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Experimental data indicate that transneuronal propagation of abnormal protein aggregates
in neurodegenerative proteinopathies, such as sporadic Alzheimer’s disease (AD) and
Parkinson’s disease (PD), is capable of a self-propagating process that leads to a progression
of neurodegeneration and accumulation of prion-like particles. The mechanisms by which
misfolded tau and a-synuclein possibly spread from one involved nerve cell to the next in the
neuronal chain to induce abnormal aggregation are still unknown. Based on findings from
studies of human autopsy cases, we review potential pathways and mechanisms related to
axonal and transneuronal dissemination of tau (sporadic AD) and a-synuclein (sporadic PD)
aggregates between anatomically interconnected regions.

Sporadic Alzheimer’s disease (AD) and Par-
kinson’s disease (PD) are human neurode-

generative disorders that do not occur in other
vertebrate species. Pathological hallmark lesions
in AD and PD involve only a few types of nerve
cells, mainly projection neurons. These lesions
develop at predetermined predilection sites and
progress according to predictable patterns
(Braak and Del Tredici 2009, 2015). In AD, dis-
ease-related lesions remain confined to the cen-
tral nervous system (CNS), whereas in PD they
develop not only in the CNS but also in the
enteric (ENS) and peripheral (PNS) nervous
systems. Both diseases are caused by misfolding
of specific proteins that are associated with ab-
errant aggregation. AD is primarily character-
ized by pathological forms of the intraneuronal

protein tau (Goedert et al. 2006; Iqbal et al.
2009) and, thereafter gradually, by extracellular
deposits of the b-amyloid protein (Ab) (Ala-
fuzoff et al. 2009; Haass et al. 2012; Masters and
Selkoe 2012). In mature nerve cells, the highest
concentrations of the protein tau usually are
found in the axon. Key lesions in sporadic PD
consist of aggregated forms of a-synuclein, a
protein located chiefly in axons and their pre-
synaptic terminals (Eisenberg and Jucker 2012;
Jucker and Walker 2013; Kaufman and Dia-
mond 2013; Goedert et al. 2014). Notably,
all brain regions and all types of nerve cells
consecutively involved in AD or PD are ana-
tomically interconnected over considerable dis-
tances, thereby indicating that physical contact
among such interconnected nerve cells plays a
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key role in the pathogenesis of both illnesses
(Pearson et al. 1985; Saper et al. 1987; Pearson
and Powell 1989; Pearson 1996; Duyckaerts et
al. 1997; Braak and Del Tredici 2011b). Ab is
deposited extracellularly and thus is not known
to transfer from one nerve cell to the next in the
neuronal chain (Fiala 2007; Kaufman and Dia-
mond 2013).

Here, we focus on potential pathways and
mechanisms related to the postulated transmis-
sion and transneuronal dissemination of tau
and a-synuclein between involved neurons
and as yet uninvolved neurons in anatomically
connected regions (Brundin et al. 2008, 2010;
Clavaguera et al. 2009, 2013a,b; Desplats et al.
2009; Luk et al. 2009; Angot et al. 2010, 2012;
Frost and Diamond 2010; Goedert et al. 2010;
Lee et al. 2010; Nonaka et al. 2010; Dunning et
al. 2011; Guo and Lee 2011, 2014; Hansen et al.
2011; Jucker and Walker 2011; Kordower et al.
2011; Lee et al. 2011; Volpicelli-Daley et al. 2011;
Hansen and Li 2012; Holmes and Diamond
2012; Liu et al. 2012; Luk et al. 2012a,b; Mou-
genot et al. 2012; Polymenidou and Cleveland
2012; Walker et al. 2012; Duyckaerts 2013;
George et al. 2013; Iba et al. 2013; Masuda-Su-
zukake et al. 2013; Olanow and Brundin 2013;
Rey et al. 2013; Van Ba et al. 2013; Wu et al. 2013;
Ahmed et al. 2014; Dujardin et al. 2014; Holmes
et al. 2014; Holmqvist et al. 2014; Recasens et al.
2014; Calafate et al. 2015).

Nerve cells that survive and remain func-
tional for the lifetime of an individual are ca-
pable of degrading and eliminating defective
proteins and/or toxic metabolites. Thus, the
presence of pathological intraneuronal aggrega-
tions of tau and a-synuclein is an unusual and
unanticipated event. The misfolded and ini-
tially slightly aggregated forms of both proteins
rapidly transform into insoluble inclusion bod-
ies: in AD, neuropil threads (NTs), pretangles,
neurofibrillary tangles (NFTs), and ghost
tangles; in PD, Lewy neurites (LNs), pale bod-
ies, punctate aggregates, and Lewy bodies
(LBs) (Ikeda et al. 1978; Grundke-Iqbal et al.
1986; Gibb et al. 1991; Dale et al. 1992;
Spillantini et al. 1997; Goedert et al. 1998,
2013; Braak et al. 1999, 2006; Kuusisto et al.
2003; von Bergen et al. 2005; Dickson et al.

2009; Parent and Parent 2010) that occupy
space and remain nonmetabolized in involved
neurons without, however, initially recogniz-
able toxic effects (Braak and Del Tredici 2009,
2015a).

Projection neurons generate a long axon
to transmit information from one site to anoth-
er. For this purpose, their axons have mecha-
nisms for anterograde and retrograde transport
of various cargos. However, they are not espe-
cially well equipped to degrade or eliminate
pathological proteinaceous aggregates (Braak
and Del Tredici 2009, 2015a). Moreover, be-
cause of the major differences between the ax-
onal and the somatodendritic compartments,
the mechanisms by which axonal compart-
ments manage misfolded and aggregated pro-
teins merit closer study. During AD pathogen-
esis, hyperphosphorylated tau proteins that lie
free in the cytoplasm of vulnerable nerve cells
undergo a change of conformation and become
slightly aggregated. Initially, these soluble pro-
teins are uniformly distributed in both the so-
matodendritic and axonal compartments.
These proteins gradually become less soluble
until, having become confined solely to the so-
matodendritic compartment, fibrillar struc-
tures develop and a pronounced argyrophilia
emerges. In contrast, these additional steps are
missing in axons (Braak and Del Tredici 2015a).

In other words, pathological tau in the axon
is processed differently than in the soma, and it
remains in the axon for a longer period of
time in a gel-like, nonfibrillar, and nonargyro-
philic state. It is conceivable that, under these
circumstances and possibly only for a short
time, soluble aggregates of misfolded and hy-
perphosphorylated but nonfibrillar tau protein
penetrate as far as the terminal branches of
the axon and into presynaptic terminals, where
they then become available for transport to the
postsynaptic side of the synaptic cleft (Braak
and Del Tredici 2015b). Were that to prove true,
the pathological process would be transmissi-
ble to the successive neurons only via terminal
axons and synaptic connections of involved
nerve cells.

These considerations and experimental data
make it possible to associate the AD- and PD-
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related pathological processes with PrP prion
diseases (Prusiner 1982, 2012, 2013; McBride
et al. 2001; Vella et al. 2007; Aguzzi and Calella
2009; Aguzzi and Rajendran 2009; Guest et al.
2011; Liberski 2012; Herva and Spillantini
2015). However, we prefer to use the term “pri-
on-like” to differentiate sporadic AD and PD
from rapidly progressive and infectious prion
diseases, as PD and AD have not been shown
to be rapidly progressive and contagious (Ola-
now and McNaught 2011; Iba 2013; Irwin et al.
2013; Kaufman and Diamond 2013; Beekes
et al. 2014; Goedert et al. 2014, 2015; Brandel
et al. 2015; Walker and Jucker 2015; Walsh and
Selkoe 2016). Available evidence from experi-
mental studies performed in animal and in
vitro models indicates that misfolded tau and
a-synuclein proteins fulfill the criteria of prion-
like proteins, that is to say, seeding/templat-
ing, propagation (“spreading”), and structural-
ly differentiated conformations or conformers
(“strains”) (Aguzzi 2009; Clavaguera et al.
2013b; Guo and Lee 2011; Bousset et al. 2013;
Watts et al. 2013; Sanders et al. 2014; Melki
2015; Peelaerts et al. 2015; Smethurst et al.
2015; Woerman et al. 2015; Tuttle et al. 2016;
but see also Bernis et al. 2015; Prusiner et al.
2015; Supattapone 2015).

SPREAD OF PATHOLOGICAL TAU
LESIONS IN AD

In AD, pathological tau aggregates develop first
in nerve cells of brainstem nuclei (subcortical
stages a–c) (Figs. 1A,B and 2, dark blue) that
have projections ending in the cerebral cortex
(Braak and Del Tredici 2011a, 2015a,b). It ap-
pears that from the locus coeruleus of the pon-
tine tegmentum (Marien et al. 2004; Aston-
Jones and Cohen 2005; Samuels and Szabadi
2009; Sara 2009; Counts and Mufson 2012;
O’Donnell et al. 2012), the lesions progress to
a distinct portion of the cerebral cortex, the
transentorhinal region (Figs. 1 C,D and 2, light
blue) (Braak and Braak 1992). In cortical pro-
jection neurons, the resultant and originally
nonargyrophilic pretangle protein (during cor-
tical stages 1a and 1b) becomes transformed
into argyrophilic neurofibrillary lesions that

characterize the subsequent NFT stages I–VI
(Braak and Del Tredici 2015a). The neurofibril-
lary pathology advances from the transentorhi-
nal region (NFT stage I) (Fig. 2, light blue) into
the olfactory bulb (OB) (Attems and Jellinger
2006), the entorhinal region, and the hippo-
campal formation (NFT stage II) (Figs. 1D
and 2, dark red). During NFT stage III, the tau
pathology progresses from the transentorhinal
region to the laterally adjoining basal temporal
neocortex, and during NFT stage IV, it extends
more widely to the temporal, insular, and fron-
tal neocortex (Figs. 1E, 2, light red, and 3A,B).
In NFTstage V, cases display severe involvement
of most neocortical association areas, leaving
only the primary fields mildly involved or intact
(Figs. 1, 2, dark pink, and 3C). In the end-stage,
NFT stage VI, even these areas become involved
(Figs. 1, 2, light pink, and 3D). The production
of abnormal tau continues from the outset until
the final stage of the pathological process (Braak
et al. 2011; Braak and Del Tredici 2014, 2015a).
Thus, in AD, the pathology progresses antero-
gradely from distinct predilection sites in the
lower brainstem to distant but connected re-
gions of the cerebral cortex, and it does so se-
quentially with little inter-individual variation,
albeit at different rates (Braak and Del Tredici
2015a).

The locus coeruleus and other widely pro-
jecting subcortical nuclei share a remarkable
attribute: All of them send long and extensively
branching projections to the olfactory bulb
and the entire cerebral cortex, to large numbers
of other noncortical nuclei (with the notable
exception of the pallidum), to the cerebellum,
and to the spinal cord. These widely projecting
noncortical nuclei are collectively referred to as
“nonthalamic nuclei with diffuse projections”
and include not only the noradrenergic locus
coeruleus but also the serotonergic nuclei of
the raphe system, the extranigral dopaminergic
nuclei of the mesencephalic tegmentum, the
histaminergic hypothalamic tuberomamillary
nucleus, and the cholinergic magnocellular nu-
clei of the basal forebrain (Nieuwenhuys 1996).
A prominent feature of primate evolution is
the considerable increase in the size of the cere-
bral cortex, particularly of its neocortical por-
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tions. As such, all of the nonthalamic nuclei also
developed phylogenetically late-appearing and
ontogenetically late-maturing components that
were necessary to support their strong pro-
jections to the cerebral cortex (so-called “in-
tegrated phylogeny”) (Rapoport 1988, 1989,
1990, 1999).

The axons of all of the nonthalamic nuclei
have an additional property in common—

namely, the presence of nonjunctional varicos-
ities equipped only with presynaptic sites that
are supplemented by relatively few classical syn-
apses with both presynaptic and postsynaptic
sites (Agnati et al. 1995; Nieuwenhuys 1999;
Marien et al. 2004; O’Donnell et al. 2012). By
means of nonjunctional varicosities, axons re-
lease their neurotransmitter and neuromodu-
lator substances diffusely into the interstitial

Figure 1. Are small aggregates of pathological tau proteins transmissible in Alzheimer’s disease (AD)? Summary
of the stages of AD-related tau pathology (subcortical stages a–c, cortical pretangle stages 1a and 1b, and cortical
neurofibrillary stages I–VI). (A) Axons of projection neurons of the locus coeruleus are the first structures to
develop pretangle material immunoreactive against hyperphosphorylated tau protein (subcortical stage a). This
aggregated material then fills the somatodendritic compartment (subcortical stage b). In subcortical stage c,
additional nonthalamic nuclei with diffuse cortical projections (i.e., the upper raphe nuclei or the cholinergic
magnocellular nuclei of the basal forebrain) begin to display pretangles. (B) The AD-related pathological process
is confined to subcortical nuclei during stages a–c. (C) In pretangle stage 1a, pathological material develops in
portions of nerve cell processes (possibly pathologically involved terminals of axons from the locus coeruleus) in
the transentorhinal region of the cerebral cortex. This material subsequently fills pyramidal cells in the trans-
entorhinal region (pretangle stage 1b). (D–F) Drawings depict the systematic dissemination of the AD-related
process from cortical pretangle stages 1a and 1b and neurofibrillary tangle (NFT) stages I and II (dark red) to
neocortical high-order association areas at NFTstages III and IV (light red) and, finally, to first-order association
areas and primary neocortical fields in NFTstages Vand VI (pink). (From Braak and Del Tredici 2013; reprinted,
with permission.)
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fluid by volume transmission, in a paracrine-
like manner, thereby activating receptors of glial
cells, neurons, and cells of the vasculature with-
in a given local diffusion zone (Kalaria et al.
1989; Agnati et al. 1995; Marien et al. 2004;
Fuxe et al. 2012; O’Donnell et al. 2012). The
mechanisms of volume transmission are ill suit-

ed to relay data in a highly selective manner
from one site to another. Their effect is more
generalized (Morrison et al. 1982; Fuxe et al.
2012). In contrast, complete (classical) synapses
produce highly selective localized effects. It is
unknown how nonjunctional varicosities and
complete synapses are distributed along the

Figure 2. Possible routes of tau transmission in Alzheimer’s disease (AD). The color-coded arrow at the right
indicates AD neuropathological stages a-VI and AD-related lesions. Color-coded arrows (excluding black
arrows) are intended to indicate the routes by which the intraneuronal tau pathology may consecutively dis-
seminate by anterograde transport. Directly above the block containing the locus coeruleus and other non-
thalamic nuclei with diffuse projections to the cerebral cortex is a multicolored row: It is intended to signify the
different groups of nerve cells belonging to these nuclei that become involved at various Parkinson’s disease (PD)
stages. OB, Olfactory bulb (chiefly the anterior olfactory nucleus); entorhin. region, entorhinal region; high-
order sens. assoc. areas, high-order sensory association areas; hipp. form., hippocampal formation; MD, medi-
odorsal nuclei of the thalamus; som. mot., somatomotor; som. sens., somatosensory; visc. mot., visceromotor;
visc. sens., viscerosensory; v. pall., ventral pallidum; v. stri., ventral striatum.
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Figure 3. Neurofibrillary tangle (NFT) stages III–VI of sporadic Alzheimer’s disease (AD) in 100 mm polyeth-
ylene glycol-embedded hemisphere sections. (A–D) During the limbic stages III and IV, areas of the antero-
medial portion of the temporal lobe, including the transentorhinal region, entorhinal region, and hippocampal
formation, become severely involved. From the transentorhinal region, the tau lesions enter (moving clockwise)
into the adjoining high-order sensory association areas of the temporal neocortex (stage III) and from there into
the medial temporal gyrus (stage IV). The insular cortex also becomes involved (stage IV). At neocortical stages
V and VI, the premotor and first-order sensory association fields of the neocortex, and thereafter, the primary
fields of the neocortex including the transverse gyrus of Heschl, develop very severe tau pathology. (E,F) Note
that the transentorhinal region and the adjacent temporal allocortex are highly susceptible to both sporadic
Parkinson’s disease (PD) and AD. (A,B,D,E) AT8 immunohistochemistry, (C) Gallyas silver-iodide staining, and
(F) a-synuclein immunohistochemistry.
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heavily branching axons of the widely project-
ing nonthalamic nuclei, but we are inclined to
believe that nonjunctional varicosities do not
play a major role in the neuron-to-neuron
transmission of abnormal tau, and, instead,
precisely localized one-to-one effects take place
chiefly via complete synapses.

The majority (�90%) of locus coeruleus
efferences remain ipsilateral (Marien et al.
2004). The AD-related pathological process be-
gins ipsilaterally in the locus coeruleus in young
adulthood or even in childhood (Braak and
Del Tredici 2011a) and later involves coeruleus
neurons on the contralateral side of the brain
and neurons of other nonthalamic nuclei with
diffuse cortical projections (German et al. 1992;
Benarroch 2009; Sara 2009). The noradrenergic
neurons in the locus coeruleus do not all be-
come involved simultaneously: Abnormal tau
inclusions appear first within a few neurons,
and additional neurons very gradually follow
suit. The continual increase in the number of
involved coeruleus neurons occurs so slowly
that noninvolved nerve cells are seen there
even in advanced AD cases. Hence, the locus
coeruleus does not undergo extensive nerve
cell loss during AD, and this lifelong process
within the coeruleus is possibly not fortuitous
but predetermined.

It is possible that the pathological process
within the locus coeruleus initially involves only
those nerve cells that represent the most recent
evolutionary events in the course of the phylo-
genetic process, and, accordingly, these same
nerve cells are the last to mature ontogenetically
(Fig. 2, dark blue). As a result, however, it may
also be assumed that these coeruleus neurons
send their ipsilateral projections to portions
of the cerebral cortex, which from an evolution-
ary standpoint, developed very recently (Fig. 2,
light blue). In this context, it should be noted
that the transentorhinal region functions as
a new interface between the phylo- and ontoge-
netically late-developing basal temporal neo-
cortex and the entorhinal region, which in
microsmatic primates, is preferentially neo-
cortically oriented. In the ascending primate
line, the transentorhinal region greatly increases
in size, and its topographical extent peaks in

humans (Braak and Braak 1992). Thus, the
most recent “acquisitions” of the locus coerule-
us are likely to be the nerve cells that develop
in tandem with the transentorhinal region and
project to that region. These circumstances may
help to explain why the two neuronal types that
are located at a considerable distance from each
other (coeruleus neurons and transentorhinal
pyramidal cells) consistently develop the earli-
est AD-related tau lesions within the CNS as
a whole (Figs. 1A,C and 2, dark/light blue)
(Braak and Del Tredici 2011a, 2015a,b). Fur-
thermore, this would imply that the neurons
in the locus coeruleus that mature phylo- and
ontogenetically earlier send projections to their
earlier maturing counterparts in corresponding
portions of the cerebral cortex (see color shad-
ing of both the nonthalamic nuclei and their
cortical projections in Fig. 2), and, in fact, the
lesional pattern that develops during the course
of the AD-associated pathological process re-
flects the fundamental phylogenetic develop-
mental phases of the neocortex very closely:
The primary areas there appear first, and these
are also the first to myelinate. The primary
areas are followed by secondary fields and,
thereafter, by high-order association fields.
This process culminates in primates with the
appearance of the transentorhinal region, which
acts as a transitional cortex to the temporal
allocortex (entorhinal region and hippocampal
formation). These evolutionary trajectories
are seen in reverse order by the gradual exten-
sion of the AD-related cortical tau pathology,
which starts in the transentorhinal region and
finally reaches the primary areas of the neocor-
tex (Figs. 1 and 2) (Braak and Del Tredici
2015a,b).

The first cortical neurons to become in-
volved closely resemble the multipolar neurons
of the superficial entorhinal layer pre-a (Braak
and Braak 1992). In the transentorhinal region,
such cells slope gradually downward until they
reach the upper surface of layer V and thereby
undergo a gradual transformation from star-
shaped multipolar cells in the entorhinal layer
pre-a into modified pyramidal cells with a
gradually developing apical dendrite (Braak
1980; Braak and Braak 1992). Tau aggregates
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initially appear in distal dendritic segments of
these pyramidal cells and then fill the soma and
the axon (Braak et al. 1994a). Notably, the distal
dendritic segments of cortical pyramidal cells
are phylo- and ontogenetically late-appearing
structures that chiefly receive axonal contacts
of late-emerging and late-maturing projection
neurons, among them the projection neurons
from the nonthalamic nuclei.

It is unknown which pathological mecha-
nisms feature in the production of large
amounts of abnormal tau that eventually fill
much of the cytoplasm of transentorhinal neu-
rons with pretangles. Normally, tau proteins are
present only at low concentrations in the soma-
todendritic compartment of nerve cells because
the microtubuli in this compartment are sta-
bilized by other proteins and do not need
large amounts of tau (Braak and Del Tredici
2015). The abrupt appearance of pathological
tau within the somatodendritic compartment
could be caused by defective mechanisms
in functionally impaired axons of involved
nonthalamic nuclei (e.g., coeruleus neurons),
which then send aberrant signals to the corti-
cal nerve cells on which they synapse. These
signals, in turn, might induce a transient over-
production of the protein tau in the somato-
dendritic compartment of the recipient neu-
ron. Because only a small fraction of nascent
tau proteins finds binding sites there, tau pre-
sumably exists in the somatodendritic com-
partment in a mostly hyperphosphorylated
state.

Within the somatodendritic compartment,
a variety of reactions is possible once a critical
threshold has been reached. Either the super-
fluous hyperphosphorylated tau proteins are
rapidly degraded and removed by existing cel-
lular systems, or having exceeded critical levels,
they convert into an irreversibly hyperphos-
phorylated and minimally aggregated state
within a short interval (Kopeikina et al. 2012).
A second option would be that the unneeded
hyperphosphorylated tau requires a “seed” to
initiate the aggregation process in the recipient
neuron. It is possible that seeds are, above all,
the still soluble but irreversibly hyperphos-
phorylated and slightly aggregated tau mole-

cules that could be transmissible from presyn-
aptic terminals of pathologically changed axons
to the postsynaptic sites of recipient neurons.
Such pathological forms of tau apparently exist
for only a brief time interval, and their only
chance of survival for any considerable time is
within the axonal compartment of involved neu-
rons (i.e., there where degradation mechanisms
are not available). It remains possible that min-
iscule particles of pathogenic tau could be re-
leased into the synaptic cleft and endocytosed at
the postsynaptic site by the recipient neuron.
Once inside the recipient nerve cell, the tau
molecules could act similarly to prions, initiat-
ing the aggregation of newly produced abnor-
mal tau (Frost et al. 2009; Pooler et al. 2013;
Holmes and Diamond 2014; Sanders et al.
2014). The conditions needed to promote or
enhance prion-like formation are incompletely
understood, but there is increasing experimen-
tal evidence for the concept that aggregated tau
is transferred from one nerve cell to another and
induces the aggregation of abnormal tau in re-
ceptor cells (Goedert et al. 2010, 2014; Lee et al.
2010; Guo and Lee 2011; Jucker and Walker
2011; Liu et al. 2012; van Ba et al. 2013; Dujar-
din et al. 2014; Sanders et al. 2014; Falcon et al.
2015; Jackson et al. 2016).

The most essential interconnecting path-
ways between the chief regions of the neocortex
in general consist of upstream corticocortical
projections (i.e., projections from primary areas
to secondary fields, and from there, to high-
order association areas that have features in
common with precisely aimed thalamocortical
projections) (Fig. 2, thin black arrow). These
interconnections are given off from pyramidal
cells of supragranular layers (layers II and III)
and preferably reach layer IV of their target ar-
eas, which, in addition, also receives thalamo-
cortical projections. The neocortical layer IV
consists of small pyramidal cells (spiny stellate
cells) that are specialized at receiving informa-
tion effectively and distribute data radially to
the remaining cell layers (Bannister 2005).
Short upstream projections from the primary
sensory fields reach the first-order sensory as-
sociation areas (secondary areas). Supragranu-
lar pyramidal cells from the primary and
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secondary areas then send somewhat longer
axons to layer IV of the adjoining high-order
sensory association areas (Fig. 2) (Barbas
2007). In this manner, sensory data proceed
sequentially from the primary fields through
the secondary areas and into high-order asso-
ciation fields. From there, the data are con-
veyed via long corticocortical projections to
layer IV of the prefrontal areas (Fig. 2, thick
black arrow).

Short downstream or return pathways from
the prefrontal cortex or high-order sensory as-
sociation areas to secondary, and ultimately pri-
mary, fields are provided by projections that
originate chiefly in infragranular layers (layers
V and VI) and terminate, widely distributed, in
layers I–III and layers V and VI of their target
areas, whereas layer IV has only sparse con-
tacts (Fig. 2, dashed arrows) (Barbas 2007).
The downstream pathways project to cortical
fields in a much less focused and effective
manner than the upstream projections, and
thus, they resemble the diffuse projections orig-
inating from the nonthalamic nuclei more
closely. In the frontal neocortex, downstream
pathways transmit data from prefrontal fields
to premotor and primary motor areas, which
ultimately relay motor programs to the low-
er brainstem and spinal cord (Fig. 2, dashed
arrows). Because the downstream pathways
lack precision, most of the dataflow is directed
parallel to them into striatal and cerebellar cir-
cuits, which integrate the basal ganglia, thala-
mus, nuclei of the lower brainstem, and cerebel-
lum into the regulation of cortical output (Fig.
2, thick black arrow) (Alheid 2003; Heimer and
van Hoesen 2006; DeLong and Wichmann
2007).

After lesions develop in the transentorhinal
region (NFT stage I), the AD-related patho-
logical process progresses into the entorhinal
region and into the hippocampal formation
via the perforant path (NFT stage II). From
the transentorhinal region, it encroaches on
the adjoining temporal neocortex during NFT
stage III and, from there, more widely into the
temporal, insular, and frontal neocortex during
NFT stage IV (Fig. 2). The possible propagation
of the disease process from the transentorhi-

nal region to the entire neocortex is likely to
take place via corticocortical projections of the
downstream pathways—that is, via pyramidal
cells in layers V and VI, the axons of which dif-
fusely terminate in layers I–III and V and VI of
their target areas, with very few interconnectiv-
ities in layer IV (Fig. 2, dashed arrows). At the
same time, the disease process is supported by
similarly diffuse projections from correspond-
ing portions of the nonthalamic nuclei (Fig. 1),
thus virtually sparing neocortical layer IV in
AD. As a result, models are needed to investigate
if one of the two routes (coeruleocortical or
corticocortical) is sufficient to transmit tau pa-
thology or if both routes influence the same
sites of recipient neurons (i.e., distal segments
of dendrites), working together to spread the
pathological process. As discussed above, the
pallidum remains beyond the influence of
cholinergic, serotonergic, and noradrenergic
networks, and it is not reached via the cortico-
cortical downstream pathway. Does this lack
of connectivity account for why the pallidum
consistently fails to develop tau pathology
(and Ab) in the course of AD? Finally, it
should also be tested in an experimental model
whether, after severing coeruleus axons ipsilat-
erally, tau pathology fails to develop in the
transentorhinal region (NFT stage I) and/or
in axons and neurons of the spinal cord (NFT
stage III) (Fig. 2).

The hypothesis of a neuron-to-neuron
seeding and anterograde propagation via syn-
apses with pre- and postsynaptic sites offers
a parsimonious explanation for both the pre-
dictable regional distribution pattern of the
tau lesions and the gradual rate of disease
progression in AD (Braak and Del Tredici
2011b, 2015a). With knowledge of the underly-
ing mechanisms and pathogenicity of different
tau strains, it might be possible to delay or in-
terrupt the spread of the pathology (Pooler
et al. 2013; Braak and Del Tredici 2015a,b).
The prospect of developing a causally based
therapy for AD during the phase when the pro-
cess is still confined to the lower brainstem, and
at the very least prior to the involvement of the
neocortex, is highly challenging but certainly
worthwhile.
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SPREAD OF PATHOLOGICAL a-SYNUCLEIN
LESIONS IN PD

As in AD, the pathological process in sporadic
PD progresses predictably from one region to
another (Braak et al. 2003a; Braak and Del Tre-
dici 2009; Dickson et al. 2009; Halliday et al.
2012; van de Berg et al. 2012; Goedert et al.
2013; McCann et al. 2015). A major difference
between the two diseases, however, is that in PD
the OB (Fig. 4) and the dorsal motor nucleus of
the vagal nerve (dmX), rather than the locus
coeruleus, become involved at the earliest stage
(Fig. 4, dark purple). Whereas vagal (dmX) ef-
ferences connect the CNS closely with the ENS
and PNS, the projections of the locus coeruleus
only reach sites within the CNS (Fig. 4). These
features may account for the noticeable differ-
ences between the regional distribution patterns
and progression of both pathologies: Although
abnormal tau remains virtually confined to the
CNS in AD (Arnold et al. 2010; Braak and Del
Tredici 2015a), synucleinopathy in PD develops
in all divisions of the nervous system (CNS,
ENS, and PNS) (Beach et al. 2010; Del Tredici
et al. 2010; Del Tredici and Braak 2012; Malek
et al. 2014).

Intracerebrally, the PD-associated process
consistently begins (PD stage 1) in the OB
(chiefly in the anterior olfactory nucleus) and/
or in the dmX (Fig. 4, dark purple) (Pearce et al.
1995; Hawkes et al. 1999; Del Tredici et al. 2002;
Braak et al. 2003a; Bloch et al. 2006; Fujishiro
et al. 2008; Beach et al. 2009; Braak and Del
Tredici 2009; Markesbery et al. 2009). Spindle-
shapeda-synuclein aggregates, or Lewy neurites
(LNs) (Spillantini et al. 1997; Braak et al. 1994b,
1999; Duda 2006; Tofaris and Spillantini 2007),
appear in dendrites of the visceromotor neurons
of the dmX. These LNs are sometimes accompa-
nied by globular somatic inclusions, or LBs, in
dmX visceromotor neurons and by LNs in the
unmyelinated and long axons of the dmX pro-
jection cells in the medulla. In contrast, the mo-
tor cells in the ambiguus nucleus of the vagal
nerve that innervate the striated musculature
of the larynx and proximal esophagus are spared
(Eadie 1963; Del Tredici et al. 2002; Braak et al.
2003a). The pathological process generally pro-

gresses from the dmX caudorostrally through
vulnerable regions of the medulla oblongata,
tegmentum pontis, as well as the mid- and fore-
brain until it reaches the cerebral cortex (Braak
et al. 2003a; Goedert et al. 2013).

In stage 2, Lewy pathology develops in nu-
clei of the level-setting system: the lower raphe
nuclei, magnocellular portions of the reticular
formation, and the locus coeruleus (Braak et al.
2003a; Braak and Del Tredici 2009). The de-
scending projections of these superordinate nu-
clei regulate spinal cord and medullary centers
both for somato- and viscerosensory input as
well as for viscero- and somatomotor output.
Moreover, this system can temporarily reduce
the conduction of incoming pain signals while
raising attention levels and placing the organ-
ism’s motor neurons in a heightened state of
readiness (Fig. 4, light purple) (Nieuwenhuys
1996; Del Tredici and Braak 2012). It is possible
that descending projections from the involved
supraspinal level-setting nuclei (beginning in
stage 2 and continuing in stage 3) transfer or
disseminate aggregated a-synuclein in an anter-
ograde direction to axons in the spinal cord,
including lateral portions of layers 7 (viscero-
sensory/visceromotor autonomic centers, in-
termediolateral nucleus [IML], sacral parasym-
pathetic nucleus [SPS]), 1 (nociception), and
9 (somatomotor system) (Fig. 4, dark and light
purple) (Braak et al. 2007; Del Tredici and Braak
2012; see also Wakabayashi and Takahashi
1997b; Bloch et al. 2006; Klos et al 2006). A
possible additional route, this time for retro-
grade transport and transsynaptic transmission
of a-synuclein, is from the periphery (ENS) via
the postganglionic sympathetic projection neu-
rons of the celiac ganglion (PNS) to the pregan-
glionic sympathetic neurons of the intermedio-
lateral (IML) nucleus in layer 7 of the spinal cord
(Fig. 4, IML, PNS, and ENS) (Braak et al. 2006;
see also Wakabayashi and Takahashi 1997a,b;
Haı̈k et al. 2004; Braak and Del Tredici 2009).

During stage 2, PD-associated lesions in
the periphery (PNS) are seen in the sympathetic
trunk, sympathetic peripheral prevertebral gan-
glia, sympathetic nerves of the submandibular
gland, and selected types of projection neurons
in the intramural plexus of the ENS (Fig. 4, light
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Figure 4. Possible routes of a-synuclein transmission in Parkinson’s disease (PD). The color-coded arrow at the
bottom of the diagram indicates PD neuropathological stages 1–6 and PD-related lesions. Color-coded arrows
(excluding black arrows) are intended to indicate the routes along which the pathology may disseminate
transneuronally by anterograde or retrograde transport. A dashed black line separates the central from the
peripheral and enteric nervous systems. The diagram shows the early involved level-setting nuclei with descend-
ing projections and nonthalamic nuclei with ascending projections in relationship to the pathological process.
The lesions do not develop at all predilection sites within the nervous system simultaneously, but rather,
sequentially. In stage 1 (dark purple), Lewy pathology is present within anterior olfactory structures (OB), in
the dorsal motor nucleus of the vagus nerve (dmX), and in the intermediate reticular zone (not shown). The
ambiguus nucleus is spared. Between stages 2 and 6, the pathological process progresses caudorostrally through
the neuraxis. In stage 2 (light purple), the pathology reaches the level-setting nuclei of the lower brainstem (lower
raphe group, gigantocellular nucleus of the reticular formation, and locus coeruleus), followed by a group of
nonthalamic nuclei that project widely to the cerebral cortex (hypothalamic tuberomamillary nucleus, Mey-
nert’s basal nucleus, the interstitial nucleus of the diagonal band, medial septal nucleus). (Legend continues on
following page.)
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purple) (Bloch et al. 2006; Braak et al. 2006;
Braak and Del Tredici 2009; Del Tredici et al.
2010; see also den Hartog Jager and Bethlem
1960; Wakabayashi et al. 1988, 1989, 1990,
1993; Takeda et al. 1993; Wakabayashi and Ta-
kahashi 1997a,b; Cersósimo et al. 2011; Beach
et al. 2013; Adler et al. 2014). The brain is closely
connected with postganglionic ENS neurons via
axons of the preganglionic parasympathetic
motor neurons of the dmX. Pathologically al-
tered LNs in the submucosal plexus develop in
close proximity to the gastric glands directly
beneath the epithelial lining of the stomach
and esophagus (Braak et al. 2006). For this rea-
son, we postulated earlier that an unknown
pathogenic agent (e.g., an environmental toxin)
or pathologically altered a-synuclein could ad-
here to the mucous membranes of the nose and
upper gastrointestinal tract and, akin to a neu-
rotropic virus (Jang et al. 2009a,b), then be
transmitted to superficial nerve cells and cellu-
lar processes of the submucosal plexus in the
esophagus or stomach (Fig. 4, dark purple)
(Braak et al. 2003b, 2006; Hawkes et al. 2007).

From there, the hypothesis was that Lewy pa-
thology might reach the dmX in the lower
brainstem via the myenteric plexus and retro-
grade axonal transport through unmyelinated
axons of the peripheral vagus nerve (Braak
et al. 2003b; Hawkes et al. 2007; Braak and Del
Tredici 2009; see also George et al. 2013; Olanow
and Brundin 2013; Holmqvist et al. 2014; Ulu-
soy et al. 2014).

The distal esophagus and stomach are
among the more likely sites for a transfer of
a-synuclein between interconnected neurons
because there the ENS underlies predominantly
vagal influence (Richards and Sugarbaker 1995;
Benarroch 2007; Cersósimo and Benarroch
2008). Moreover, the presence of Lewy pathol-
ogy in colonic biopsies (Lebouvier et al. 2008,
2010; Pouclet et al. 2011; Shannon et al. 2012)
indicates that the intramural plexus in the lower
gastrointestinal tract might be an additional
source of a route for retrograde dissemination
of synucleinopathy to the dmX. Currently, no
definitively confirmed autopsy-based evidence
exists for either phenomenon (Beach et al.

Figure 4. (Continued) Involvement of midbrain nuclei (tegmental pedunculopontine nucleus [PPT], substantia
nigra, pars compacta [SN], the upper raphe group) and the central subnucleus of the amygdala mark stage 3
(dark red). In stage 4 (dark red), additional subnuclei of the amygdala develop Lewy pathology and the cerebral
cortex (transentorhinal region [transent], entorhinal region [entorhin], hippocampal formation [hipp]) be-
come involved. During stages 5 and 6 (dark/light pink), lesions develop chiefly in projection neurons of the deep
layers of the neocortex, beginning in the high-order sensory association areas and prefrontal fields. From there,
the pathology advances into first-order sensory association areas and premotor fields, eventually reaching the
primary sensory and motor fields. Spinal cord lesions, probably resulting from the level-setting nuclei via
anterograde axonal transport, first develop at stage 2 in preganglionic sympathetic neurons of the intermedio-
lateral nucleus (IML) and sacral parasympathetic nucleus (SPS) (light purple), followed during stage 3 by lesions
in nociceptive projection neurons of layer 1 (lam. 1) and in a-motoneurons, including those of Onuf ’s nucleus,
in layer 9 (lamina 9) (dark red). Alternatively, the IML could be reached by the spread of pathology from
sympathetic postganglionic neurons of the peripheral celiac ganglion (peripheral nervous system [PNS]), which
have contacts in the enteric nervous system (ENS). Based on known anatomical connectivities, the autonomic
intramural plexus of the ENS could be either the source (dark purple, via retrograde transport) of the pathology
in the dmX or the recipient (light purple, via anterograde transport) of the pathology from the dmX. Similarly,
the lesions could disseminate to the locus coeruleus (stage 2) by retrograde transport from the olfactory bulb
(OB) and/or from the dmX (stage 1). First-order sensory assoc., first-order sensory association areas; basolat.
amygd., amygdala, basolateral subnuclei; OB, olfactory bulb (chiefly the anterior olfactory nucleus); high-order
sensory, high-order sensory association areas; centr. amygd., central subnucleus, amygdala; cereb, cerebellum;
dmX, dorsal motor nucleus of the vagal nerve; d. striat, dorsal striatum; ENS, enteric nervous system (sub-
mucosal and myenteric plexus); entorhin, entorhinal region; hipp, hippocampal formation (subiculum, Am-
mon’s horn, and dentate fascia); MD, mediodorsal nuclei of the thalamus; PNS, peripheral nervous system (e.g.,
sympathetic trunk, celiac and superior cervical ganglia, and submandibular gland); precer, precerebellar nuclei;
VA, ventral anterior nucleus of the thalamus; VLp, posterior ventrolateral nucleus of the thalamus; vp, ventral
pallidum; vst, ventral striatum.
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2010). It is, however, remarkable that in exper-
imental models, following intragastric or intra-
duodenal applications, a-synuclein propaga-
tion (i.e., a progression) from the periphery to
the brain (dmX) occurred over considerable an-
atomical distances (Miwa et al. 2006; Pan-Mon-
tojo et al. 2010; Holmqvist et al. 2014; cf. Sacino
et al. 2014). Conversely, when vagotomy was
performed, Lewy pathology dissemination
from the gut to the dmX failed to occur or the
incidence of PD was remarkably reduced (Pan-
Montojo et al. 2012; Svensson et al. 2015).

In in vitro (Volpicelli-Daley et al. 2011;
Freundt et al. 2012) and animal models (Reca-
sens et al. 2014), misfolded a-synuclein is capa-
ble of both retrograde and anterograde axonal
transport (see also George et al. 2013). Thus,
despite the lack of verifiable evidence in human
autopsy cases to date and although neither the
olfactory mucosa, olfactory fila, nor olfactory
glomerula have been reported to developa-syn-
uclein aggregates (Duda et al. 1999), both of
the following additional routes of a-synuclein
propagation during stages 1 and 2 are conceiv-
able from an anatomical standpoint: (1) a-Syn-
uclein could disseminate to the locus coeruleus
in stage 2 by retrograde transport and trans-
synaptic transmission from the OB and anterior
olfactory nucleus (stage 1) (Shipley et al. 1985;
Marien et al. 2004; Doty 2008). (2) a-Synuclein
could also disseminate from the dmX in stage 1
by retrograde transport to the locus coeruleus
and by anterograde transport to ENS nerve
cells, where Lewy pathology can be observed
from at least stage 2 onward (Fig. 4, light/dark
purple) (Braak et al. 2006; Del Tredici et al. 2010;
but see Del Tredici and Braak 2012; Stokholm et
al. 2016). The pathology could consist of mis-
foldeda-synuclein molecules, minimally aggre-
gated inclusions, or fragments of both, and be
capable of inducing conformational changes in
normal a-synuclein within previously unin-
volved recipient neurons. As in tau models of
AD, there is also some experimental evidence
that a-synuclein can be taken up into neurons
by endocytosis (Desplats et al. 2009; Luk et al.
2009; Nonaka et al. 2010; Hansen et al. 2011;
Volpicelli-Daley et al. 2011; George et al. 2013).
Most of the misfolded a-synuclein molecules

(presumably originating in synaptic terminals)
would be transported via the axon in a retro-
grade direction to the soma to undergo proteo-
somal or other forms of degradation. However,
the somatic proteinaceous inclusions probably
would be too numerous and/or too large to be
eliminated by cellular mechanisms, and multi-
ple somatic LBs would develop (Braak and Del
Tredici 2009; Del Tredici and Braak 2013).

In stage 2, the level-setting nuclei send
strong projections to the dmX. Their existence
indicates that retrograde axonal and transneuro-
nal transport via descending fibers could dis-
seminate the pathology from the dmX to the
level-setting nuclei. However, it cannot be ruled
out that involvement of isolated level-setting
projection neurons (e.g., in the locus coeruleus)
may precede involvement of nerve cells in the
dmX and propagate the pathological process
anterogradely from the coeruleus to the dmX.
The anterograde transfer of a pathogen from
the locus coeruleus not only is conceivable via
connectivities with the anterior olfactory nucle-
us (Fig. 4) (i.e., in the absence of pathological
lesions in the olfactory mucosa and olfactory
glomerula) but also would explain the enigmat-
ic finding of isolated LNs that are often confined
to dendrites of dmX visceromotor neurons at
stage 1 (Fig. 3) (Braak and Del Tredici 2009). As
discussed above, spinal cord involvement,
which begins in portions of layer 7 during stage
2 (Fig. 4, light purple), likely occurs via antero-
grade transport because anatomical connectiv-
ities make it possible that the lesions developing
there originate from descending projections in
the supraspinal level-setting nuclei.

During stage 3, additional groups of nerve
cells in the spinal cord that are the targets of
level-setting nuclei projections develop Lewy
pathology. These include the large nociceptive
projection neurons in layer 1 and the a-moto-
neurons in layer 9, including the motoneurons
of Onuf ’s nucleus (Fig. 4, dark red) (Del Tredici
and Braak 2012). The caudorostral trajectory of
the Lewy pathology makes inroads at this stage
into the mesencephalic tegmentum and basal
portions of the prosencephalon (Fig. 4, dark
red). Neuronal loss occurs not only in compo-
nents of the somatomotor system (e.g., the teg-
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mental pedunculopontine nucleus [PPT] and
pars compacta of the substantia nigra [SN])
but also in the nuclei of the upper raphe system,
the central subnucleus of the amygdala (Fig. 4,
dark red), the hypothalamic tuberomamillary
nucleus, and the magnocellular nuclei of the
basal forebrain (medial septal nucleus, intersti-
tial nucleus of the diagonal band, and basal nu-
cleus of Meynert) (Braak et al. 2003a; Braak and
Del Tredici 2009).

Within the limbic system, the central sub-
nucleus of the amygdala (Braak et al. 1984)
is densely and bidirectionally connected with
level-setting nuclei and the dmX, thereby pro-
viding supervening limbic input to these supra-
spinal nuclei (Fig. 4) (Sims and Williams 1990;
Liubashina et al. 2000). Newer studies are re-
quired to determine whether pathways possibly
disseminate the a-synuclein pathology via ret-
rograde or anterograde transport to the central
subnucleus and by means of which pathways the
pathological process reaches the dopaminergic
neurons of the SN. Among these, however, are
probably the tegmental pedunculopontine nu-
cleus (anterograde transport via direct pro-
jections) and/or coeruleonigral projections
(Fig. 4, dark red) (Collingridge et al. 1979; Jones
and Yang 1985).

In stage 4, the pathological process pene-
trates the forebrain and enters a specific portion
of the cerebral cortex for the first time: the
transentorhinal region in the anteromedial
temporal lobe (Fig. 4, light red). As pointed
out above for AD, this unique architectonic en-
tity functions as a transitional zone between the
allo- and neocortex. It is highly developed only
among higher primates and, above all, in hu-
mans (Braak and Braak 1992; Braak and Del
Tredici 2015a). In subsequent stages, the trans-
entorhinal region develops the most severe Lewy
pathology within the cerebral cortex (Braak and
Del Tredici 2009). Moreover, it is remarkable
that the PD-related pathological process devel-
ops only in the presence of an AD-related pro-
cess that has reached at least stages 1a, 1b, or
higher (Marien et al. 2004; Braak and Del Tre-
dici 2015a; see also Arai et al. 2001; Ishizawa
et al. 2003; Fujishiro et al. 2008). Whether a
“synergism” exists between the two pathological

proteins, and if so, which one takes the lead, is
currently unknown. We believe it may be tau
because tau pathology precedes the synuclein-
opathy (Fig. 3E,F) (Braak and Del Tredici 2011a,
2015a).

The locus coeruleus, together with the baso-
lateral nuclei of the amygdala and magnocellu-
lar nuclei of the basal forebrain, is bidirection-
ally connected with the anteromedial temporal
cortex and transentorhinal region. Dissemina-
tion along these connectivities might well en-
able the synucleinopathy (in stage 4) to reach
the transentorhinal region by means of antero-
grade axonal and transneuronal transport. As
if through the eye of a needle, all significantly
memorable data arriving from the neocortical
sensory association areas must transit through
the transentorhinal/entorhinal regions and the
perforant path to reach the hippocampal for-
mation (Fig. 4, dark red). Via this route, the
pathological process could be propagated to
the cortical predilection sites in anteromedial
portions of the temporal lobe.

The topographic extent of the PD-related
process is greatest during end-stages 5 and
6. With the transentorhinal region as its cortical
beachhead, the synucleinopathy gradually
spreads throughout the entire neocortex (Fig.
4, dark pink). At stage 5, Lewy pathology devel-
ops in high-order sensory association areas and
prefrontal fields of the neocortex (e.g., insular,
subgenual, and anterior cingulate areas, i.e., or-
ganizational areas for processing interoceptive
data and regulating visceromotor and endo-
crine functions). In stage 6, the pathological
process spreads to the first-order sensory asso-
ciation areas, premotor fields, and even into the
primary sensory and motor fields (Fig. 4, light
pink) (Braak et al. 2003a; Braak and Del Tredici
2009). Like falling dominos, successive neocor-
tical regions display beginning, followed by in-
creasing, degrees of synucleinopathy (Fig. 5).
The relatively small neocortical pyramidal
cells that contain a-synuclein aggregates occur
chiefly in layers V and VI (Wakabayashi et al.
1995). This pattern of progression conforms
well with the concept that propagation of
the disease process throughout the neocortex
likely takes place via corticocortical projections
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of the downstream pathways, similar to the sit-
uation proposed here for AD. Downstream pro-
jections have numerous diffuse synaptic con-
tacts in layers I–III and also V and VI but very
few in layer IV. As in AD, neocortical layer IV is
virtually spared in PD, and most of the Lewy

pathology develops in layers V and VI. At the
same time, the cortical disease process (antero-
grade transmission via corticocortical path-
ways) could be supported, as in AD, by projec-
tions from the locus coeruleus (coeruleocortical
projections) and other widely projecting non-

A B

C D
PD  stage 3 PD  stage 4

PD  stage 5 PD  stage 6

Figure 5. Lewy pathology in 100 mm polyethylene glycol–embedded hemisphere sections at stages 3–6 of
sporadic Parkinson’s disease (PD). (A) The arrow indicates the presence of the lesions in the central subnucleus
of the amygdala. The cerebral cortex is still uninvolved at stage 3. (B) During stage 4, additional subnuclei of
the amygdala develop Lewy pathology (the arrow points to cortical and basolateral subnuclei). Initial cortical
lesions begin to appear at this stage in a specific portion of the anteromedial temporal lobe: the transentorhinal
region (arrowhead). This region is a transitional zone wedged between allo- and neocortical regions and is
especially developed only among higher primates, above all, in humans. (C) The pathological process pro-
gresses in stage 5 (moving clockwise from the transentorhinal region) into regions of the neocortex. Here, in
addition to the increasing pathology present in the transentorhinal region (arrowhead), the inclusions in
limbic portions of the temporal, insular, and cingulate cortex, in the hippocampal formation, and in the
subnuclei of the amygdala gradually worsen. (D) During stage 6, the destruction in the temporal, insular, and
cingulate regions is very severe. Not only the first-order sensory association areas and premotor fields of the
neocortex, but also the neocortical primary sensory (including the primary auditory gyrus of Heschl) and
motor fields become heavily involved. The arrowhead points to the transentorhinal region. (A–D) a-Synuclein
immunohistochemistry.
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thalamic nuclei that become involved early in
the process.

CONCLUDING REMARKS

In AD and PD, only projection cells with a
disproportionately long and unmyelinated or
sparsely myelinated axon develop proteinace-
ous aggregates, whereas interneurons and pro-
jection cells with comparatively short axons
generally do not. In fact, only a few nerve cell
types within the human nervous system are able
to develop tau ora-synuclein pathology, where-
as contiguous neurons or those near involved
regions remain intact (Braak and Del Tredici
2009, 2015a). This can complicate the assess-
ment of the results achieved in cellular and
animal models, which, in contrast to human
pathology, sometimes display nonsynaptic or
nonselective (i.e., contiguous) rather than selec-
tive spreading along axonal connectivities
(Freundt et al. 2012; Kaufman and Diamond
2013; cf. Ahmed et al. 2014). In addition, the
pathogenicity and potential intrinsic noxious
gain-of-function mechanisms for hyperphos-
phorylated tau and Lewy pathology are still con-
troversial (Cookson 2006; Quilty et al. 2006;
Dickson et al. 2009; Kopeikina et al. 2012; Malek
et al. 2014).

The potential prion-like properties associ-
ated with abnormal tau and a-synuclein in-
dicate that both are not neuroprotective. In
addition, within the context of proteinopathies,
in which the degradation and removal of ab-
normal proteins malfunction, both are linked
with considerable certainty to the pathogenic
process, because the breakdown of cellular
mechanisms for degrading and clearing abnor-
mal tau and a-synuclein make them ultimately
deleterious to neuronal equilibrium (Chung
et al. 2001; Ciechanover 2005; Olanow and
McNaught 2006; Rubinsztein 2006; Lim and
Tan 2007; Upadhya and Hegde 2007a,b; Pan et
al. 2008; Lehman 2009; Kovacech et al. 2010;
Ebrahimi-Fakhari et al. 2012; Kopeikina et al.
2012; Tai et al. 2012). There is also evidence
that intra-axonal a-synuclein and intraneu-
ronal tau aggregates are associated with axon-
opathy (Irizarry et al. 1998; Saha et al. 2004;

Duda et al. 2006; Stokin and Goldstein 2006;
Orimo et al. 2008; Kanazawa et al. 2011; Lingor
et al. 2012; Lamberts et al. 2015), cell membrane
dysfunction (Tsigelny et al. 2012), or cellular
dysfunction (Dugger and Dickson 2010). De-
pending on study design, some experimental
models display motor impairment, cognitive
impairment, or deficits in neuronal excit-
ability and/or cell loss (Giasson et al. 2002;
Sydow et al. 2011; Volpicelli-Daley et al. 2011;
Luk et al. 2012a; Sacino et al. 2014; Brelstaff
et al. 2015; Ozcelik et al. 2016).

In AD, tau pathology develops prior to Ab
deposition (Braak and Del Tredici 2011a, 2014,
2015a,b; Braak et al. 2011) and possibly impairs
axoplasmic flow and axonal transport (Utton
et al. 2002; Iqbal et al. 2009); in PD, LNs occur
at most sites prior to LBs, probably disrupting
somatopetal and/or somatofugal transport and
interfering with normal cellular functioning
(Duda et al. 2006; Del Tredici and Braak 2013;
Volpicelli-Daley et al. 2014). Although many
neurons containing neurofibrillary lesions or
multiple LBs and LNs survive for decades, this
does not imply that mere survival can be equat-
ed with functional integrity (Braak and Del Tre-
dici 2009, 2015a). Premature neuronal loss is
the endpoint of the pathological process, but
increasingly compromised cellular function in
large numbers of neurons almost certainly
drives the degeneration that contributes to pre-
mature cell death in AD and PD.
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