically engineered α2 Na+ pumps and related studies that elucidate
these cellular mechanisms.

Abbreviations ACTH, adrenocorticotropic hormone; Ang II, angiotensin II; AT1R, angiotensin type-1 receptor;
BP, blood pressure; CNS, central nervous system; CSF, cerebrospinal fluid; C-Src, C-Src kinase; CTS, cardiotonic
steroid; CV, cardiovascular; DN, dominant negative; DOCA, deoxycorticosterone acetate; EDL, extensor digitorum
longus; EF, ejection fraction; ENaC, epithelial Na+ channels; EO, endogenous ouabain; HF, heart failure; HH, heart
hypertrophy; I.C.V., intracerebroventricular; jS/ER, junctional sarco-/endoplasmic reticulum; LV, left ventricular; MBG,
marinobufagenin; MI, myocardial infarction; MS, mass spectrometry; NCLX, mitochondrial Na+/Ca2+ exchanger; NCX,
Na+/Ca2+ exchanger; NKA, Na+ pump or Na+, K+-ATPase; PLM, phospholemman; PM, plasma membrane; RAAS,
renin–angiotensin–aldosterone system; ROS, reactive oxygen species; RyR, ryanodine receptor; S.C., subcutaneous; S/ER,
sarco-/endoplasmic reticulum; SERCA, sarco-/endoplasmic reticulum Ca2+ pump; SkM, skeletal muscle; SM, smooth
muscle; SNA, sympathetic nerve activity; SPM, sub-PM; SR, sarcoplasmic reticulum; SS, salt-sensitive; TAC, trans-aortic
constriction; TRPC6, transient receptor potential channel-6; WT, wild-type.

Baltimore group (left
to right; key mentors
in parentheses):
Mordecai Blaustein,
a discoverer of Na+/
Ca2+ exchange (NCX),
studies arterial Ca2+
regulation, arterial
tone and hypertension
(Daniel Tosteson and Alan Hodgkin). Ling Chen investigates cardiovascular mechanisms of hypoxia and ischaema (Morris Karmazyn and Steven
Scharf). John Hamlyn identified (with Blaustein) endogenous ouabain and its role in hypertension and heart failure (Thomas Duffy and Alan Senior).
Gil Wier, pioneer of cardiovascular Ca2+ signalling in vitro, in situ, and in awake mice in vivo (John Blinks). Jin Zhang performed seminal studies on
arteries from genetically altered arterial α2 and NCX mice (Xiaoliang Wang and Blaustein). Individual photos. Frans Leenen (Ottawa, left) discovered
brain ouabain’s role in the novel slow neuromodulatory pathway in hypertension and heart failure (Wybren deJong and Alvin Shapiro). Jerry Lingrel
(Cincinatti), who cloned the Na+ pump isoforms, studies their physiological roles in genetically engineered mice (Harry Bosook and John Gurdon).

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society



J Physiol 594.21 α2 Na+ pumps in cardiovascular health and disease 6081

Introduction

A decade ago, an article in this journal (Zhang et al. 2005),
and two contemporary articles (Dostanic et al. 2005;
Dostanic-Larson et al. 2005), supported the hypothesis
(Blaustein, 1977) that arterial Na+ pumps, their end-
ogenous ouabain-like ligand, and Na+/Ca2+ exchangers
(NCX), contribute to salt-sensitive hypertension. The
genetically engineered mouse studies implicate the Na+
pump catalytic subunit α2 isoform. Here, we review
recent reports that substantiate the seminal role of α2
Na+ pumps in the pathogenesis of hypertension and also
in cardiac hypertrophy and failure. Remarkably, these
pathologies can be prevented/attenuated by genetically
altered α2 expression and/or ouabain resistant mutation
of its binding site. This pinpoints α2 Na+ pumps as a key,
but largely overlooked, therapeutic target.

Background

Sodium pumps (Na+,K+-ATPase or NKA) are expressed in
nearly all vertebrate cells. They export three Na+ ions and
import two K+ ions while hydrolysing one ATP molecule
during each transport cycle (Blanco & Mercer, 1998).
The Na+ pumps maintain cell and organism Na+ and
K+ homeostasis and influence numerous physiological
processes. They also serve as cellular signal transducers
for cardiotonic steroids (CTSs) (Xie & Askari, 2002).

Four Na+ pump catalytic subunit isoforms (α1–α4)
have been cloned (Shull et al. 1985; Shull & Lingrel, 1987;
Woo et al. 1999). Pumps with an α1 isoform (‘α1 Na+
pumps’) are expressed in virtually all cells, and are pre-
valent in most. They maintain the low Na+ and high
K+ concentrations in ‘bulk’ cytoplasm, [Na+]CYT and
[K+]CYT, respectively, and the resting membrane potential
(e.g. McDonough et al. 1992; He et al. 2001; Radzyukevich
et al. 2013), and mediate net Na+ transport across epithelia
(McDonough et al. 1992; Rajasekaran et al. 2005). α3 is
found in neurones, neonatal myocardium, adult human
myocardium, and some other tissues; α4 is expressed in
sperm (Lingrel, 2010).

α2 Na+ pumps. We focus on Na+ pumps with an α2
catalytic subunit, which are expressed in the cardiovascular
(CV) system (Lingrel, 2010), including the endothelium
(Zahler et al. 1996), in skeletal muscle (Radzyukevich et al.
2013) and in the brain (McGrail et al. 1991; Arakaki et al.
2013). In rodent cardiac and vascular smooth muscles, the
α1:α2 ratio is �4:1 (James et al. 1999; Zhang et al. 2005;
Berry et al. 2007; Despa & Bers, 2007); in skeletal muscle
the α1:α2 ratio is �1:6 (He et al. 2001).

The minimal Na+ pump functional unit is an αβ

protomer (Blanco & Mercer, 1998). The α subunit contains
the Na+, K+ and Mg-ATP binding sites, the catalytic
machinery, and the CTS binding site. Rodents are unusual,

however, because their α1 Na+ pumps have very low
affinity for CTS (O’Brien et al. 1994). Thus, in rodents,
and probably in other orders of mammals too, α2
and α3 Na+ pumps are the receptors for picomolar to
nanomolar CTS (Song et al. 2013). CTSs selectively inhibit
Na+ pump-mediated cation transport (Schatzmann,
1953). Therefore, CTSs, and especially ouabain, which is
relatively hydrophilic, are widely employed to study the
consequences of Na+ pump blockade.

The Na+ pump β subunit (there are 3 isosforms)
chaperones α, and is essential for the catalytic activity
(Shull et al. 1986; Blanco & Mercer, 1998; Lingrel, 2010).
β1 is the most prevalent isoform in cardiac muscle and
vascular smooth muscle, where it forms both α1β1 and
α2β1 protomers (Hundal et al. 1994; Cougnon et al. 2002;
Hauck et al. 2009; Dey et al. 2012).

α2 Na+ pump localization and its significance. Most
arterial (Fig. 1) and cardiac (Fig. 2) myocyte α2 Na+
pumps are localized in plasma membrane (PM) micro-
domains in close proximity to ‘junctional’ elements of the
sarco-/endoplasmic reticulum (jS/ER), i.e. at PM–S/ER
junctions (Juhaszova & Blaustein, 1997a,b; Mohler et al.
2003; Despa & Bers, 2007; Linde et al. 2012). There may,
however, be some overlap with α1 in these microdomains
(Mohler et al. 2003; Dey et al. 2012). Na+/Ca2+ exchangers
(NCX), too, are localized in the PM–jS/ER microdomains
(Figs 1 and 2) (Juhaszova & Blaustein, 1997a; Berry et al.
2007; Lynch et al. 2008; Davis et al. 2009; Jayasinghe et al.
2009; Kuszczak et al. 2010). In cardiomyocytes, α2 pumps
and NCX are found at, or adjacent to (Scriven et al. 2000),
PM–S/ER junctions in the transverse (t-) tubules as well
as in the surface membrane (Fig. 2) (Mohler et al. 2003;
Berry et al. 2007; Despa & Bers, 2007).

This organization enables privileged communication
among the α2 Na+ pumps, NCX and S/ER Ca2+
pumps (SERCA) through the tiny sub-PM cytosolic
compartment, ‘fuzzy space’, at the junctions (Figs 3 and
4) (Juhaszova & Blaustein, 1997b; Goldhaber et al. 1999;
Poburko et al. 2004; Verdonck et al. 2004; Pritchard et al.
2010; Swift et al. 2010; Aronsen et al. 2013). Consequently,
the local α2 pump-generated Na+ electrochemical
gradient (Poburko et al. 2007) modulates NCX-mediated
Ca2+ transport, and local Ca2+ sequestration and Ca2+
signalling (Blaustein & Lederer, 1999; Arnon et al. 2000b;
Golovina et al. 2003; Verdonck et al. 2004; Lee et al. 2006;
Lingrel, 2010; Despa et al. 2012; Shattock et al. 2015). This
α2-NCX linkage is consistent with the observation that
�75% knockdown of cardiac NCX1 decreased α2, but not
α1, expression by �50% (Bai et al. 2013). Also, �65%
knockdown of α2 decreased NCX1 by �65%, but did not
affect α1 expression in arteries (Chen et al. 2015b).

The special role of α2 also is evident in skeletal muscle:
α2 Na+ pumps and NCX are prevalent in t-tubules,
where they may coordinate with junctional sarcoplasmic
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reticulum (SR) to help regulate the SR Ca2+ concentration,
[Ca2+]SR, and contraction (Radzyukevich et al. 2013;
Altamirano et al. 2014; DiFranco et al. 2015). Skeletal
myocytes (Kristensen et al. 2008) (and choroid epithelial
cells; Arakaki et al. 2013), are unusual in that most α2 Na+

pumps are located in intracellular vesicles and are inactive.
When translocated to the PM, triggered, e.g., by insulin,
muscle contraction or cyclic stretching, they become active
(Therien & Blostein, 2000; Yuan et al. 2007; Benziane &
Chibalin, 2008; Kristensen et al. 2008; Zhang et al. 2012).
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Figure 1. Distribution of α2 Na+ pumps and
NCX1 in embryonic mouse (A and B) and
human (C and D) artery smooth muscle
determined by immunocytochemistry
A, α2 Na+ pumps (green) and the plasma
membrane Ca2+ pump (PMCA, red) are not
co-localized (negligible white areas) in this
pseudocolour overlay image of a mouse aorta
myocyte. B, α2 Na+ pumps (green) and NCX1 (red)
exhibit substantial co-localization (white areas) in a
mouse aorta myocyte. C, primary cultured human
mesenteric artery smooth muscle cells (hASMCs)
were labelled with anti-α2 polyclonal antibodies
(pAb) and anti-NCX1 monoclonal antibodies
(mAb); the SR was then stained with ER-Tracker, as
indicated by the labels. Insets are enlargements of
the boxed areas. Pseudocolour images of the
enlarged α2 (red) and NCX1 (green) regions, and
the overlay, are shown on the right. D, hASMCs
were cross-reacted with anti-NCX1 mAb and
anti-TRPC6 pAb; the SR was then stained with
ER-Tracker, as indicated. Insets are enlargements of
the boxed areas. Pseudocolour images of the
enlarged NCX1 (green) and TRPC6 (red) regions,
and the overlay, are shown on the right. In C and
D, the patterns of staining by both antibodies
were very similar to the pattern of ER Tracker (i.e.
SR) distribution. Scale bars in C and D = 30 μm.
Note that the α2, NCX1 and TRPC6 staining
patterns are all very similar to that of ER-Tracker.
This is reflected by the yellow-orange staining in
the C and D overlay panels, and indicates that
hASMC α2 Na+ pumps and NCX1 co-localize (as
in the mouse, B) and overlie elements of SR. A and
B were kindly provided by Dr Ronald P. Lynch (B is
from Lynch et al. 2008 with permission); C and D
are from Linde et al. (2012) with permission.
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Regulation of α2 Na+ pumps; role of phospholemman.
Na+ pumps, including α2 pumps, are regulated
by multiple factors, including substrates, hormones
(e.g. aldosterone, insulin and catecholamines) and
protein phosphorylation (Therien & Blostein, 2000;
Phakdeekitcharoen et al. 2011). Importantly, the Na+ and
K+ affinities are modulated by the regulatory protein
phospholemman (PLM), also called FXYD1 (Crambert
et al. 2002; Bibert et al. 2008; Bossuyt et al. 2009; Han et al.
2010; Mishra et al. 2015). Surprisingly, this small molecule
with a single transmembrane helix (Geering, 2006) also
regulates NCX1 (Wang et al. 2011; Hafver et al. 2016).

Unphosphorylated PLM binds to α2β and reduces α2
affinity for intracellular Na+ and extracellular K+ (Han
et al. 2009; Pavlovic et al. 2013a). Phosphorylation of
cardiac or arterial PLM by protein kinase A or C relieves
the pump inhibition by altering PLM-α2β1 interaction
and restoring the Na+ high affinity (Bossuyt et al. 2006,
2009; Pavlovic et al. 2007, 2013a; Han et al. 2010; Dey et al.
2012; Shattock et al. 2015).

Activation of the renin–angiotensin (Ang)–aldosterone
system (RAAS), as in hypertension and heart failure
(see below), stimulates reactive oxygen species (ROS)
generation. This leads to glutathionylation of β1 and

SERCA2

Na/K ATPase α1

Na/K ATPase α2

NCX1

Figure 2. Confocal images of normal adult rat cardiomyocytes
immunolabelled with antibodies raised against SERCA2, Na+
pump α1, Na+ pump α2 and NCX1
All four antibodies stained the Z-line/t-tubule regions. The surface
membrane was stained by anti-α1, anti-NCX1 and, to a much lesser
extent, anti-α2 antibodies, but not by anti-SERCA2. Scale
bar = 40 μm. Reproduced from Mohler et al. (2003) with
permission.

pump inhibition (Figtree et al. 2009; Liu et al. 2013).
PLM promotes de-glutathonylation and protects against
oxidative inhibition of the pumps in arteries and heart
(Liu et al. 2013; Chia et al. 2015).

Endogenous cardiotonic steroids. High affinity CTS
binding is observed in all vertebrates (Pressley, 1992;
Lingrel, 2010). Ouabain, digoxin and bufalin (a
bufadienolide CTS) all block the pump’s cation trans-
port pathway (Laursen et al. 2013, 2015). The idea of
an endogenous ligand for the Na+ pump CTS binding
site (Szent-Gyorgi, 1953) fostered the proposal that an
endogenous ouabain-like compound contributes to the
pathogenesis of hypertension (Haddy & Overbeck, 1976;
Blaustein, 1977). Studies in mice with an α2 null mutation,
α2+/− and, especially, with ouabain-resistant α2 Na+
pumps, α2R/R, provide definitive evidence that α2 and
its endogenous ligand(s) have a physiological role in
mammals (Dostanic et al. 2005; Dostanic-Larson et al.
2005; Zhang et al. 2005; Lingrel, 2010; Van Huysse et al.
2011; Wansapura et al. 2011).

A CTS was isolated from human plasma and was
identified by mass spectrometry (MS) as endogenous
ouabain (EO) or a ouabain isomer (Hamlyn et al. 1991;
Mathews et al. 1991). Nuclear magnetic resonance (NMR)
and MS studies on human, bovine and rodent plasma and
tissues verified that the endogenous substance is ouabain
(Schneider et al. 1998; Kawamura et al. 1999; Komiyama
et al. 2000; Tashko et al. 2010; Jacobs et al. 2012; Hamlyn
et al. 2014); reviewed in Hamlyn & Blaustein, 2016).
Moreover, recent studies identified two novel EO iso-
mers that are not seen in commercial (plant) ouabain
(Jacobs et al. 2012; Hamlyn et al. 2014). The isomers,
which may also be present in human plasma (Hamlyn &
Blaustein, 2016), apparently are physiologically regulated,
but their relative affinities for α2 and their significance are
unknown.

Another CTS, marinobufagenin (MBG), was identified
in human plasma and urine by immunoassay (Bagrov
et al. 1996, 2009). Both EO and MBG reportedly play
a role in the pathogenesis of hypertension and heart
failure (HF) (Schoner & Scheiner-Bobis, 2007; Bagrov
et al. 2009; Blaustein et al. 2012; Pavlovic, 2014).
Prolonged administration of ouabain (Doursout et al.
1992; Yuan et al. 1993; Huang et al. 1994) or MBG
(Kennedy et al. 2006) induces hypertension in normal
rats, but digoxin and digitoxin do not (Manunta et al.
2000). This implies that Na+ pump inhibition per se
does not cause the ouabain- or MBG-induced hyper-
tension. Experiments on α2R/R mice (see Table 1), and
studies with fab fragments that immunoneutralize EO
and MBG, demonstrate that elevated endogenous CTS
levels contribute to CV pathophysiology (Schoner &
Scheiner-Bobis, 2007; Bagrov et al. 2009; Blaustein &
Hamlyn, 2010). This review focuses on EO and not

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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Table 1. Cardiovascular and skeletal muscle manifestations of genetically modified mouse α2 Na+ pumps

Genetic modification Vascular effects Cardiac effects Skeletal muscle effects References

Globally reduced α2
(α2+/−)

↑Basal [Ca2+]CYT;
↑myogenic tone;
↑basal BP;
I.C.V. Ang I and

↑[Na+]CSF induce
hypertension

↑[Ca2+]CYT transients;
↑contractility

↑Contractile force (James et al. 1999)
(He et al. 2001)
(Shelly et al. 2004)
(Zhang et al. 2005)
(Hou et al. 2009)

Smooth muscle α2
dominant negative
(α2SM-DN)

↑Basal BP;
↓myogenic reactivity;
↑pressor response to

Ang II + high dietary
salt

— — (Chen et al. 2015b)

Smooth muscle α2
transgenic
over-expressor
(SM-α2Tg/Tg)

↓Basal BP; normal
myogenic reactivity;

↓pressor response to
Ang II ± high dietary
salt

— — (Pritchard et al. 2007)
(Chen et al. 2015b)

CV α2 null (CV-α2−/−) Normal basal BP;
No ACTH- or

ouabain-induced
hypertension

Normal basal cardiac
function

— (Rindler et al. 2011)

Cardiac α2 null
(Cardiac-α2−/−)

Normal basal BP;
ACTH induces

hypertension

Normal basal cardiac
function;

attenuated
TAC-induced cardiac
hypertophy

— (Rindler et al. 2013)

Cardiac α2 (Tg) transgenic
over-expressor
(Cardiac-α2Tg)

— Attenuated
TAC-induced cardiac
hypertophy

— (Correll et al. 2014)

Cardiac α1 (Tg) transgenic
over-expressor
(Cardiac-α1Tg)

— TAC-induced cardiac
hypertophy

— (Correll et al. 2014)

Skeletal muscle α2 null
(α2SkM−/−)

— — ↓Contractile force;
↑sensitivity to fatigue

(Radzyukevich et al.
2009)

(Radzyukevich et al.
2013)

Global ouabain-resistant
α2 (α2R/R = α1R/R-α2R/R)

Normal basal BP;
no ACTH- or

ouabain-induced
hypertension;

no I.C.V. ouabain- or
↑[Na+]CSF-induced
hypertension;

↓BP in 3rd trimester of
pregnancy;

DOCA + salt induces
hypertension

No CTS-induced
cardiotonic effect;

attenuated
TAC-induced cardiac
hypertophy

↓Sensitivity to fatigue (Dostanic et al. 2003)
(Dostanic et al. 2005)
(Dostanic-Larson et al.

2005)
(Lorenz et al. 2008)
(Radzyukevich et al.

2009)
(Oshiro et al. 2010)
(Van Huysse et al.

2011)
(Despa et al. 2012)
(Lorenz et al. 2012)

Global SWAP (α1S/S-α2R/R

vs. WT = α1R/R-α2S/S)
— ↓Contractility;

↓sensitivity to
CTS-induced
cardiotonic effect
(vs.WT);

accelerated
TAC-induced cardiac
hypertrophy

— (Dostanic et al. 2004)
(Wansapura et al.

2009)
(Wansapura et al.

2011)
(Despa et al. 2012)

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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MBG because: (i) DigiBind and DigiFab, commercial fab
fragments used to immunoneutralize endogenous CTS
in vivo, bind ouabain with much higher affinity than MBG
(Pullen et al. 2004, 2008); (ii) MBG preferentially binds to
α1 rather than α2 subunits (Wansapura et al. 2009); and
(iii) several clinical and animal studies on the functions
of EO in CV physiology and pathophysiology are backed

by analytical (MS) measurements, e.g. Stella et al. (2008),
Jacobs et al. (2012) and Hamlyn et al. (2014).

Ouabain-triggered, Na+ transport-independent cell
signalling mediated by Na+ pumps. Prolonged treatment
with ouabain activates multiple intracellular signalling
pathways independent of effects on Na+ transport in
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Figure 3. Diagrams illustrating the acute and chronic effects of EO on Ca2+ homeostasis in arteries:
roles of α2 Na+ pumps (NKA), NCX1, SERCA2 and inositol trisphosphate receptors (IP3R)
Other Ca2+ transporters such as L-type voltage-gated Ca2+ channels and plasma membrane (PM) Ca2+ pumps
(PMCA) are omitted for simplicity. A, basal conditions. In arteries with tone, myocyte NCX1 operates primarily in
the Ca2+ entry mode because the membrane potential, Vm = −35 to −50 mV, is more positive than the NCX1
‘reversal potential’, ENa/Ca (Blaustein & Lederer, 1999); i.e. the driving force (Vm − ENa/Ca) is positive. B, acute
exposure of arteries to low dose ouabain or EO inhibits (a fraction of) arterial myocyte α2 Na+ pumps, raises
[Na+] in the sub-PM restricted cytosolic space between the PM and SR (shaded area; i.e. [Na+]SPM)∗, thereby
increasing ENa/Ca and the driving force for NCX1-mediated Ca2+ entry. The consequent rise in [Ca2+]CYT and Ca2+
sequestered in the SR augments Ca2+ signalling and contraction (the vasotonic effect), thereby increasing vascular
tone and BP. C, sustained exposure of arterial myocytes to low dose ouabain or EO, in addition to its acute effects,
activates an α2 Na+ pump-mediated protein kinase (PK) signalling cascade that leads to increased expression of
Ca2+ transporters including NCX1 and SERCA (green dotted line and ‘+’ sign). This promotes long-term arterial
Ca2+ gain and sequestration in the SR; via increased Ca2+ signalling, this leads to long-term elevation of BP. D,
comparison of approximate acute and chronic EO-induced relative changes in NCX1 and SERCA2 expression and
contraction, and anticipated [Na+]SPM

∗ and [Ca2+]CYT
∗. The α2 Na+ pump–NCX1 functional coupling acts as an

amplifier: small increases in [Na+]SPM translate to large increases in [Ca2+]CYT and contraction because of the 3
Na+:1 Ca2+ stoichiometry of NCX1 (Blaustein & Lederer, 1999). Furthermore, arterial resistance is inversely related
to the fourth power of the radius, r4 (Poiseuille’s law), so small decreases in the radii of resistance arteries will
greatly increase peripheral vascular resistance and BP. ∗Note: [Na+]SPM has not been measured in arterial myocytes,
nor have the acute and chronic effects of EO/ouabain on [Ca2+]CYT been compared; thus, the relative changes
shown in the figure are speculative. The anticipated [Na+]SPM changes are consistent with NCX1-mediated Ca2+
entry during chronic high EO (Iwamoto et al. 2004) and with the evidence that immuno-neutralization of EO
rapidly decreases BP in mice with chronic Ang II + salt-induced hypertension (Chen et al. 2015a).
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Figure 4. Diagrams illustrating the acute and chronic effects of EO on Ca2+ homeostasis in the heart:
roles of α2 Na+ pumps (NKA), NCX1, SERCA2 and ryanodine receptors (RyR)
A, basal conditions. In cardiac myocytes, during the major part of the cardiac cycle the NCX1 operates in the
Ca2+ exit mode because the diastolic Vm, perhaps about −65 to −75 mV, is more negative than ENa/Ca; i.e.
the driving force (Vm − ENa/Ca) is negative. B, acute exposure of the heart to low dose ouabain or EO inhibits
cardiac myocyte α2 Na+ pumps and raises [Na+]SPM. This increases ENa/Ca, but reduces the driving force for Ca2+
extrusion and elevates [Ca2+]SPM. Thus, the net effect, as in arteries, is enhanced Ca2+ signalling and contraction
(i.e. the cardiotonic effect). C and D, sustained exposure of cardiac myocytes to low dose ouabain or EO also, as
in arteries, activates an α2 Na+ pump-mediated protein kinase (PK) signalling cascade. In the heart, however, this
leads to increased NCX1 expression, but decreased SERCA expression (green and red dotted lines and ‘+’ and
‘−’, respectively). Thus, initially, the cytosolic and SR [Ca2+] are elevated, the cardiotonic effect prevails, increased
cardiac contraction is sustained (as in ‘B’), and the heart may hypertrophy from the increased workload. Eventually,
however, the sustained Na+ pump inhibition and [Na+]CYT/[Na+]SPM elevation will maintain an elevated diastolic
[Ca2+]CYT (C) despite the up-regulated NCX1. The decreased SERCA2 expression and leakage of Ca2+ from the SR
via RyR, however, reduces SR Ca2+ sequestration and [Ca2+]CYT transients (D); thus, cardiac contraction decreases,
and the heart fails. E, summary of the acute and chronic EO-induced approximate relative changes in NCX1 and
SERCA2 expression, [Na+]SPM (postulated; see Fig. 3 legend), [Ca2+]CYT and contraction. Note that the acute
vasotonic (Fig. 3B and D) and cardiotonic effects of EO are similar, whereas the chronic effects of EO in the heart
(C–E) differ greatly from those in arteries (Fig. 3C, D).
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rat heart and other tissues (Xie & Askari, 2002; Tian
& Xie, 2008; Li & Xie, 2009; Zulian et al. 2013). The
ouabain-activated signalling may be mediated by a
separate, ‘non-pumping pool’ of pumps (Liang et al.
2007), perhaps located in caveolae (Liu et al. 2003; Wang
et al. 2004; Kristensen et al. 2008). Most investigations
employed 1–100 μM ouabain, and emphasized the
participation of rodent α1 Na+ pumps, which are
relatively ouabain resistant (Liang et al. 2006; Tian et al.
2006). The effectiveness of submicromolar ouabain
in rat tissues (Liu et al. 2000; Pulina et al. 2010;
Zulian et al. 2013), however, implies mediation by
ouabain-sensitive α2 (or α3), and not resistant α1 Na+
pumps. Ouabain-induced cell signalling was not observed
in immortalized α1-deficient cells transfected with rat
α2 (Xie et al. 2015), but there is no evidence that α2 was
linked to the appropriate signalling molecules in those
cells, which do not normally express α2. This requires
direct comparison of low dose ouabain in native cells
from wild-type (WT) and α2R/R mice.

Ouabain-triggered intracellular signalling involves
protein kinase cascades such as C-Src kinase (C-Src),
ERK1/2, MAPK, phosphatidylinositide 3-kinase 1A,
protein kinase B (Akt) and NF-κB, and may be cell-type
specific (Xie & Askari, 2002; Li & Xie, 2009; Wu et al.
2013). C-Src can be activated by ouabain-induced ROS
generation and carbonylation of the pump (Yan et al.
2013).

Functions of α2 Na+ pumps in arterial physiology
and pathophysiology

Arterial myocyte α2 Na+ pumps, modulation of vaso-
constriction and blood pressure. Most, if not all, α2
pumps in vascular smooth muscle co-localize with NCX1
at the PM–jS/ER where, together, they help regulate
Ca2+ homeostasis and influence Ca2+ signalling and
vasoconstriction (Juhaszova & Blaustein, 1997a; Lynch
et al. 2008; Linde et al. 2012). Normally, most arteries
maintain myogenic or vasoconstrictor-induced (mainly
sympathetic nerve-mediated) ‘basal’ tone (Hill et al.
2001; Zhang et al. 2010a). Myocyte membrane potential
is in the order of −35 to −50 mV (Knot & Nelson,
1998), and the electrochemical driving force on NCX
(Blaustein & Lederer, 1999) favours net Ca2+ entry
(Iwamoto et al. 2004; Zhang et al. 2010b; Wang et al. 2015)
(Fig. 3A). Consequently, reduced α2 Na+ pump activity
(e.g. ouabain inhibition or reduced expression) should
raise the local, sub-PM Na+ concentration ([Na+]SPM) and
promote net Ca2+ gain via NCX, thereby enhancing Ca2+
stores and signalling, and increasing vascular tone and BP
(Fig. 3B) (Zhang et al. 2005, 2009; Chen et al. 2015b).

In fact, ouabain induces hypertension in most strains
of rats; the few negative reports (Ghadhanfar et al. 2014)
are consistent with the evidence that ouabain sensitivity

is genetically controlled (Aileru et al. 2001). Ouabain also
induces hypertension in WT, but not α2R/R mice (Dostanic
et al. 2005). Further, α2R/R mice are resistant to adreno-
corticotropic hormone (ACTH)-induced hypertension,
and ACTH hypertension is prevented by DigiBind and
by the NCX antagonist KB-R7942 (Dostanic-Larson et al.
2005; Lorenz et al. 2008). Mice in which CV α2 pumps
are selectively knocked out (CV-α2−/− mice) are also
resistant to ACTH-induced hypertension (Rindler et al.
2011). Because ACTH stimulates EO secretion (Laredo
et al. 1994), the implication is that EO-induced inhibition
of α2 raises [Na+]SPM and promotes NCX1-mediated net
gain of Ca2+ and increased arterial constriction.

Mice with genetically reduced α2 pump expression,
whether global α2 heterozygous null mutants, α2+/−
(Zhang et al. 2005), or smooth muscle (SM)-specific
dominant negative (DN) knockdown,α2SM-DN (Chen et al.
2015b), also have elevated BP. (Global α2−/− is embryonic
lethal; James et al. 1999.) The α2SM-DN mice have increased
BP sensitivity to subcutaneous (S.C.) Ang II and high
dietary salt (vs. WT; not tested in α2+/− mice), presumably
because there are fewer available α2 EO receptors and a
larger fraction are inhibited by the elevated EO (Blaustein
et al. 2015; Chen et al. 2015b). Conversely, mice with
SM-specific α2 overexpression (α2SM-Tg) and excess α2
EO binding sites, have low basal BP (Pritchard et al. 2007;
Chen et al. 2015b) and reduced BP sensitivity to S.C. Ang II
and high dietary salt (Chen et al. 2015b).

The fact that CV-α2−/− mice have normal basal BP
despite the nearly complete absence of arterial SM α2
Na+ pumps (Rindler et al. 2011) seems inconsistent with
these other reports. In CV-α2−/− mice, however, the
α2-NCX1 coupling at PM–S/ER junctions is disrupted
and NCX1-mediated Ca2+ transport is stabilized by over-
expression of α1 Na+ pumps (Rindler et al. 2011) which
maintain a constant, low global [Na+]CYT and are resistant
to ouabain/EO.

Digibind lowers BP in deoxycorticosterone acetate
(DOCA)–salt hypertensive rats (Krep et al. 1995), and
their arteries overexpress the Ca2+ transporter trans-
ient receptor potential channel-6 (TRPC6) (NCX1 and
SERCA2 were not tested) (Bae et al. 2007), suggesting that
EO is involved. However, α2R/R mice develop DOCA–salt
hypertension (Lorenz et al. 2012), implying that EO and
MBG are not involved. Whether this is a species or
technical difference is unknown.

Collectively, the above reports demonstrate that arterial
SM α2 Na+ pumps and EO, along with arterial NCX1,
modulate arterial tone and BP, and play an important role
in some forms of hypertension (Table 1 and Fig. 3).

Brain α2 Na+ pumps and hypertension. The role of
the central nervous system (CNS) in the pathogenesis
of essential hypertension and salt-sensitive (SS-)
hypertension is well documented, albeit incompletely
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understood. There is broad agreement that central
sympathetic drive is a major contributor to BP elevation
(Fisher & Fadel, 2010; Allen, 2011; Gabor & Leenen,
2012; Stocker et al. 2015). In addition, EO in the hypo-
thalamus (‘brain ouabain’) and brain α2 Na+ pumps play
a role in the pathogenesis of rodent SS-hypertension:
In Wistar rats (Leenen, 2010; Gabor & Leenen, 2012)
and WT mice, but not in α2R/R mice (Van Huysse et al.
2011), prolonged intracerebroventricular (I.C.V.) infusion
of Na+-rich cerebrospinal fluid (CSF) or very low dose
ouabain elevates BP. These effects are augmented in α2+/−
mice (Hou et al. 2009), presumably because there are
fewer available α2 EO receptors and a larger fraction are
inhibited. Further, I.C.V. infusion of anti-ouabain, but not
control, fab fragments prevents the Na+-rich CSF-induced
BP elevation (Huang et al. 2006; Van Huysse et al. 2011).
Clearly, α2 Na+ pumps, their CTS binding site, and the
endogenous ligand are all critical for SS-hypertension.

Salt-sensitive hypertension is also attenuated by I.C.V.
infusion of the epithelial Na+ channel (ENaC) inhibitor
benzamil (Gomez-Sanchez et al. 1996; Leenen, 2010;
Gabor & Leenen, 2012; Van Huysse et al. 2012; Osborn
et al. 2014). Brain ENaCs are expressed in neurones and
glia, and in the choroid plexus and ependyma (Amin et al.
2005; Leenen, 2010; Miller & Loewy, 2013; Miller et al.
2013; Oshima et al. 2013). Knockout of the ubiquitin ligase
Nedd4-2, a regulator of ENaC expression, enhances ENaC
activity in the kidney and brain, and Nedd4-2−/− mice
develop moderate SS-hypertension (Shi et al. 2008; Van
Huysse et al. 2012). When crossed with α2R/R mice, the
double mutants (Nedd4-2−/−-α2R/R mice) had a markedly
attenuated BP elevation, compared to Nedd4-2−/− mice,
in response to either Na+-rich CSF (I.C.V.) or high dietary
salt (Leenen et al. 2015). Thus, both arterial and brain
α2 Na+ pumps, and their endogenous ligand, contribute
to SS-hypertension. The locus of the relevant brain α2
pumps is unknown, but α2 is expressed in meningeal
capillary endothelia, in the choroid epithelial cell cyto-
plasm (Arakaki et al. 2013), and in neurones and glia
(McGrail et al. 1991; Moseley et al. 2003). The cytoplasmic
pumps may be cycled to the PM (Benziane & Chibalin,
2008) under conditions yet to be determined.

Ouabain-triggered, α2-mediated cell signalling and
hypertension. Prolonged exposure to nanomolar
ouabain increases expression of several arterial Ca2+
transporters, both in rats in vivo (i.e. during hypertension
induction), and in primary cultured human and rat
artery myocytes. Ca2+ signalling is then augmented
even after ouabain washout (Pulina et al. 2010; Linde
et al. 2012; Zulian et al. 2013). The same proteins,
most notably NCX1 and SERCA2, are also up-regulated
in several rodent hypertension models, including
Dahl-salt-sensitive, Milan, and spontaneously hyper-
tensive rats, and the Ang II, Ang II + salt and DOCA + salt

models (Blaustein et al. 2012, 2015; Pulina et al. 2013).
This is consistent with the idea that circulating EO
is elevated in these models and that it initiates these
changes in protein expression. Arterial NCX1 is also
up-regulated in human primary pulmonary hypertension
(Zhang et al. 2007). Prolonged ouabain/EO–α2 inter-
action triggers arterial myocyte C-Src phosphorylation,
reduces ERK1/2 phosphorylation, and leads to the Ca2+
transporter reprogramming (Fig. 3C) (Zulian et al.
2013). Importantly, both the acute and chronic actions
of EO and ouabain augment arterial Ca2+ entry and
signalling. Both should therefore foster vasoconstriction
and BP elevation in essential hypertension, primary
aldosteronism, and other forms of hypertension in which
plasma EO is elevated (Fig. 3B–D) (Blaustein & Hamlyn,
2010; Blaustein et al. 2012).

CTS–α2 Na+ pump interactions are more complex than
anticipated. All CTSs inhibit α2 (and α3) Na+ pumps,
augment Ca2+ signalling (Song et al. 2013) and have
similar acute vasotonic effects (Song et al. 2014). In
contrast, ouabain-like CTSs (e.g. Strophanthus steroids),
but not digoxin-like CTSs (e.g. Digitalis steroids), also
activate downstream signalling cascades that modify
protein expression (Zulian et al. 2013). These chronic
ouabain-induced effects are blocked by digoxin (Zulian
et al. 2013), which is a ouabain antagonist (Huang et al.
1999; Manunta et al. 2000; Song et al. 2014). This
suggests that novel digoxin analogues might block the
actions of ouabain without inhibiting Na+ transport; such
agents might be therapeutically useful. Indeed, one such
agent, rostafuroxin, was synthesized from digoxigenin
(Quadri et al. 1997). It blocks the actions of ouabain at
concentrations that do not inhibit the Na+,K+-ATPase
(Ferrari et al. 1998; Song et al. 2014), and lowers BP in
ouabain hypertensive rats and Milan hypertensive rats
(Ferrari et al. 1998, 1999). Unfortunately, rostafuroxin’s
affinity for the vascular myocyte Na+ pump may be too
low to be clinically useful (Song et al. 2014).

Functional linkage of arterial α2 Na+ pumps and NCX1.
The above findings emphasize the functional (and
structural) linkage between α2 and NCX1 in arterial myo-
cytes. This cross-talk probably occurs via alterations in
[Na+]SPM, which may also be influenced by other adjacent
channels and transporters such as TRPC6 (Fig 1D) (Arnon
et al. 2000a; Poburko et al. 2007, 2008).

Genetic engineering studies illustrate a crucial
difference between primary alteration of α2 expression
and of NCX1 (and SERCA2) expression. Reduction of
α2 by heterozygous null mutation elevates cell Ca2+
and induces hypertension and secondary reduction of
NCX1 and SERCA2 expression; the latter is, presumably,
a compensatory effect (Zhang et al. 2005; Chen et al.
2015b). Conversely, transgenic overexpression of SM-α2
lowers BP and causes a secondary increase in NCX1 and
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SERCA2 expression, probably to compensate, partially,
for the BP reduction which may be due to a fall in
[Ca2+]CYT (Pritchard et al. 2007; Chen et al. 2015b).
In contrast, primary SM-NCX1 overexpression increases
[Ca2+]CYT and elevates BP (Iwamoto et al. 2004), whilst
SM-specific knockout of NCX1 lowers [Ca2+]CYT and BP
(Zhang et al. 2010b; Wang et al. 2015). We infer that the
EO-induced, α2-mediated increase in arterial NCX1 and
SERCA2 expression, observed in many types of hyper-
tension (Blaustein & Hamlyn, 2010; Blaustein et al. 2012;
Pulina et al. 2013), contributes directly to the elevation of
BP (Chen et al. 2015b).

How the brain talks to the arteries. In many forms
of hypertension, including salt-sensitive hypertension,
a central angiotensinergic pathway (‘brain RAAS’) is
activated (Allen, 2011; Gabor & Leenen, 2012; Takahashi,
2012). Circulating Ang II, which is elevated in some
forms of hypertension, also stimulates the brain RAAS via
circumventricular organs such as the subfornical organ
(SFO) (Huang et al. 2010; Biancardi et al. 2014; Ufnal
& Skrzypecki, 2014). This increases CNS driven arterial
sympathetic nerve activity (SNA) and α-adrenergic
arterial constriction (Fink & Bruner, 1985; Osborn et al.
2007, 2011; Gabor & Leenen, 2012; Leenen, 2014), and
contributes to BP elevation (Wang et al. 2013). Persistent
activation of this central angiotensinergic mechanism
appears to depend upon a novel neurohumoral pathway
that is triggered by high dietary salt/Na+-rich CSF (Huang
et al. 2006), as well as Ang II (Huang et al. 2010). The
hypothalamic component of the neurohumoral pathway
involves local aldosterone production, mineralocorticoid
receptors, ENaCs, local EO release and α2 Na+ pumps
(Huang & Leenen, 1999; Van Huysse & Hou, 2004; Leenen,
2010; Gabor & Leenen, 2012; Van Huysse et al. 2012;
Takahashi, 2012). This ‘brain EO’ enhances hypothalamic
Ang type 1 receptor (AT1R) signalling (Huang et al. 2011).

Sustained neurohumoral pathway activation raises
circulating EO, which increases arterial expression of
NCX1 and SERCA2 (Hamlyn et al. 2014); this should
enhance arterial responses to sympathetic drive. Elevation
of plasma EO and up-regulation of arterial Ca2+ trans-
porters, as well as the elevation of BP, are prevented
by directly blocking the central neurohumoral pathway
(Hamlyn et al. 2014). This implies that the increased
SNA and the neurohumoral pathway that enhances
arterial Ca2+ signalling operate jointly to raise BP
chronically when the brain angiotensinergic mechanisms
are activated.

α2 Na+ pumps and cardiac function

α2 Na+ pumps mediate the cardiotonic response to
CTS. The positive inotropic effect of CTS on the heart
(Fig. 4A, B and E), analogous to the previously mentioned

vasotonic effect, requires both ouabain-sensitive Na+
pumps (see Table 1) and NCX1 (Reuter et al. 2002;
Dostanic et al. 2003, 2004; Altamirano et al. 2006).
Inhibition of cardiac Na+ pumps by CTS, the presumed
consequent rise in [Na+]SPM (see Swift et al. 2010), and the
Na+-dependent, NCX-mediated net gain of intracellular
Ca2+ and enhanced Ca2+ signalling (Swift et al. 2007,
2010) are widely accepted as the basis of the cardiotonic
response. Both α1 and α2 Na+ pumps are located in rodent
cardiac muscle t-tubules at or near PM–SR junctions
(Mohler et al. 2003; Dostanic et al. 2004; Berry et al. 2007),
but which isoform mediates this cardiotonic response?
To obtain a definitive answer, engineered ‘SWAP’ mice
(with ouabain-sensitive α1 and resistant α2 pumps,
α1S/S-α2R/R) and WT mice (with ouabain-resistant α1 and
sensitive α2 pumps, α1R/R-α2S/S) were compared. SWAP
mice exhibited a positive inotropic response to ouabain
that was mediated by the mutated, ouabain-sensitive α1
pumps (Dostanic et al. 2004). Nevertheless, comparable
inhibition (�25%) of total Na+ pump activity by low
dose ouabain in WT and SWAP mice demonstrates that
the α2 isoform preferentially modulates SR Ca2+ release
and Ca2+ transients in cardiomyocytes (Fig. 4A and B)
(Despa et al. 2012). Swift and colleagues came to the same
conclusion by showing that cardiac α2 pumps and NCX1
are functionally coupled via [Na+]SPM (Swift et al. 2007,
2010). Importantly, despite this compelling evidence, low
dose ouabain-induced elevation of [Na+]SPM (Fig. 4B) has
not yet been measured (Swift et al. 2010). Furthermore,
these observations imply that Na+ diffusion between
the sub-PM microdomains and bulk cytosol is restricted
(Wendt-Gallitelli et al. 1993; Arnon et al. 2000b; Silverman
et al. 2003; Poburko et al. 2007; Swift et al. 2010; Aronsen
et al. 2013), but definitive data are still lacking.

Cardiac hypertrophy and failure induced by pressure
overload: role of α2 Na+ pumps. Mouse models with
genetically engineered α2 Na+ pumps (Table 1) or altered
pump regulation elucidate the link between Na+ pump
expression/activity and cardiac function, and provide new
clues to the pathogenesis of heart hypertrophy (HH) and
HF. Pressure overload induced by trans-aortic constriction
(TAC) is a common model for inducing HH and HF.
TAC induces progressive HH and left ventricular (LV)
dysfunction in WT mice that depends on the extent and
duration of the TAC (Liao et al. 2002). Cardio-specific
knockout of α2 delays the development of TAC-induced
cardiac dysfunction, i.e. increased end-diastolic and
systolic volumes, and decreased ejection fraction (EF)
(Rindler et al. 2013). However, cardio-specific α2, but
not α1, overexpression also attenuates TAC-induced HH
(Correll et al. 2014). How can we reconcile these contra-
dictory results?

First, consider the effects of TAC in mice with altered
Na+ pump ouabain sensitivity. SWAP (α1S/S-α2R/R) mice
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are more susceptible to HH following TAC than are
WT (α1R/R-α2S/S) or α1R/R-α2R/R mice, even though
the latter two lines have higher LV systolic pressures
(Wansapura et al. 2011). Heart weight was greatly
increased in SWAP mice, but only modestly in WT
and α1R/R-α2R/R mice, after 4 weeks of TAC. SWAP
mice also had substantial LV enlargement, and a
reduced EF, indicating cardiac decompensation (HF),
i.e. the pathophysiological processes were accelerated.
Remarkably, banded α1R/R-α2R/R mice had no LV
enlargement and no echocardiographic evidence of
cardiac dysfunction (vs. sham) after 4 weeks of TAC
(Wansapura et al. 2011). Clearly, TAC-induced HH and
HF depend, in part, upon ouabain sensitivity. Further,
the cardiac changes are attenuated by anti-ouabain fab
fragments (Wansapura et al. 2011). Thus, Na+ pumps and
their endogenous ligand contribute to the pathogenesis of
HH and HF. More rapid TAC-induced cardiac dysfunction
is therefore anticipated in SWAP mice because low CTS
concentrations inhibit only cardiac α2 pumps in WT
mice, and ouabain-sensitive α1 Na+ pumps in SWAP
mice, and the α1:α2 ratio is �4:1 in both strains
(James et al. 1999; Berry et al. 2007; Despa & Bers,
2007). Thus, at submaximal EO, more pumps will be
inhibited in SWAP than in WT mice. In other words,
the TAC-induced cardiac dysfunction correlates with
the proportion of Na+ pumps that is EO sensitive.
These considerations also explain why both cardiac-α2
knockout (Rindler et al. 2013) and overexpression
(Correll et al. 2014) delay/attenuate TAC-induced cardiac
dysfunction. Neither α2 nor its ouabain receptor is
expressed in knockouts. In over-expressors, more ‘reserve’
α2 pumps/EO receptors are available to keep [Na+]SPM

low when a fraction is blocked by EO.
The pressure overload data suggest that EO, via its

cardiotonic effect, contributes to HH with preserved, or
even enhanced, cardiac performance, e.g. increased EF
(Wansapura et al. 2011). Human and rodent HF data infer,
however, that the impaired contractility and reduced EF
also are linked to high plasma EO (Gottlieb et al. 1992;
Pitzalis et al. 2006; Stella et al. 2008; Blaustein et al. 2015).
How can this be reconciled?

The fact that prolonged ouabain treatment activates
protein kinase cascades that modulate cardiac protein
expression (Tian & Xie, 2008; Li & Xie, 2009) suggests
an explanation. In cultured cardiomyocytes, 30–100 μM

ouabain (24–48 h) increases NCX1 expression (Vemuri
et al. 1989; Müller-Ehmsen et al. 2003); indeed, 50 nM

ouabain (72 h) is sufficient, but 100 nM digoxin is
ineffective (Blaustein et al. 2015). Increased cardiac NCX1
and decreased SERCA2 expression, which are common
findings in human HF and animal models (Studer et al.
1994; O’Rourke et al. 1999), contribute to the reduced SR
Ca2+ stores and attenuated Ca2+ signals (Bers & Despa,
2006; Lehnart et al. 2009). Therefore, while its acute effect

is cardiotonic, chronically elevated ouabain/EO and the
enhanced NCX1 and reduced SERCA2 expression should
accelerate Ca2+ extrusion, and promote [Ca2+]SR decline
and progression to hypocontractility and HF (Fig. 4B and
C) (Rodriguez et al. 2014). Indeed, partial NCX inhibition
restores Ca2+ signalling in myocytes from failing hearts
(Hobai et al. 2004). Importantly, these conclusions need
to be tested in other HH and HF models, e.g. coronary
artery ligation/myocardial infarction (MI), in α2R/R and
SWAP mice.

Regulation of α2 pumps in HH and HF. In some forms of
HF, expression of α1, α2 and PLM, and Na+ pump activity,
are all reduced, and [Na+]CYT is elevated, in left ventricular
myocytes (Bossuyt et al. 2005; Pavlovic et al. 2013a),
although PLM transcription is up-regulated (Gronich
et al. 2010). Also, in HF, oxidative stress (Burgoyne et al.
2012) inhibits cardiomyocyte Na+ pumps by inducing
β1 subunit glutathionylation; this can be reversed by
phosphorylated PLM (Bibert et al. 2011).

The link between α2 activity and cardiac
pathophysiology is affirmed by two models of
PLM dysregulation. In PLM knockout mice, total
Na+,K+-ATPase activity and α2 Na+ pump expression are
reduced by 50–60% (Jia et al. 2005). This should sustain
a high [Na+]SPM and a large cardiotonic effect (Golovina
et al. 2003) to account for the hypertrophic hearts and
increased LV EF (Jia et al. 2005).

In the second model, mice with non-phosphorylatable
PLM (PLM35A) have normal cardiac function under
basal conditions. Following TAC, however, PLM35A mice
exhibit accelerated cardiac hypertrophy and dysfunction
with increased NCX and decreased SERCA2a expression
(Boguslavskyi et al. 2014). The inability to phosphorylate
PLM and augment pump-mediated Na+ extrusion and,
thus, NCX-mediated Ca2+ extrusion, when the heart is
stressed (e.g. by TAC) enhances Ca2+ dysregulation and
accelerates the cardiomyopathy. These models reinforce
the view that cardiac α2 Na+ pumps and NCX1 conjointly
contribute to the pathogenesis of HH and HF. An
important caveat, however, is that in the rat heart in
HF, expression of α2 declines and α3, the fetal isoform,
increases (Semb et al. 1998; Verdonck et al. 2003), but the
significance of this isoform switch and the localization of
α3 are unknown.

Myocardial [Na+]CYT and NCX1 in HF. Elevated myo-
cardial [Na+]CYT (Pogwizd et al. 2003; Murphy &
Eisner, 2009; Bay et al. 2013; Pavlovic et al. 2013a)
fosters the NCX-mediated Ca2+ dysregulation in HF
(Bers & Despa, 2006; Despa & Bers, 2013; Shattock
et al. 2015). Multiple mechanisms may contribute to
the high [Na+]CYT, including: (i) reduced α2 pump
expression; (ii) Na+ pump dysregulation due to reduced
PLM expression (Bossuyt et al. 2005); (iii) increased

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society



J Physiol 594.21 α2 Na+ pumps in cardiovascular health and disease 6091

late Na+ current due to altered CaMKII regulation of
cardiac Na+ channels (Grandi & Herren, 2014); (iv) direct
inhibition of α2 by the elevated plasma EO (Gottlieb
et al. 1992; Pitzalis et al. 2006; Stella et al. 2008;
Hamlyn & Manunta, 2015); (v) increased Na+ entry via
Na+/H+ exchange (Baartscheer et al. 2003; Karmazyn et al.
2008); (vi) dysregulation of the Ca2+-dependent, nitric
oxide (NO)-mediated mechanism that stimulates Na+
pumps by phosphorylating PLM (Pavlovic et al. 2013b);
and (vii) increased oxidative stress and ROS generation
(Munzel et al. 2015; Zuo et al. 2015) that not only
reduces NO availability and PLM phosphorylation, but
also increases β1 subunit glutathionylation (Figtree et al.
2009); both mechanisms depress pump-mediated cation
transport.

Elevated [Na+]CYT promotes Ca2+ export by the
mitochondrial Na+/Ca2+ exchanger, NCLX, which lowers
intra-mitochondrial [Ca2+] and increases oxidation of
mitochondrial NADH (Murphy & Eisner, 2009; Liu et al.
2010; De Marchi et al. 2014; Nita et al. 2015). Thus,
elevated [Na+]CYT and/or [Ca2+]CYT (which should limit
NCLX-mediated Ca2+ export) can not only enhance Ca2+
signalling, but also increase oxidative stress and ROS
production (Li et al. 2014) and further depress Na+ pump
function (Figtree et al. 2009).

The preceding two paragraphs focus on ‘global’
[Na+]CYT. However, [Na+]SPM, which apparently
modulates cardiac [Ca2+]CYT transients and excitation–
contraction coupling, may be independently affected (Su
et al. 2001; Verdonck et al. 2004; Swift et al. 2010; Aronsen
et al. 2013). Further, [Na+]SPM may also be modified
by Na+ channels associated with these microdomains
(Verdonck et al. 2004; Aronsen et al. 2013).

Genetically induced cardiac NCX1 overexpression in
mice, itself, accelerates HH and HF induced by stresses
(TAC, intense exercise, or pregnancy) known to activate
the RAAS (Roos et al. 2007). The NCX1 over-abundance
and enhanced Ca2+ removal are manifested by reduced
SR Ca2+, Ca2+ transients, and excitation–contraction
coupling gain (Reuter et al. 2004; Ottolia et al. 2013), also
observed in myocytes from failing human and rat hearts
(Gomez et al. 1997; Piacentino et al. 2003). In contrast,
genetically reduced (50%) cardiac NCX1 expression
confers tolerance to pressure overload and attenuates
HF development, perhaps by reducing Ca2+ overload
(Takimoto et al. 2002; Jordan et al. 2010). Nevertheless,
�20% of WT NCX1 is essential for cardiac function:
nearly complete knockout causes HH and accelerates
stress-induced progression to HF (Jordan et al. 2010),
presumably because of Ca2+ overload due to impaired
Ca2+ clearance. NCX1 apparently also plays a role in some
other HH and HF models. For example, cardiac-specific
NCX1 knockout (by 80–90%) mitigates chronic inter-
mittent hypoxia-induced LV hypertrophy and contractile
dysfunction in mice (Chen et al. 2010).

Cardiomyocyte Ca2+ dysregulation in HF. In HF, cardiac
Ca2+ dysregulation is usually manifested by elevated
diastolic [Ca2+]CYT but reduced SR Ca2+ content
(Fig. 4C–E) (Lehnart et al. 2009; Reuter & Schwinger,
2012). The latter, which may be the result of reduced
SERCA2 expression and activity (Lehnart et al. 2009)
and increased Ca2+ leakage through ryanodine receptors
(RyRs) (Marx & Marks, 2013), probably explains the
attenuated peak systolic [Ca2+]CYT transients and cardiac
hypocontractility (Fig. 4D and E). The elevated diastolic
(quasi-steady state) [Ca2+]CYT can be attributed largely
to the previously mentioned high [Na+]CYT and reduced
driving force for Ca2+ extrusion via NCX, although
reduced SR Ca2+ uptake and increased RyR leak may
also contribute. The high [Na+]CYT and thus [Ca2+]CYT

may help explain the impaired relaxation and increased
stiffness of cardiac muscle in HF (Kass et al. 2004; Louch
et al. 2010; Li et al. 2012).

Central and peripheral mechanisms in the progression
from hypertrophy to failure. In HH and HF, as in hyper-
tension, central angiotensinergic mechanisms are usually
stimulated, and sympathetic drive is increased (Yu et al.
2008; Westcott et al. 2009; Lymperopoulos et al. 2013;
Zucker et al. 2014). Blockers of these mechanisms are
therefore used to treat both hypertension and HF (Leenen
et al. 2012; Krum & Driscoll, 2013; James et al. 2014). The
angiotensinergic mechanisms activate the neurohumoral
pathway that elevates circulating EO (Hamlyn et al. 2014):
e.g. both MI and S.C. Ang II + high dietary salt raise
plasma EO and increase both cardiac and arterial NCX1
expression (Blaustein et al. 2015). Because arterial NCX1
operates primarily in the Ca2+ entry mode, both acute and
chronic high EO should enhance vasoconstriction and
foster hypertension, but why do high EO and increased
NCX1 also lead to cardiac hypocontractility and failure?
The main cardiac Ca2+ extrusion mechanism, NCX1,
exports Ca2+ during most of the cardiac cycle because,
during diastole, the membrane potential is about −65 to
−75 mV (Eisner et al. 2013; Eisner, 2014). Acutely elevated
plasma EO therefore induces ‘classic’ positive inotropy,
but markedly increased cardiac NCX1 expression, due to
chronically elevated EO, promotes Ca2+ extrusion, reduces
[Ca2+]CYT and causes negative inotropy (Fig. 4B–D).

Comparison of WT, α2R/R and SWAP mouse data
(Wansapura et al. 2011) lead us to postulate that TAC
activates the brain RAAS–neurohumoral pathway, raises
plasma EO, and in WT, and even more so in SWAP mice
(α2R/R mice are EO-resistant), induces a positive inotropic
response. This is initially amplified as NCX1 expression
increases. The consequent, sustained hypercontractility,
as well as other, possibly EO-triggered, changes in
protein programming contribute to hypertrophy and, at
least initially, to enhanced cardiac performance. With
progressive increase in NCX1 and decrease in SERCA2
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expression, however, the NCX1-mediated Ca2+ extrusion
mode starts to prevail, and [Ca2+]CYT falls, thereby
reducing cardiac performance and leading to HF; i.e.
the cardiac changes in HH and HF are a continuum.
Indeed, HF with preserved EF (Kamimura et al. 2012;
Gladden et al. 2014; Sharma & Kass, 2014; Zuo et al.
2015) might be an intermediate stage in this continuum.
Further, following MI, even the RAAS-stimulated initial
tendency to induce a positive inotropic response may
be circumvented rapidly if there is much damaged
and unresponsive myocardium. The altered NCX1 and
SERCA2 expression may then dominate early on, leading
rapidly to a negative ionotropic response and HF
(Fig. 4D).

Exercise intolerance in HF: role of skeletal muscle α2
Na+ pumps in fatigue resistance. Skeletal muscle (SkM)
α2 plays a negligible role in quiescent muscle, but is
activated by the rise in t-tubule [K+] and [Na+]CYT during
exercise, and is needed to attenuate fatigue (DiFranco
et al. 2015; Manoharan et al. 2015). As in the heart,
phosphorylation of SkM PLM enhances Na+ pump
activity, but PLM knockout mice show that PLM is not
needed for acute exercise-induced SkM α2 activation
(Manoharan et al. 2015). Nevertheless, intense exercise
increases PLM phosphorylation, and α2 pump expression
and activity in human type II (fast twitch, fatigable) SkM
fibres, which express more α2 than do type I (slow twitch,
fatigue-resistant) fibres (Kristensen et al. 2008; Thomassen
et al. 2010, 2013; Benziane et al. 2011). Reduced α2
Na+ pump expression in ageing humans may decrease
muscle strength and increase fatigability (Chibalin et al.
2012).

Mice with targeted knockout of SkM α2 pumps,
α2SkM−/−, fatigue faster than WT mice on a treadmill
(Radzyukevich et al. 2013). Also, extensor digitorum
longus (EDL) muscles isolated from SkM-α2−/− mice
have reduced twitch and tetanic force compared to WT
EDL. Selective block of α2 by ouabain in WT EDL mimics
the results in α2SkM−/− EDL (Radzyukevich et al. 2013).
Resistance to fatigue apparently is due in part to the rapid
increase in α2-mediated cation transport triggered by the
rise in t-tubule [K+] during stimulation (DiFranco et al.
2015).

α2 ouabain binding sites and EO play a role in SkM:
α2R/R mice exhibit fewer exercise failures on a treadmill
than do WT mice (Radzyukevich et al. 2009). Also, 86Rb
(K+ surrogate) uptake is reduced following high frequency
contractile activation (vs. rest) in EDL from WT mice.
In contrast, following muscle stimulation, 86Rb uptake
is increased in EDL from α2R/R mice and in EDL from
WT mice pre-infused with DigiBind prior to euthanasia
(Radzyukevich et al. 2009).

Clearly, susceptibility to fatigue is inversely related to
skeletal muscle α2 Na+ pump expression/activity and is

modulated by EO, but why? A clue is that knockout of the
predominant NCX isoform in SkM, NCX3, also reduces
endurance and increases fatigue, although it increases both
twitch and tetanus tension (Sokolow et al. 2004). We
postulate that reduced NCX3-mediated Ca2+ extrusion,
due to decreased NCX3 expression or diminished Na+
extrusion by α2 pumps when exercise elevates t-tubule
[K+], enhances fatigability.

The above findings imply that the high EO levels
observed in hypertension and HF contribute to the
reduced SkM α2 Na+ pump activity (contrast Barr et al.
2005), increased fatigability (Carlsen et al. 1996; Helwig
et al. 2003; Okita et al. 2013; Tzanis et al. 2014) and
reduced hand grip strength (Mainous et al. 2015). Exercise
may enhance SkM α2 Na+ pump activity by increasing
α2 expression or translocation to the sarcolemma, or
PLM phosphorylation, and thereby reduce fatigability
and improve muscle strength (Thomassen et al. 2010;
Rasmussen et al. 2011).

Summary and conclusions

Mice with genetically engineered α2 Na+ pumps, PLM and
NCX1 provide novel insight into the central role of α2 and
its endogenous ligand, EO, in regulating Ca2+ homeostasis
and the function of cardiac, skeletal and vascular muscles.
The juxtaposition of these findings enables us to recognize
the striking similarities and key differences between the
mechanisms involved in the pathogenesis of hypertension,
HH and HF. In all three situations, brain angiotensinergic
mechanisms are activated; this triggers the CNS rapid
sympathetic and slower neurohumoral (EO-mediated)
pathways. Acutely increased nerve frequency is often
attenuated by self-tuning (Greengard, 2001; Turrigiano,
2008), but EO may potentiate peripheral synaptic trans-
mission and sympathetic nerve responses (Aileru et al.
2001). Also, the chronic, protein kinase cascade-mediated
effects of elevated plasma EO on arteries and heart may
amplify the cardiac and vascular responses to sympathetic
drive. Initially, the cardio- and vasotonic actions of EO
enhance Ca2+ signalling and contractility and thus elevate
BP and heighten cardiac function, and lead to hypertrophy.
Slow, EO-mediated up-regulation of NCX1 (and SERCA2)
in arteries favours Ca2+ entry and further fosters vaso-
constriction. In the heart, however, EO-mediated NCX1
up-regulation (and SERCA2 decline) eventually tips the
balance toward Ca2+ exit, hypocontractility and HF. It is
worth emphasizing that, when the brain RAAS is activated
in hypertension, the elevated plasma EO is expected
to influence cardiac function simultaneously. Likewise,
when an MI activates the brain RAAS, simultaneously
altered arterial function is expected (Blaustein et al. 2015).
Thus, elevated plasma EO is likely to contribute to the
increased peripheral vascular resistance often observed in
HF post-MI (Zelis et al. 1968; Ledoux et al. 2003).
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Despite this compelling evidence for the key roles of α2
and EO, numerous challenges remain. First of all, details
of the CNS pathways are poorly understood. For example,
brainα2 pumps are important in SS-hypertension (Leenen
et al. 2015), but the cellular location of the relevant pumps
is unknown. Also, the proposed role of brain α2 in HH
and HF must be verified. Further, while EO is synthesized
in the brain, and is a critical link in both hypertension and
HF (Leenen et al. 1995; Huang et al. 2010), precisely where
in the CNS pathways it participates is unresolved.

Circulating EO comes from the adrenals (Hamlyn et al.
1991; Boulanger et al. 1993; Manunta et al. 2010), but
what is the biosynthetic pathway? Also, how does brain
RAAS regulate plasma EO? Is it via increased sympathetic
traffic to the adrenals (Shah et al. 1998), or some other
mechanism? And, what role, if any, does ACTH play
(Laredo et al. 1994)?

We suggest that α2 pumps mediate both the acute
and chronic effects of nanomolar ouabain/EO in rodents
(Dostanic et al. 2005; Despa et al. 2012; Zulian et al.
2013), but others suggest that α1 pumps are responsible
for the chronic effects (Liu & Xie, 2010; Xie et al. 2015).
Comparison of the acute and chronic effects of nanomolar
ouabain on WT and α2R/R cardiac and arterial myocytes
could resolve this controversy. Further, since human α1
is ouabain sensitive, do human α2 pumps play the same
key role as in rodents? A clue is that human, like rodent,
arterial α2 is localized in PM microdomains at PM–S/ER
junctions (Linde et al. 2012).

We postulate that the [Na+]SPM at PM–S/ER junctions
is a crucial factor in the EO-dependent modulation
of Ca2+ signalling and contractility in the arteries
and heart (Figs 3 and 4). More precise information
about the structural organization of the junctions and
their resident transporters, e.g. using super-resolution
imaging, should improve our understanding of ion
regulation in these regions. Critically, direct measurement
of the effects of nanomolar ouabain on [Na+]SPM with
Na+-sensitive fluorochromes and, e.g., ‘total internal
reflection fluorescence’ (TIRF) imaging, is needed to
validate our inferences.

The effect of sustained ouabain/EO exposure on
signalling cascades is established, but the precise time
course of these responses, and all of the contributors
(e.g. the complete range of affected Ca2+ transporter and
signalling molecules), are unknown. For example, does
ouabain/EO, per se, trigger down-regulation of cardiac
SERCA2 expression? Measurement of ouabain/EO- and
disease-dependent gene activation (quantitative PCR
analysis of mRNA) or changes in protein expression
(MS) would provide important new clues to underlying
pathogenic mechanisms.

Finally, a fundamental implication of the work reviewed
above is that novel agents that interfere with the
biosynthesis, release and/or peripheral actions of EO

should be therapeutically beneficial in hypertension, HH
and HF. Such agents might also be useful in attenuating
the renal damage, often linked to these CV diseases, that
has been attributed to elevated circulating EO (Bignami
et al. 2013; Ferrandi et al. 2014; Hamlyn & Manunta, 2015).
Indeed, application of these agents would provide a critical
test of many of the ideas summarized here.
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