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Abstract

In the current study, we sought to identify bone marrow-derived mononuclear cell (BM-MNC) 

subpopulations associated with a combined improvement in left ventricular ejection fraction 

(LVEF), left ventricular end-systolic volume (LVESV), and maximal oxygen consumption (VO2 

max) in patients with chronic ischemic cardiomyopathy 6 months after receiving transendocardial 
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injections of autologous BM-MNCs or placebo. For this prospectively planned analysis, we 

conducted an embedded cohort study comprising 78 patients from the FOCUS-Cardiovascular 

Cell Therapy Research Network (CCTRN) trial. Baseline BM-MNC immunophenotypes and 

progenitor cell activity were determined by flow cytometry and colony-forming assays, 

respectively. Previously stable patients who demonstrated improvement in LVEF, LVESV, and 

VO2 max during the 6-month course of the FOCUS-CCTRN study (group 1, n = 17) were 

compared to those who showed no change or worsened in one to three of these endpoints (group 2, 

n = 61) and to a subset of patients from group 2 who declined in all three functional endpoints 

(group 2A, n = 11). Group 1 had higher frequencies of B-cell and CXCR4+ BM-MNC 

subpopulations at study baseline than group 2 or 2A. Furthermore, patients in group 1 had fewer 

endothelial colony-forming cells and monocytes/macrophages in their bone marrow than those in 

group 2A. To our knowledge, this is the first study to show that in patients with ischemic 

cardiomyopathy, certain bone marrow-derived cell subsets are associated with improvement in 

LVEF, LVESV, and VO2 max at 6 months. These results suggest that the presence of both 

progenitor and immune cell populations in the bone marrow may influence the natural history of 

chronic ischemic cardiomyopathy—even in stable patients. Thus, it may be important to consider 

the bone marrow composition and associated regenerative capacity of patients when assigning 

them to treatment groups and evaluating the results of cell therapy trials.
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INTRODUCTION

Clinical investigations of heterogeneous bone marrow-derived mononuclear cells (BM-

MNCs) to treat patients with acute myocardial infarction (MI) or chronic ischemic heart 

failure (HF) have not met early expectations for success1–3. These variable findings have 

highlighted the need for studies aimed at improving our understanding of whether the 

mechanisms and pathways associated with endogenous cardiac repair involve BM-MNCs. In 

our recently reported study of an acute MI cohort, we found that improved patient outcomes 

were associated with higher frequencies of CD31+ BM-MNCs and with higher growth rates 

in colony-forming assays4, suggesting that both cell number and function can contribute to 

patient outcomes. However, in that study, we examined associations between bone marrow 

(BM) cell populations and patient outcomes only in the cell-treated group and only shortly 

after acute MI. It is unknown whether there are specific cell populations in the BM that 

affect cardiac repair independently of treatment, especially in patients with HF. In the 

current study, we sought to identify BM-MNC subpopulations associated with a rigorous 

definition of improved cardiac function in patients with HF. The FOCUS-Cardiovascular 

Cell Therapy Research Network (FOCUS-CCTRN) clinical trial, which assessed the effects 

of BM-MNC therapy in patients with chronic ischemic HF, showed negative results for all 

three primary endpoints [left ventricular end-systolic volume (LVESV), maximal oxygen 

consumption (VO2 max), and reversibility on single-photon emission tomography 

(SPECT)], but a 2.7% difference in the exploratory endpoint left ventricular ejection fraction 

(LVEF) between the cell- and placebo-treated patients at 6 months1,5,6. We regrouped 
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FOCUS-CCTRN patients according to outcome using a combined criterion of improved 

LVEF, LVESV, and VO2 max with the goal of identifying associations between the BM-

MNC profile and functional outcomes. Although a reversible defect by SPECT was 

originally one of the three primary endpoints chosen for the FOCUS study, it became 

obvious during the study that signal noise exceeded the expected bounds; accordingly, 

SPECT measurements were not included in our multiple parameter determination of 

functional improvement for this analysis.

It is rare to see HF patients in whom LVEF, LVESV, and VO2 max improve at the same time; 

thus, by requiring favorable changes in all three of these cardiac functional parameters, we 

set a rigorous criterion for identifying patients who improved in the FOCUS-CCTRN trial. 

We reasoned that applying this criterion and comparing the BM profile of patients who 

improved to the BM profile of patients who did not could contribute to a better 

understanding of BM factors associated with positive functional changes. Accordingly, we 

identified the subgroup of participants in the FOCUS-CCTRN trial who showed 

improvement in LVEF, LVESV, and VO2 max at the 6-month follow-up and then performed 

a cohort analysis to determine whether the composition of their BM-MNC samples at study 

onset differed from that of patients who did not improve in all three functional outcomes 

over the same period.

MATERIALS AND METHODS

Participants and Procedures

The FOCUS-CCTRN trial1 was conducted at five clinical sites, and institutional review 

board approval was obtained from each site. The study complied with the Declaration of 

Helsinki, and informed consent was obtained for all patients. Of the 92 patients who were 

randomized and eligible for participation in this analysis, 78 had complete follow-up data 

and consented to have a portion of their BM-MNC product analyzed.

BM Collection and Analysis

BM samples were obtained and processed according to previously published methods1. 

Briefly, the BM-MNC concentration was adjusted to produce a fixed dose of autologous 

cells, as described by Gee et al.7. The target dose of BM-MNCs was 100 × 106. The 

treatment (BM-MNCs or placebo) was administered to the patient in 15 separate injections 

(0.2 ml each) to left ventricular (LV) endocardial regions identified as viable by 

electromechanical mapping on the day of BM collection within 12 h of aspiration1. The 

excess fresh BM-MNC product was shipped to the Biorepository Core, where the functional 

activity (via colony-forming assays) and immunophenotype (via flow cytometry) were 

determined, as described previously8.

To characterize the hematopoietic stem cells, endothelial progenitor cells (EPCs), and 

immune cells in the BM, 1–5 × 106 viable cells were labeled with anti-CD45-PerCP-Cy5.5, 

anti-CD34-PE-Cy7, anti-CD133-PE (Miltenyi Biotec, Auburn, CA, USA), anti-CD306 

vascular endothelial growth factor receptor (VEGFR2/KDR)-APC (R&D Systems, 

Minneapolis, MN, USA), anti-CD31-FITC, anti-CD3-PE-Cy7, anti-CD19-APC-H7, anti-
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CD11b-APC, anti-CXCR4-PE, and anti-CD14-FITC or an isotype-matched control 

antibody. Cell surface markers were analyzed using FlowJo software 7.6.5 (Tree Star, 

Ashland, OR, USA). Data analysis was performed by gating the individual lymphocyte, 

monocyte, and granulocyte populations on the basis of their forward scatter (FSC-A) versus 

side scatter (SSC-A) properties. The frequencies of single-, double-, and triple-labeled cell 

populations (Table 1) and subsets were determined as a function of CD45 expression. Unless 

otherwise indicated, single-marker expression included CD45+ and CD45− cells. Expression 

of CD14 and CD11b and secondary markers were assessed in the monocyte fraction, 

whereas the expression of CD19, CD3, CD31, CD34, KDR, and CXCR4 and secondary 

markers were assessed in the lymphocyte fraction. A modified version9 of the International 

Society of Hematotherapy and Graft Engineering (ISHAGE) sequential gating strategy10 

was used to analyze the CD34+, CD133+, and KDR+ EPCs in the total nucleated cell 

fraction.

The gating strategies for the cell populations found to be significant are shown in Figures 1 

and 2. In addition to cell populations expressing a given marker, certain subsets within those 

populations were also gated [e.g., negative(neg), dim(dim), intermediate(intermed), or 

bright(bright)] as indicated (Fig. 2D). The negative gate was always placed on the basis of the 

isotype control negative signal.

Endothelial cell function was quantified by using the endothelial colony-forming cell 

(ECFC) assay (reported as ECFC per 108 cells) and the CFU-Hill assay (reported as CFU-

EC) by using commercial kits according to the manufacturers’ instructions (STEMCELL 

Technologies, Vancouver, Canada), as previously described8.

Embedded Cohort Analysis

The purpose of this analysis was to determine whether patients with a favorable cardiac 

functional outcome at 6 months had specific BM characteristics at study baseline that 

differed from those who did not improve. This evaluation of the putative relationships 

between BM-MNC immunophenotypes and LV function was prespecified in the FOCUS-

CCTRN protocol. In the FOCUS-CCTRN trial, patients were randomized 2:1 to cell 

treatment or placebo. In the cell-treated patients, no significant beneficial effects of therapy 

were observed for LVESV or VO2 max, whereas a small improvement in LVEF (2.7%, p = 

0.03) occurred. We combined the BM-MNC and placebo groups into a single cohort 

characterized by chronic ischemic cardiomyopathy and HF, which increased the statistical 

power for the current analyses. A cohort approach was used to compare the baseline BM-

MNC profiles of patients who improved in three available cardiac function indicators (LVEF, 

LVESV, and VO2 max) to those of patients who did not improve. Left ventricular end-

diastolic volume (LVEDV) was not an endpoint of this study and was not considered.

Patients in the placebo and cell-treated groups were reassigned to three different groups 

based on their 6-month functional outcomes: (1) group 1 (n = 17): patients who showed 

improvement in all three endpoints (i.e., an increase in LVEF, a decrease in LVESV, and an 

increase in VO2 max), (2) group 2 (n = 61): all other patients, and (3) group 2A (n = 11): a 

subset of group 2 that included only individuals who showed a decline in all three endpoints. 

We then determined whether the baseline BM-MNC immunophenotypes and functions of 
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the three groups differed at study onset. It is important to note that we grouped patients 

based on functional endpoints rather than treatment; therefore, the composition of the three 

groups differed in regard to treatment received. Group 1 (triple-positive functional 

outcomes) included 16 BM-MNC-treated and 1 placebo-treated patients, group 2 (all others) 

included 35 BM-MNC-treated and 26 placebo-treated patients, and group 2A (triple-

negative functional outcomes) included 7 BM-MNC-treated and 4 placebo-treated patients.

Statistical Methods

Measures of central tendency and dispersion were compared. Patient demographic and 

clinical data were compared by using the Student’s t-test for continuous variables and were 

reported by mean and standard error of the mean (SEM). Wilcoxon two-sample testing was 

used for the non-parametric evaluations [brain natriuretic peptide BNP(reg) and BNP(pro)]. 

Fisher’s exact test was used to compare dichotomous variables. Differences in the New York 

Heart Association classification and the Canadian Cardiovascular Society classification were 

assessed by using the chi-square test. Differences in phenotype and function data were 

assessed by using the Student’s t-test. Statistical comparisons with a value of p < 0.05 were 

considered significant with no corrections for multiplicity in this wide-ranging evaluation.

Heat Map

To visualize the distribution of cell phenotypes and changes present in group 1 versus groups 

2 and 2A, we generated a heat map showing the relative change in frequencies of a given 

cell population or function. The signal-to-noise ratio (SNR), calculated as the delta percent 

difference in group 1 versus groups 2 and 2A divided by the standard error, was plotted for 

each cell population and function. Green represents a positive SNR (i.e., an absolute higher 

cell percentage or function), black represents no difference, and red represents a negative 

SNR (i.e., an absolute lower cell percentage or function).

RESULTS

Comparisons Between Group 1 and Group 2 Patients

By definition, at the 6-month follow-up, group 1 showed greater improvement in LVEF, 

LVESV, and VO2 max, as compared to group 2 (Table 2). Other baseline demographic and 

clinical data for groups 1 and 2 are shown in Table 3. Patients in group 1 had significantly 

lower BNP levels and a significantly smaller percentage who underwent coronary artery 

bypass graft (CABG) surgery than in group 2. The age in groups 1 and 2 did not statistically 

differ, but there was a trend (p = 0.067) toward a lower age in group 1.

Flow cytometry showed that the frequencies of eight cell populations were significantly 

elevated in the BM of patients in group 1 when adjusted for age, as compared to the 

frequencies in group 2 patients (Table 4). The elevated populations included CD11b+, 

CD31dim, CD19+, and CXCR4+ cells and subsets thereof. In terms of absolute percentages, 

these cell populations were increased by 1–7% (Fig. 3A). It was not possible to adjust the 

results for baseline BNP since BNP was not measured in the same manner across sites. 

When the data were adjusted for CABG, the CXCR4+ and CXCR4intermed cell populations 

were no longer significantly different between groups 1 and 2.
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Comparisons Between Group 1 and Group 2A Patients

As a more constrained approach, we compared the patients with the best functional 

outcomes (triple-positive patients, group 1) to those with the worst outcomes (triple-negative 

patients, group 2A). Group 1 and group 2A membership was defined on the basis of changes 

in LVEF, VO2 max, and LVESV and, therefore, had the expected differences in these 

variables (Table 2). The differences in LVEF, VO2 max, and LVESV were greater when 

group 1 was compared with group 2A than when it was compared with group 2. A 

comparison of other baseline demographic and clinical variables showed that the patients in 

group 1 were significantly younger than those in group 2A and had significantly lower BNP 

levels (Table 3). Four hematopoietic/ immune cell populations (CD45+CD19+, 

CD19+CD11b+, CD19+CXCR4+, and CD45+CD11b+ cells) were significantly higher in the 

BM of group 1 than in group 2A (Table 5 and Fig. 3B), whereas both the percentage of 

CD45+CD31bright cells and the number of ECFCs per 108 cells were lower (Table 5 and Fig. 

3C). This remained true after adjustment for age.

BM-MNC Characteristics Associated With Positive Functional Outcomes

The heat map shown in Figure 4 was designed to enable high-level comparisons between 

group 1 and groups 2 and 2A. These comparisons are shown for a total of 33 variables: 31 

BM-MNC frequencies and 2 cell functions (CFU-EC and ECFC). A positive SNR was 

observed for 48% of these variables in the group 1 versus group 2 comparison and for 69% 

in the group 1 versus group 2A comparison. In the comparison of group 1 versus group 2, 

the primary cell populations with a positive SNR were hematopoietic and immune cells. 

However, approximately twice as many progenitor cell populations (12 vs. 7) showed a 

positive SNR in the comparison of group 1 versus group 2A. This difference suggests that 

higher endogenous levels of progenitor cells may predict a beneficial cardiac outcome.

DISCUSSION

The current study was designed to determine whether improvements in three important 

functional endpoints (LVEF, LVESV, and VO2 max) in patients with ischemic 

cardiomyopathy were associated with the frequency of certain cell types in the patient’s BM. 

The effect of treatment was outside the scope of this study, but of the 17 patients in group 1 

(i.e., those who showed improvement for all three endpoints), 16 were treated with BM-

MNCs. We found that HF patients who improved in a combination of LVEF, LVESV, and 

VO2 max at the 6-month follow-up had higher levels of CD19+ B cells, CD11b+ monocytes, 

CD31dim subsets, and CXCR4+ migratory cells and lower levels of CD31bright lymphocyte 

subsets in their BM at baseline than patients who improved in fewer endpoints or whose 

condition worsened.

Our results suggest that B cells may either play a beneficial role in repair, or their numbers 

may serve as predictors of a favorable functional outcome in chronic ischemic 

cardiomyopathy patients. The increased frequencies of B-cell subsets (CD19+CXCR4+ and 

CD19+CD11b+) in the BM may be due to either an increase in B-cell production (for 

potential cardiac repair) or a decrease in B-cell mobilization from the BM. The latter 
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possibility seems less likely, given the increase in markers associated with migratory 

capability (CD11b and CXCR4) in the B-cell subsets.

Cell subsets expressing CXCR4, including CD19+ B cells, were also elevated in the BM-

MNCs of patients who had superior functional outcomes. Several studies have identified 

CXCR4 and its ligand, stromal cell-derived factor-1 (SDF-1), as key molecular contributors 

to myocardial repair11,12. Although the present study was not designed to, and therefore did 

not directly, assess cell recruitment or the incorporation of cells at cardiac injury sites, the 

association we found between higher numbers of CXCR4-expressing cells and functional 

improvement suggests that better cell migratory capacity in response to tissue injury or 

ischemia could contribute to improved outcome.

Several reports have suggested that monocytes and macrophages play a critical role both in 

cardiac repair and in angiogenesis and arteriogenesis13–15. In this study, we found that the 

BM frequency of CD45+CD11b+ monocytes was higher in group 1 than in groups 2 and 2A. 

Other studies have shown contradictory results about the role of CD11b on cardiac function. 

For instance, Frantz et al.16 demonstrated increased mortality in macrophage- and 

CD11b+Ly6G+ monocyte-depleted mice after MI compared with controls. However, Cogle 

et al.13 reported that increased levels of BM CD11b+ cells are associated with reductions in 

LVEF after acute MI, and Maier et al.15 showed that continuous CD11b+ cell infiltration is 

associated with chronic inflammation, fibrosis, and myocyte atrophy. Although the reason 

for these conflicting results is unclear, differences in disease severity, the fact that CD11b is 

expressed on a diverse array of immune cell populations (e.g., monocytes, granulocytes, 

natural killer, and B cells)17–19, and the recently described heterogeneity within monocyte/

macrophage populations14,20 may be contributing factors.

Associations between cardiovascular disease outcomes and the frequency of CD31+ cells 

have been reported previously4,21. The frequency of CD31dim lymphocytes has been shown 

to be inversely correlated with cardiovascular risk factors, such as age, male sex, and CRP 

level, whereas CD31bright monocytes have been found to be positively associated with 

cardiovascular risk factors22. We observed that the frequency of CD31dim cells in the BM 

was significantly higher in group 1 than in group 2. In contrast, the frequency of 

CD45+CD31bright cells in the BM was significantly lower in group 1 than in group 2A. It is 

currently unknown whether these BM CD31bright and CD31dim cells are positively 

associated with cardiovascular risk factors. However, the BM frequency and function of 

CD31dim and CD31bright BM subsets, as well as their relationship to cardiovascular risk 

factors, may warrant future study in candidates for stem cell therapy.

An unexpected finding in this study was the lower levels of BM ECFCs in group 1, as 

compared to the levels in group 2A. Peripheral blood ECFC levels have been reported to be 

low (0–3 ECFCs per 108 mononuclear cells) in healthy individuals23,24 but to increase 

approximately 10-fold in patients with acute MI at 3 h after symptom onset, indicating 

increased mobilization of ECFCs to the circulation and ischemic tissue25–27. Our finding of 

lower ECFC levels in the BM of chronic HF patients is consistent with these previous 

studies in acute MI patients and may indicate greater mobilization of these cells to the 

ischemic myocardium.
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A heat map analysis, which focused on cell population profiles, showed a high number of 

progenitor cell populations with a positive SNR in the group 1 versus group 2A comparison. 

This association, which occurred regardless of treatment type, supports the concept that the 

functional outcome is influenced by the patient’s underlying progenitor cell profile/activity.

It is unknown why patients who were previously stable showed an improvement or decline 

in LV function. It is interesting to note that 16 of the 17 patients in group 1 received BM-

MNCs. Furthermore, the difference in LVEF between group 1 and group 2A was greater 

than 10%, which is larger than the LVEF changes seen with many approved therapies in 

these patients. In addition, the fact that patients who showed improvement in LVEF, LVESV, 

and VO2 max had a different BM profile than those who did not suggests that the underlying 

physiology of BM and its activation should not be ignored.

It has long been recognized that patient responses to treatments may differ substantially in a 

variety of clinical settings. Personalized medicine is based on the concept that optimal 

medical treatments may be tailored to the individual patient. In oncology, personalized 

therapy is already being used to select the most effective treatment option, including cell 

therapies, on the basis of the characteristics of the individual patient28. A similarly 

personalized approach may be possible for cardiovascular cell therapy, if the specific 

variables influencing outcomes can be identified. The current findings suggest that both 

progenitor and nonprogenitor (e.g., hematopoietic and immune) cells are associated with 

increased endogenous regenerative capacity. Moreover, these results provide further 

rationale for identifying BM cell populations that enhance the repair process with the 

eventual hope of using this information as a tool to improve the stratification and 

randomization of patients for cell therapy trials.

Study Limitations

The analyses in this study only show associations between BM cell phenotype and 

functional outcome and do not identify a causal relationship. Potential confounders in this 

study were the BM harvest and the transendocardial route of administration. Previous 

studies have shown that both BM-derived stem cells and resident tissue stem cells actively 

participate in tissue repair in response to different types of injury27,29–31. A consideration in 

cell therapy trials is that the harvest and delivery processes may themselves stimulate this 

pool of resident stem/progenitor cells, even in placebo-treated subjects, thereby contributing 

to repair independent of treatment type.

CONCLUSIONS

In this cohort of patients from the FOCUS-CCTRN trial, increased frequencies of B-cell 

subsets and migratory cells and decreased frequencies of both monocytes/ macrophages and 

ECFCs in the BM at baseline were associated with improvements in LVEF, LVESV, and 

VO2 max, independent of treatment group. This study suggests that both progenitor and 

immune cell populations in the BM influence the natural history of chronic ischemic 

cardiomyopathy. When assessing a new therapy, all study groups should have the same 

baseline characteristics so that the treatment effects can be interpreted accurately. When 

designing and interpreting the results of cardiovascular disease studies, potential 
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confounding variables, such as age, disease severity, and current comorbidities, must be 

taken into account. Although we adjusted our findings based on age and CABG, other 

confounding variables such as BNP could not be addressed. Our study findings suggest that 

BM composition may be another important factor to consider, as it may affect the 

endogenous regenerative capacity of the patients.
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Figure 1. 
Gating strategy used for analyzing bone marrow-derived mononuclear cell (BM-MNC) 

populations that showed significant differences between group 1 and groups 2 and 2A. (A) 

Representative dot plot showing the gates used to identify BM-MNC populations based on 

forward scatter (FSC-A) versus side scatter (SSC-A). (B) Representative dot plot showing 

CD45+CD11b+ cells within the monocyte gate. (C) Representative dot plot showing 

CXCR4+ cells within the lymphocyte gate. (D) Representative dot plot showing 

CD45+CXCR4interm cells within the lymphocyte gate.
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Figure 2. 
Gating strategy used for analyzing BM-MNC populations that showed significant 

differences between group 1 and groups 2 and 2A. (A) Representative dot plot showing 

CD45+CD19+ cells within the lymphocyte gate. (B) Representative dot plot showing 

CD19+CD11b+ cells within the lymphocyte gate. (C) Representative dot plot showing 

CD19+CXCR4+ cells within the lymphocyte gate. (D) Representative dot plot showing 

CD31neg, CD31dim, and CD31bright cells within the lymphocyte gate.
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Figure 3. 
Significant differences in BM-MNC phenotype and function. Significant differences in BM-

MNC subpopulation frequencies between (A) group 1 versus group 2 and (B) group 1 versus 

group 2A. (C) Percentage differences in BM-MNC function for group 1 versus groups 2 and 

2A. *p=0.016.
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Figure 4. 
Heat map illustrating signal-to-noise ratios of bone marrow cell variables for group 1 versus 

groups 2 and 2A. Relative differences are shown for BM-MNC subpopulation frequencies 

and functions of group 1 versus group 2 (left) and group 1 versus group 2A (right). Green = 

higher relative levels in group 1, black = no difference in relative levels, and red = lower 

relative levels.
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Table 1

Cell Surface Marker Expression Used to Report Phenotypes of Bone Marrow-Derived Mononuclear Cells 

(BM-MNCs)

Single-Positive Cell Surface Marker Profiles Double-Positive Cell Surface Marker Profiles
Triple-Positive Cell Surface Marker 
Profiles

CD3+ CD45+CD31bright CD133+CD34+KDR+

CD31dim CD31+CD34−

KDR+ CD45+CD11b+

CD133+ CD45+CXCR4−

CD14+ CD45+CD3+

CD11b+ CD45+CXCR4dim

CD45+ CD45+CD14−

CD31+ CD45+CD11b−

CXCR4+ CD34+CD133+

CD19+ CD45+CD133+

CD45+CD14+

CD34+CD31+

CD34+KDR+

CD45brightCXCR4+

CD45+CD11b−

CD45+CD31+

CD45+CD31dim

CD45+CXCR4interm

CD19+CD11b+

CD45+CD19+

CD19+CXCR4+
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Table 4

Significant Differences in Bone Marrow Cell Phenotype for Group 1 Versus Group 2

Cell Surface Marker Expression Group 1 (n = 17) Group 2 (n = 61) p Value

CXCR4+ 57.0 (11.3) 49.5 (13.8) 0.042

CD45+CD31dim* 30.9 (8.7) 26.5 (7.0) 0.033

CD45+CXCR4interm* 6.8 (3.9) 4.9 (2.9) 0.028

CD45+CD11b+* 6.2 (2.0) 4.7 (2.5) 0.028

CD19+CD11b+† 1.2 (0.6) 0.9 (0.5) 0.018

CD19+ 15.0 (7.2) 10.0 (5.0) 0.001

CD45+CD19+ 15.8 (6.8) 10.9 (4.7) 0.001

CD19+CXCR4+ 14.4 (6.4) 9.30 (4.3) <0.001

Data presented as mean (SD). Cell phenotype data shown as the cell frequency in the lymphocyte fraction of the bone marrow (BM), except for the 

CD45+CD11b+ population, which is shown as the cell frequency in the monocyte fraction of the BM.

*
Group 2: n = 60.

†
Group 2: n = 58.
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Table 5

Significant Differences in Bone Marrow Cell Phenotypes and Function for Group 1 Versus Group 2A

Variable Group 1 (n = 17) Group 2A (n = 11) p Value

Cell phenotype

 CD45+CD31bright 0.2 (0.1) 0.4 (0.3) 0.046

 CD45+CD11b+ 6.2 (2.0) 4.1 (2.0) 0.012

 CD19+CD11b+ 1.2 (0.6) 0.6 (0.2) 0.007

 CD45+ CD19+ 15.8 (6.8) 10.6 (5.4) 0.043

 CD19+CXCR4+ 14.4 (6.4) 9.0 (4.9) 0.024

Cell function

 ECFC per dose* 85.0 (87.2) 248.9 (227.8) 0.016

Data presented as mean (SD). Cell phenotype data shown as the cell frequency in the lymphocyte fraction of the BM, except for the 

CD45+CD11b+ population, which is shown as the cell frequency in the monocyte fraction of the BM. ECFC, endothelial colony-forming cells.

*
Group 1: n = 16, group 2A: n = 9.
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