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Reply from Pei-Chi Yang,
Jonathan D. Moreno, Mao-Tsuen
Jeng, Xander H. T. Wehrens,
Sergei Noskov and Colleen E.
Clancy

We appreciate Williams et al. (2016) taking
the time to comment on our recently
published study (Yang et al. 2016). In
their letter, the authors question the
‘usefulness’ of the computational modelling
and simulation approaches that we used in
part because as they state, ‘The blocking
parameters used in Yang et al. (2016) are
based on values reported in Hilliard et al.
(2010) and subsequent publications from
the same group.’

This statement does not reflect the careful
process that we actually used in building
our modelling approaches, where we rather
considered the full range of experimentally
measured IC50 values for flecainide inter-
action that have been reported in multiple
studies. In addition to the assumption of
IC50 = 0 µM (i.e. no interaction with
RyR) as reported by the Williams group
(Bannister et al. 2015), we reported the
following in our paper (Yang et al. 2016):
‘Isoproterenol-stimulated Ca2+ waves in
CASQ2 knockout (KO) CASQ2(−/−) mice
were inhibited by flecainide with an IC50 of
2.0 ± 0.2 µM (Hwang et al. 2011), while
other experimental preparations measured
an IC50 range from 2 to 17 µM (Brunton
et al. 2010; Hilliard et al. 2010; Hwang et al.
2011; Mehra et al. 2014) . . . We also pre-
dicted cases for variable flecainide IC50 = 3,
4, and 5 µM shown in Fig. 1.’

The model simulations led to the pre-
dictions that IC50 values above 5 µM

are too low to show therapeutic benefit
to normalize the catecholaminergic poly-
morphic ventricular tachycardia (CPVT)
phenotype. An alternative interpretation
is that the concentration of flecainide
near the receptor is considerably higher
than in the bulk water compartments, a
possibility supported by our physics-based
approach (Fig. 5 in Yang et al. 2016)
that shows accumulation of flecainide
on the membrane surface and very
favourable conditions for neutral flecainide
in the hydrophobic core of the membrane.
Detailed investigations into membrane
partitioning of drugs are ongoing in our
group.

The point of the simulations in our study
was to make predictions about the necessary
and sufficient targets of flecainide and
the range of IC50 that would allow for
normalization of the CPVT phenotype since
the experimental literature has shown such
variety in reported values. When we started
the investigation reported in Yang et al.
(2016), we had no preconceived intent or
notion about the results. The predictions
are the resulting outputs of the model, and
suggest that Na+ channel block alone is not
sufficient to prevent the CPVT phenotype.
The critical point here is that the disparity
in sensitivity of the dose–response for
flecainide interaction with the RyR depends
on the experimental approach being used.
This issue has been the subject of discussion
by others (Steele et al. 2013; Sikkel et al.
2013b; Smith & MacQuaide, 2015).

Williams et al. describe their recent work
in their letter. It is important to mention,
however, the numerous other studies that
report alternative data and explanations.
Some in native myocytes show very clear
effects of flecainide on spontaneous Ca2+

release (i.e. Ca2+ waves) under experimental
conditions where cytosolic [Ca2+] and
[Na+] are clamped, demonstrating a direct
action of flecainide on RyR2-mediated
sarcoplasmic reticulum (SR) Ca2+ release
(Savio-Galimberti & Knollmann, 2015;
Hilliard et al., 2010; Galimberti &
Knollmann, 2011). Moreover, in native
myocytes, flecainide does not inhibit
physiological Ca2+ current-induced SR
Ca2+ release but only inhibits spontaneous
SR Ca2+ release, which occurs in the setting
of diastolic [Ca2+] (i.e. 100 nM) (Hilliard
et al. 2010). Such conditions are difficult to
model using RyR2 channels incorporated
into artificial bilayers and hence were never
tested by the group of Williams et al. Other
studies demonstrate a clear benefit of
flecainide in the clinical CPVT setting, but
not in experiments with other Na+ channel
blockers (Watanabe et al. 2009; Hwang
et al. 2011; van der Werf et al. 2011).

Williams et al. performed single-channel
experiments in an experimental model
comprising phosphatidylethanolamine
(PE) bilayers to show that flecainide
does not block ion current by binding
to a site within the cytosolic domain
of the pore-forming domain of RyR2.
However, other data and the physics-based
computational approaches in our paper

suggest that lipophilic drug access may be
critical and is a vital component of drug
interactions with membrane protein targets
such as RyR2. The potential of mean force
calculations we performed in our study
suggest that flecainide concentration in the
lipid phase could be substantially greater
than what would be expected in the bilayer
studies. Carvedilol is another example of
a very hydrophobic/lipophilic drug that
interacts with RyR2 without blocking
unitary conductance in single-channel
experiments. Liposome partitioning
experiments suggest that up to 90%
of carvedilol molecules are lipid-phase
localized (Cheng et al. 1996). The lipophilic
access mechanism would imply different
dose–response ratios and use-dependent
features of drug interaction with the RyR2
target in contrast to a single-site drug block
mechanism endorsed by Williams et al. It is
important to point out that lipophilic access
mechanisms have been shown recently for
various membrane targets found in the
heart (Lees-Miller et al. 2015; Boiteux et al.
2014) and are likely to exist for RyR2 given
the lipophilicity of many drugs interacting
with this channel.

Williams et al. have undertaken valuable
biophysical studies using purified
recombinant channels in artificial lipid
bilayers. We argue, however, that such a
system is far removed from the physio-
logical reality and cannot unequivocally
prove the absence of a flecainide inter-
action with RYR2 channels in a native
cellular environment. For example, Cannon
et al. (2003) reconstituted RyR2 into a
bilayer composed by 1-palmitoyl-2-oleoyl-
phosphatidylethanolamine (POPE) and
1-palmitoyl-2-oleoyl-phosphatidylcholine
(POPC) showing that channel activity
depends critically on the bilayer
composition. Another study showed
that the polyunsaturated fatty acid
eicosapentanoic acid (EPA) exerts its
antiarrhythmic effect by reducing the
opening probability of RyR2 (Swan et al.
2003). This is important, because the
artificial bilayer used by Williams et al.
was composed of 100% (PE), but the
actual SR lipid content from dog hearts
showed the presence of triglycerides,
cholesterol and other phospholipids like
phosphatidylinositol (PI), phosphatidyl-
choline (PC), sphingomyelin (SM) and
phosphatidylserine (PS). Most of these
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lipids have been found to regulate the gating
(and hence the activity) of other channels
as well (Suh & Hille, 2008).

Williams and coauthors also mention
the potential for INa block to result in
reduced junctional Ca2+ concentration
through modulated INCX activity. As has
been discussed previously (Steele et al.
2013), the experimental conditions used in
Sikkel et al. (2013a) employed fast pacing
that is well known to cause Na+ loading
and resultant Ca2+ loading that can trigger
sparks and waves. Early experimental
and computational studies support this
mechanism and showed that Na+ channel
blockers are effective to suppress these
events (Leblanc & Hume, 1990; Faber &
Rudy, 2000). In our models, fast pacing rates
also caused Na+ accumulation (Morotti
et al. 2014, Shannon et al. 2004), but INa

block only led to modest reduction in
junctional [Na+] and thus [Ca2+].

In conclusion, the study by Williams et al.
has shown that flecainide does not inhibit
recombinant RyR2 channels in artificial
bilayers by the pore channel block that they
observed. Given the contrasting plethora
of evidence from other experimental work
and our modelling studies predicting that
flecainide inhibition of Na+ currents alone
is insufficient to explains its efficacy in
CPVT, we contend that further studies
are warranted to reveal the mechanism
of flecainide action on RyR2, which thus
far remains elusive and may not be
discoverable using a reductionist approach
alone.
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