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Filtered circular fingerprints improve 
either prediction or runtime performance 
while retaining interpretability
Martin Gütlein*   and Stefan Kramer

Abstract 

Background:  Even though circular fingerprints have been first introduced more than 50 years ago, they are still 
widely used for building highly predictive, state-of-the-art (Q)SAR models. Historically, these structural fragments 
were designed to search large molecular databases. Hence, to derive a compact representation, circular fingerprint 
fragments are often folded to comparatively short bit-strings. However, folding fingerprints introduces bit collisions, 
and therefore adds noise to the encoded structural information and removes its interpretability. Both representations, 
folded as well as unprocessed fingerprints, are often used for (Q)SAR modeling.

Results:  We show that it can be preferable to build (Q)SAR models with circular fingerprint fragments that have been 
filtered by supervised feature selection, instead of applying folded or all fragments. Compared to folded fingerprints, 
filtered fingerprints significantly increase predictive performance and remain unambiguous and interpretable. Com-
pared to unprocessed fingerprints, filtered fingerprints reduce the computational effort and are a more compact and 
less redundant feature representation. Depending on the selected learning algorithm filtering yields about equally 
predictive (Q)SAR models. We demonstrate the suitability of filtered fingerprints for (Q)SAR modeling by presenting 
our freely available web service Collision-free Filtered Circular Fingerprints that provides rationales for predictions by 
highlighting important structural features in the query compound (see http://coffer.informatik.uni-mainz.de).

Conclusions:  Circular fingerprints are potent structural features that yield highly predictive models and encode 
interpretable structural information. However, to not lose interpretability, circular fingerprints should not be folded 
when building prediction models. Our experiments show that filtering is a suitable option to reduce the high compu-
tational effort when working with all fingerprint fragments. Additionally, our experiments suggest that the area under 
precision recall curve is a more sensible statistic for validating (Q)SAR models for virtual screening than the area under 
ROC or other measures for early recognition.
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Background
(Q)SAR [(Quantitative) structure-activity relationship] 
models are effective tools to predict the biological or 
chemical activity of chemical compounds. The broad 
range of applications includes toxicity testing, where 
(Q)SAR modeling is an important alternative approach 
to lower the demand of in  vivo animal testing. In drug 
design, lead compounds can be detected by applying 

(Q)SAR models for virtual screening, replacing exten-
sive in vitro experiments [1]. The major advantage of the 
computer-driven approach is that these in silico models 
are faster and save money compared to conservative test-
ing methods [2]. One of the drawbacks is that it is hard to 
understand the reasoning behind (Q)SAR model predic-
tions: commonly (Q)SARs are built by training machine 
learning algorithms and therefore often resemble black 
boxes. However, interpretability of model predictions 
to discover a possible mode of action of the query com-
pound is often demanded, e.g., by the OECD guidelines 
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for valid (Q)SAR models [3]. A precondition for inter-
pretable predictions is to train and apply the model with 
explicable and meaningful features. It is hard to extract 
any knowledge in case the feature space is encoded in a 
complex way and the chemical or biological information 
that the feature values are based on is opaque. One type 
of such encoded features are folded fingerprints.

A fingerprint is a bit-wise string, that includes only 
zeros and ones, encoding absences and presences of 
structural fragments. Often, fingerprints are folded to a 
fixed length to yield a compact representation of a poten-
tially large list of structural fragments [4]. Folding intro-
duces bit collisions, as the bit vector size is commonly 
much smaller than the number of features: multiple dif-
ferent fragments are assigned to the same position in a 
bit vector. The folding procedure is a one way transfor-
mation, i.e., it is not possible to distinguish between 
several structural features that have been mapped to a 
particular bit when having only the bit vector available. 
Bit collisions do not only remove interpretability, they 
also introduce ambiguity that could possibly deterio-
rate the prediction model. As an example, an important 
structural alert could be absent in a query compound. 
However, the query compound could possibly contain 
a completely different fragment that is assigned to the 
same bit position. Nevertheless, due to the sparsity of 
structural fragments (i.e., each fragment is usually miss-
ing in most of the compounds), folded fingerprints have 
been shown to work well in practice for building predic-
tive (Q)SAR models (see below).

One category of structural fingerprints are the so-
called circular fingerprints, which have already been 
introduced by Morgan in 1965 [5]. Despite their name, 
circular fingerprints yield single, separate structural frag-
ments (that could possibly be employed without a bit-
wise fingerprint). The fragments have a circular shape: 
starting with an initial atom, each fragment is extended 
by taking neighboring atoms into account. An important 
parameter for the fragments is the diameter that relates 
to the number of bonds. Fragments with diameter zero 
describe only the centering atom, fragments with diame-
ter two contain all immediate neighbors of the center, 
diameter four includes a second layer of neighbors, and 
so on. A possible representation of circular fingerprint 
fragments assigns a numeric ID to each fragment, that is 
created by adding up the IDs of the atoms included in the 
fragment. The exact information about atoms encoded in 
the IDs depends on the fingerprint type. A common type 
is extended-connectivity fingerprints (ECFPs) [4], where 
the numeric IDs includes a range of atomic properties 
(like, e.g., atomic number, charge, valence, number of 
heavy atom neighbors, whether the atom is included in a 
ring, and so on). The chance that different fragments have 

the same numeric ID (without applying folding) has been 
shown to be slim.1 The fragments are mined separately 
for each molecule and can directly be mapped to the fin-
gerprint bit vector by employing the numeric ID as hash-
key. If folding is enabled, the numeric ID is reduced by 
multiples of the fixed bit vector length until it fits on the 
fingerprint (using the modulo operation). By default, 
fragments are enumerated without a support threshold 
(i.e., with a minimum frequency of 1).

Currently, there are two freely available cheminformat-
ics libraries to mine ECFPs.2 Even though folded finger-
prints are regularly applied for model building [6, 7], 
many researchers agree that bit-collisions might have a 
negative effect on modeling. Accordingly, researchers 
often use unprocessed fingerprints (i.e., without folding) 
to build (Q)SAR models [8–10]. A comparison, which was 
restricted to a single dataset, showed that unprocessed 
fragments can improve modeling results using Logistic 
Regression [11]. However, the same work stated the con-
trary for naive Bayes, unprocessed fingerprints for model 
building decreased the model performance. Additionally, 
in this study it was technically not feasible to build a ran-
dom forest model due to the large amount of features. 
Rogers et al. [12] show that an adjusted version of naive 
Bayes can work well with unfolded fingerprints. Hence, 
naive Bayes is modified to employ only fragments that are 
present in the query compound for prediction and a cor-
rection term is introduced for infrequent features [13]. 
Also limited to a single dataset is the work of Liu et  al. 
[14], who show that different folding sizes of 512, 1024, 
and 2048 produce only marginal model predictivity 
differences.

Circular fingerprints have initially been introduced 
for similarity searching. For this application, it has been 
shown that using unprocessed instead of folded finger-
prints provides only a small performance gain [15, 16]. 
Hu et al. [17] present an approach that improves search 
results by employing only fragments that are present in 
active compounds.

We present, to the best of our knowledge, the first com-
prehensive and systematic comparison of unprocessed 
and folded fingerprints for (Q)SAR modeling and virtual 
screening. Moreover, we show that reducing the amount 
of features with endpoint-specific (i.e., supervised) fea-
ture selection is superior to folding. Filtering reduces the 

1  The collision rate of unfiltered fingerprints is 0.025% for 1 million features 
[4].
2  Currently, only RDKit (http://www.rdkit.org) and CDK [39] provide the 
computation of ECFP fingerprints (among other types of fingerprints). Open 
Babel [45] allows calculating MOLPRINT 2D circular fingerprints [46]. The 
fingerprinting functionalities of the Indigo Toolkit (http://lifescience.open-
source.epam.com/indigo) are tree based.

http://www.rdkit.org
http://lifescience.opensource.epam.com/indigo
http://lifescience.opensource.epam.com/indigo
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computational effort for modeling (similar to folding), 
while improving the model predictivity by avoiding bit 
collisions. Additionally, feature selection has the posi-
tive effect of retaining the interpretability of features. We 
demonstrate this by presenting the freely available mod-
eling web service CoFFer (Collision-free Filtered Circular 
Fingerprints) that provides rationales for predictions.

This work is structured as follows. In the remainder 
of the “Background” section, we still elaborate on the 
type of validation conducted in the paper. In particular, 
we argue that AUPRC (the area under precision recall 
curve) is a suitable validation measure for virtual screen-
ing. The results section compares the performance of  
(Q)SAR models built with unprocessed, folded and fil-
tered circular fingerprints and introduces our prediction 
web service. Details of the experimental setup and imple-
mentation are provided in the “Experimental” section. 
Subsequently, we provide a conclusion before presenting 
the methods used in this work.

AUPRC (area under precision recall curve) as early 
recognition measure
A property of virtual screening datasets is the skewed 
class distribution: commonly, the number of active com-
pounds is much lower than the number of inactives (in 
our context, also often referred to as decoys). Hence, 
accuracy is not a good option as predicting all or most 
compounds as inactive already yields a very high score.

The well known AUROC (the area under the receiver 
operating characteristic (ROC) curve) measure is based 
on ranking compounds according to their predicted 
probability of being active. y-axis and x-axis of the ROC 
curve are true positive rate (also named sensitivity or 
recall) and false positive rate [18]. The area under the 
ROC curve usually ranges between 0.5 (random) and 1.0 
(perfect), and has the nice property that it can be inter-
preted as the probability that a randomly drawn positive 
instance is ranked higher than a randomly drawn nega-
tive instance. However, AUROC has the drawback that 
all compounds within the ranking have equal weight, 
whereas in virtual screening, researchers are usually 
more interested in the compounds that are most likely 
active, and less interested in the compounds that are less 
likely active. Hence, early recognition measures like EF 
(enrichment factor) and BEDROC (Boltzmann-Enhanced 
Discrimination of ROC) have been developed [19, 20].

Enrichment factor (EF) compares the ratio of active 
compounds in the entire dataset to the ratio of active 
compounds within the top χ ranked compounds [20]. 
The researcher has to manually decide on a threshold χ 
(often one or five percent is selected). EF is insensitive 
to changes that do not “cross” this threshold (e.g., the 
enrichment factor does not increase when the ranking 

improves within the top χ percent). Moreover, the score 
is based on the original ratio of active compounds in the 
entire dataset and can hardly be used to compare predic-
tions on datasets with different class distributions.

BEDROC is based on robust initial enhancement (RIE), 
which uses continuously decreasing exponential weight 
when ranking compounds according to estimated prob-
ability [19]. It is bounded between 0 and 1. BEDROC 
has the drawback to depend on a parameter alpha that 
defines the exponential weight (and therefore its sensibil-
ity towards early recognition).

We here propose to use the area under the precision 
recall curve (AUPRC) as validation statistic. To the best 
of our knowledge it has not been used in virtual screen-
ing so far, even though it has been described as a more 
sensible measure on datasets with skewed class distri-
butions [21–23] than the area under the ROC curve 
(AUROC). Moreover Davis et al. [21] show that, when 
comparing validation results, AUROC dominates if 
and only if AUPRC dominates and that algorithms that 
optimize AUROC not necessarily optimize AUPRC. 
Similarly to the ROC curve, the precision recall curve 
has the true positive rate (recall) as y-axis, however on 
the x-axis precision is employed (also referred to as 
selectivity or positive predictive values). For high prob-
ability values the curve is calculated with only few com-
pounds as all true negative predictions are ignored by 
precision and recall. To this end, predictions with high 
probability have a higher influence on AUPRC than 
predictions with lower probability, which is desirable 
when analyzing virtual screening results.

As a drawback, the baseline of the area under the preci-
sion recall curve is equal to the ratio of active compounds 
in the dataset. In other words, the AUPRC score ranges 
between the ratio of active compounds (random pre-
diction) and 1 (perfect prediction). This dependency of 
AUPRC hinders comparisons of margins of improvement 
between datasets with different class distributions and 
reduces the interpretability of AUPRC scores. Accord-
ingly, the precision under the precision recall curve is 
neither “independent to extensive variables” [24] nor 
is its interpretation as intuitive as, e.g., AUROC scores. 
However, it full-fills other favorable characteristics of 
validation measures listed by Nicholls [24] as it has no 
free parameters, and can be estimated in a robust way 
providing confidence intervals [25]. Overall, we consider 
AUPRC to be an appropriate measure for validating vir-
tual screening experiments especially due to its suitability 
for skewed class distributions.

In Table 1, we give an artificial prediction example that 
demonstrates the above described properties of AUROC, 
EF, and BEDROC and outlines why AUPRC may be pref-
erable in virtual screening.
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Results and discussion
This section is divided into two parts. The first part com-
pares model building results for folded, unprocessed, or 
filtered circular fingerprint fragments. The second part 
presents a freely available (Q)SAR prediction service that 
provides a rationale for each prediction based on un-
folded, interpretable circular fingerprints.

Comparison of folded, unprocessed, and filtered circular 
fingerprints
The main result of this work is summarized in Table  2. 
Modeling with folded fingerprints is fast but removes 
interpretability and decreases the performance of predic-
tion models. Employing unprocessed fingerprints (i.e., 
not restricting the number of features by folding) mostly 
yields better models with unambiguous features, while 
being slower due the increased number of features. Alter-
natively to folding, we apply supervised feature selec-
tion (as described in the “Methods” section) to limit the 
amount of fragments. Filtered fingerprints are fast, retain 
interpretability, and produce models with competitive 
predictivity (depending on the selected algorithm).

Initial results with default parameters
In this work, we have selected three well known machine 
learning algorithms: random forests, support vector 
machines, and naive Bayes. The algorithms are applied 
to a range of 76 datasets (see “Experimental” section). 
Initially, we have selected ECFPs (extended-connectivity 
fingerprints) with diameter four. The size of the folded 
fingerprint is 1024, which is the probably most com-
monly used bit-vector length. To ensure a fair compari-
son, we have applied our supervised filtering method to 
select 1024 features as well.

Figure  1 shows accuracy, the area under the ROC 
curve, enrichment factor, the area under the precision 
recall curve and the run-time for random forests. As 
already outlined before, accuracy is not a suitable vali-
dation measure for highly unbalanced virtual screening 
datasets. AUROC is very similar for the three feature 
types, even though it can be seen that folding is slightly 
worse than the other two feature types. This distinction is 
more evident for EF, and even more distinct when com-
paring results for the area under precision recall curves. 
The run-time required for mining features and training 
a model is multiple times higher if unprocessed finger-
prints are used. Figure 1 also provides AUPRC scores for 
support vector machine models, which are higher when 
applying all fragments compared to filtered fragments 
(folding is clearly worst). This is due to the low number 
of selected features (1024), as shown below. Folded frag-
ments produce support vector machines with the lowest 
predictivity. The bottom chart of Fig. 1 shows a different 

result for naive Bayes. Here, the best models can be cre-
ated with filtered fragments, whereas unprocessed frag-
ments create the worst models. As already indicated in 
the introduction, naive Bayes cannot cope with many 
sparse and redundant features.

For the experimental results shown in Fig.  2 we 
increase the bit-vector length from 1024 to 2048. The fig-
ure shows the average margin of improvement or degra-
dation in AUROC, AUPRC and model building run-time. 
Again, the area under the precision recall curve is more 
sensible than the area under the ROC curve. Applying 
folded instead of unprocessed fingerprints reduces pre-
dictivity of random forest and support vector machine 
models (� AUPRC: −0.04 and −0.05), whereas naive 
Bayes profits from the more compact feature representa-
tion (� AUPRC: +0.45). Building models with folded fin-
gerprints is up to 5.51 times faster. Filtering yields better 
results than folding for all algorithms (� AUPRC: rang-
ing from +0.03 to +0.05). When comparing filtering to 
unprocessed fragments, random forest models have on 
average equal performance, naive Bayes models are much 
more predictive (� AUPRC: +0.5), whereas support vec-
tor machines are slightly worse (� AUPRC: −0.03). In 
general, employing the area under the ROC curve instead 
of the area under the precision recall curve for the com-
parison leads to equal trends, yet smaller differences.

Modifying the number of selected features, the diameter 
and the fingerprint type
The number of bit collisions introduced by fold-
ing decreases with rising bit-vector size, as shown in 
Table 3. Moreover, the number of unprocessed fragments 
increases with increased diameter of the circular frag-
ments: encoding only single atoms (diameter zero) yields 
on average 57 fragments on our datasets, whereas about 
80 thousand fragments are found with diameter six.

Figure  3 presents modeling results with variable bit-
vector size for ECFP4, by providing win-loss statistics 
for AUPRC for all 76 datasets. Obviously, the higher the 
number of features, the lower is the difference between 
unprocessed features and filtered or folded fragments. 
The superiority of filtering over folding is especially evi-
dent for small bit-vector lengths. For random forests 
and support vector machines, applying unprocessed 
features works very well. For random forests, filtering 
yields about equally good results when using e.g. 2048 
filtered compared to unfiltered fragments (36 wins and 
39 losses, 1 loss significant). Support vector machines 
are best when trained with unprocessed fragments, e.g., 
the degradation is significant for 26 datasets when using 
2048 filtered features compared to all, unprocessed fea-
tures. Naive Bayes fails to build predictive models with 
unprocessed (sparse) features. Hence, folding improves 
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its performance (compared to unprocessed fingerprints). 
However, filtering with bit-vector length 1024 yields the 
overall best models naive Bayes models in this setup.

Moreover, we compare ECFP diameter 4 to diameters 
0, 2, and 6 using raw features and filtering with size 
1024 (in Fig. 4). Even though the best diameter setting 
depends on the particular dataset, diameter 4 works 
in general best for random forests and naive Bayes, 
whereas diameter 6 works slightly better for SVMs. 
Functional class fingerprints (FCFPs) are a variant of 
ECFPs that are less precise and describe substructures 
according to their role in pharmacophores. Accord-
ingly, FCFPs produce less features and therefore less 
bit collisions (see supplementary file). However, ECFPs 
work in general better for model building, as shown in 
Fig. 5.

Parameter optimization for each dataset
In order to train a highly predictive model for each 
dataset, we optimize the features and model algo-
rithms including their parameters. To not over-fit the 
dataset and to obtain a realistic predictivity estimate, 
we add a nested level of cross-validation [26, 27]. 
Detailed information is given in the “Experimental” 
section. On most datasets, the best model could be 
built by optimizing support vector machines (see 
Table 4). The predictivity estimates for our final mod-
els can be found in the supplementary material. Our 
models compare well to published work on the same 
datasets. Regarding the subset of 7 balanced datasets, 
our approach outperforms existing studies [28–31] or 
yields equally predictive models [8]. The latter work 

also trained highly optimized support vector machines 
on the 16 MUV (Maximum unbiased validation) data-
sets and produced models with similar AUROC to our 
models (7 wins, 8 losses, 1 draw). Additionally, we 
examined results of a consensus modeling study [6] 
that was applied to all 69 virtual screening datasets 
used in that work. (All datasets are included in a 
bench-marking platform provided by the same authors 
[16]). However, completely differing validation tech-
niques3 render a comparison impossible and our 
approach yielded a higher area under the ROC curve 
in 66 out of 69 cases. Please also refer to the supple-
mentary material for details on the comparison to the 
other methods.

CoFFer—a prediction web service with interpretable 
predictions
We created a prediction web service to demonstrate the 
feasibility and utility of the previously described filtering 
approach. The web service is called CoFFer (Collision-
free Filtered Circular Fingerprints). It is open-source. A 
freely available prototype is running at http://coffer.infor-
matik.uni-mainz.de. It offers 76 (Q)SAR models that can 
be applied to untested query compounds. The service 
ranks and highlights the circular fingerprint features that 
have been used by the (Q)SAR model to help interpreting 
the prediction result.

Figure  6 assembles screen-shots of the web service to 
outline the work flow. The entry page (A) lists the availa-
ble (Q)SAR models and allows predicting a compound 
(provided as SMILES) for all endpoints simultaneously 
(A→B). Alternatively, the researcher can handpick a 
model, to inspect its properties (A→C) before predicting 
a query compound (C→D). The information given along-
side a model prediction includes two lists of fragments, 
containing present and absent fragments within the 
query compound (D1+D2). We have developed a ranking 
scheme for fragments to show fragments at the top that 
have the highest influence on the prediction. Fragments 
that have a deactivating effect on the prediction are 
colored in blue, activating fragments are colored in red. 
Additionally, atoms and bonds of the query compound 
are colored by summarizing the effect of single fragments 
(which are present in the query compound). Ranking and 
highlighting methods are described in the “Methods” 
section. Additionally, each model determines whether 
the query compound belongs into its applicability 

3  In [16], a 50-times repeated holdout validation is performed, using 20% of 
the compounds for training and 80% as test set. Thus, the models are build 
on a relatively small amount of the data, which explains the reduced predic-
tivity compared to our approach. Although, the disadvantage of small train-
ing datasets was compensated to a degree by increasing the relative amount 
of active compounds in the training dataset compared to the test dataset.

Table 2  Overview of results

Unprocessed fragments yield random forest (RF) models and support vector 
machine (SVM) models with good performance and retain interpretability, but 
require a high computational cost. Folded fragments allow fast processing, but 
generate inferior models and are non-interpretable due to bit collisions. Filtered 
fragments yield the best naive Bayes (NB) models and can be employed to build 
RF models that are equally good as those built with unprocessed fragments. 
Filtered fragments also retain interpretability and allow fast processing

In summary, unprocessed (all) fragments are a good option if there are enough 
computational resources to optimize SVMs and the vast amount of (often 
redundant) features does not hinder interpreting predictions. Otherwise, filtered 
fragments should be preferred

In general, RF models yield good results without parameter tuning, however, 
SVM models are usually better when their parameters have been optimized (see 
section on parameter optimization)

Selection 
of fragments

Intepretable 
fragments

Fast processing  
(low num.  
features)

Best  
performance

RF SVM NB

Unprocessed Yes – Yes Yes –

Folded – Yes – – –

Filtered Yes Yes Yes – Yes

http://coffer.informatik.uni-mainz.de
http://coffer.informatik.uni-mainz.de
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Fig. 1  Validation results for ECFP4 for unprocessed, folded and filtered fingerprints (folded/filtered bit-vector size is 1024). For the random forest 
(RF) algorithm, 5 measures are provided for each of the 76 datasets. The difference between folded fingerprint features and filtered/unprocessed 
features is less distinct considering the area under the ROC curve (AUROC), and enrichment factor (EF), and more distinct considering the area 
under precision recall curve (AUPRC). Run-time measure the seconds to mine fragments and build a model and is highest for unprocessed features. 
The remaining charts for support vector machines (SVM) and naive Bayes (NB) are provided in Additional file 2
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Fig. 2  Mean changes in AUROC and AUPRC when comparing filtered, folded and unprocessed fingerprints (ECFP4 with bit-vector size 2048). The 
applied machine learning algorithms are random forests (RF), support vector machines (SVM) and naive Bayes (NB). Note that the scale for the 
area under the ROC curve (AUROC) is half the scale of the area under prediction recall curve (AUPRC): both measures have a maximum value of 1, 
however, the baseline of AUROC scores is 0.5 whereas the baseline of AUPRC is close to 0 on some datasets (on the MUV datasets, the ratio of active 
compounds is 0.002). Run-time corresponds to the speedup for mining the features and building a model of filtering/folding compared to unpro-
cessed fragments. The run-time of filtering is only slightly slower than folding, as both methods yield an equal number of features and the actual 
filtering routine is fast (on average 5.1 s) compared to the entire model building process (38.4 s for RF)

Table 3  Average number of fragments and bit-collisions when folding circular fingerprints on our datasets

Rate is the ratio of bit positions that are mapped by more than one fragment (e.g., 99% of bit-positions correspond to multiple fragments for ECFP4 and bit-vector size 
1024). Bit-load is the mean number of fragments that are mapped to a single bit

Type Fragments 1024 2048 4096 8192

Rate Bit-load Rate Bit-load Rate Bit-load Rate Bit-load

ecfp6 80,342.54 1 78.46 0.99 39.24 0.98 19.64 0.95 9.86

ecfp4 23,874.58 0.99 23.32 0.98 11.68 0.94 5.89 0.8 3.11

ecfp2 2169.37 0.7 2.39

ecfp0 57.01
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domain [32] (B, D). We employ a distance-based 
approach that rejects a query compound if the Tanimoto 
distance to its three most similar training dataset struc-
tures is too high.4

The example prediction provided in Fig.  6 employs 
a random forest model that was built on the NCTRER 
dataset, hence, it predicts whether a compound binds to 
the estrogen receptor. The predicted compound is already 

4  Our applicability domain evaluation is based on the distance measure 
D(c), which is defined as the mean Tanimoto distance to the three nearest 
neighbors in the training dataset (computed with the same structural frag-
ments that are employed by the respective (Q)SAR model). The distance 
D(c) is computed for each training compound and the thus created distri-
bution is fitted to a normal distribution. To evaluate a query compound, 
we compute the cumulative probability P(X ≤ x) of its distance D(c), which 
resembles the probability that a randomly selected training distance is less 
than or equal to the query compound distance. The query compound is 
accepted if P is less than or equal to 0.95.

included in the training dataset, as indicated on the pre-
diction result page (D). The top ranked absent fragment 
that is shown by our service is a pattern matching a phe-
nolic ring (D2). The service marks this fragment as acti-
vating, stating that this compound would be classified as 
active if the compound would match this fragment. This 
resembles findings by Fang et  al. [33] that have devel-
oped a rule set for the identification of estrogen receptor 
ligands. They state that a phenolic ring is an important 
precondition for a ligand. Moreover, Fang et  al. outline 
that a rigid structure is important for a successful bind-
ing. Similarly, our highest ranked present fragment is an 
aliphatic carbon with two single bonds (D1), a fragment 
that occurs twice in this compound and makes it very 
flexible. Our service renders this fragment as deactivat-
ing, as the query compound would be predicted as active 

Fig. 3  Win loss statistics to compare AUPRC scores of different feature selection techniques with increasing bit-vector lengths (using ECFP4). Each 
bar corresponds to a pairwise comparison of two methods on 76 datasets. Wins of the first/second method are colored in blue/red colors and drawn 
above/below zero respectively. Intense colors indicate significant wins/losses and are additionally stated in numbers above each bar. When compar-
ing filtering/folding to unprocessed fragments, increasing bit-vectors for filtering/folding are compared to the entire unprocessed feature set. 
Filtering is in general better than folding. The longer the bit-vector, the more similar are the folded or filtered feature sets to the unprocessed feature 
set. Filtered features yield equally predictive models as unprocessed fragments for RF, less predictive models for SVM and largely improved models 
for NB. Folding deteriorates predictivity compared to unprocessed fragments unless NB is used
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features in the training dataset (E). Here, the phenolic 
ring pattern matches 92 compounds, 87 of these com-
pounds are estrogen receptor ligands.

Experimental
Datasets
The 76 datasets selected for this study are listed in 
Table 5. They include 69 benchmark datasets for virtual 

Fig. 4  Win-loss statistics to compare AUPRC scores of ECFP diameter 
4 to diameters 0, 2, and 6 (for unprocessed fingerprints and 1024 
filtered fingerprint fragments). Each bar corresponds to a pairwise 
comparison of two methods on 76 datasets. Wins of the first/second 
method are colored in blue/red colors and drawn above/below zero 
respectively. Intense colors indicate significant wins/losses and are 
additionally stated in numbers above each bar. Diameter 4 yields in 
general the most predictive models. Exceptions are naive Bayes and 
diameter 0 and 2, which is due to the low number of features with 
low diameter. However, when applying filtering ECFP4 works best 
for naive Bayes. Moreover, slightly more predictive support vector 
machines can be build using ECFP6

Table 4  Number of  selected configurations for  optimized 
web service models (for each of the 76 datasets)

To limit the number of parameters we skip FCFPs and set the ECFP diameter to 
4. For support vector machines different parameters have been optimized (as 
described in ”Experimental” section). A complete list of selected parameters and 
nested cross-validation results can be found in Additional file 2

Number of features 1024 2048 4096 8192

Times selected 24 17 10 25

Algorithm RF SVM NB

Times selected 14 60 2

Fig. 5  Win-loss statistics comparing ECFPs vs FCFPs at different 
diameters for unprocessed and filtered (1024) fragments. Each bar 
corresponds to a pairwise comparison of two methods on 76 data-
sets. Wins of the first/second method are colored in blue/red colors 
and drawn above/below zero respectively. Intense colors indicate 
significant wins/losses and are additionally stated in numbers above 
each bar. ECFPs are mostly better when using unprocessed features, 
except naive Bayes for diameters 4 and 6. The explanation is the lower 
number of features produced by FCFPs. When applying filtering, 
ECFPs always lead to more predictive models than FCFPs

with increased probability if this fragment would not 
match the query compound.

Finally, the CoFFer web service provides informa-
tion about the occurrence of the employed fingerprint 
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Fig. 6  Workflow of the freely available CoFFer prediction web service. The service is available at http://coffer.informatik.uni-mainz.de. Please refer to 
the results section for a description

http://coffer.informatik.uni-mainz.de
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screening provided by Riniker et al. [16]. To enlarge and 
widen the range of datasets, we added 7 balanced data-
sets (i.e., datasets with about equal amount of active and 
inactive class values).

Algorithms and validation
We have used the machine learning library WEKA [34] 
(v3.7.13) for modeling and selected three well known 
classifiers: random forests [35], naive Bayes [36] and sup-
port vector machines [37]. A 3-times repeated tenfold 
cross-validation has been applied to compare folded, fil-
tered and unprocessed features sets (employing default 
algorithm parameters without optimization). Filtering of 
fragments has been carried out within the training data 
fold of each cross-validation to avoid information leak-
age. Significance tests have been performed with a cor-
rected paired t test with a p value threshold of 0.05 [38].

To build the most predictive model for each dataset, 
we optimized support vector machine parameters and 
selected the best number of features (see Fig. 4). In order 
to avoid estimating an over-optimistic validation score, 
we applied a nested 3× 3× 10-fold cross-validation. 
Model selection is performed on the inner cross-valida-
tion loop, and the predictivity estimate of the selected 
model is evaluated with the outer cross-validation loop. 
To limit the huge computational effort of nested cross-
validation, we fixed fingerprint type and diameter to 
ECFP4. Within the inner loop of the nested cross-vali-
dation we selected the number of fingerprint fragments 
(1024–8192) and the best parameters for support vector 
machines. We tested c-values 1, 10, and 100 with a linear 
kernel and a radial basis function (RBF) kernel. Addition-
ally, gamma values 0.001, 0.01 and 0.1 are tested for the 
RBF kernel. Random forests and naive Bayes have been 
applied with default parameters (which is 100 trees for 
the random forest algorithm). See Additional file  2 for 
detailed results. The HPC cluster of Johannes Gutenberg 
Universität Mainz, Mogon, made this computationally 
extensive evaluation feasible.

Implementation
This work has been implemented in the Java program-
ming language. It is divided into four packages that are 
available as open-source libraries on GitHub (see https://
github.com/kramerlab). Moreover, the libraries are 
organized as maven package and can easily be integrated 
into other packages. 

cdk-lib		�  provides mining and filtering of cir-
cular fingerprints. It is based on the 
implementation of circular finger-
prints in the chemistry development 
kit (CDK) [39]. Our library adds dif-
ferent bit-vector lengths as well as our 
filtering approach. Moreover, we pro-
vide a depiction functionality to draw 
a circular fingerprint fragment within 
a compound.

weka-lib		� extends the machine learning frame-
work WEKA with a nested cross-val-
idation and basic ranking functionali-
ties to sort features according to their 
influence on a prediction.

cfp-miner	� is based on the previous libraries 
and allows to build and validate (Q)
SAR models with circular fingerprint 
fragments.

coffer		�  provides the Apache CXF imple-
mentation of the CoFFer web service 
(currently running here: http://coffer.
informatik.uni-mainz.de). Addition-
ally to the graphical user interface, it 
has a REST interface that simplifies the 
integration of our service into other 
frameworks and is compliant with 
the OpenTox API [40]. Moreover, our 
web service accesses PubChem and 

Table 5  The 76 datasets used for our model building experiments

Multiple occurrences of the same compound are inserted only once. E.g., some of the originally 15,000 decoys for each MUV dataset are removed. In case, multiple 
occurrences have differing endpoint values, the compound is omitted. Only 5 of 7 endpoints from the CPDBAS dataset could be used for this study as two endpoints 
(Hamster and Dog/Primates) are to small and yield less than 1024 ECFP4 fragments. A more detailed list of datasets is provided in Additional file 2

Type Dataset/group Num Compounds Active In-active Source

Balanced AMES 1 4337 2401 1936 [47]

Balanced CPDBAS 5 1102.6 545.8 556.8 [48]

Balanced NCTRER 1 217 126 91 [33]

Virtual-screening ChEMBL 50 10,100 100 10,000 [6, 49]

Virtual-screening DUD 3 1822.3 42 1780.3 [6, 50]

Virtual-screening MUV 16 15,026.8 30 14,996.8 [6, 51]

https://github.com/kramerlab
https://github.com/kramerlab
http://coffer.informatik.uni-mainz.de
http://coffer.informatik.uni-mainz.de
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ChEMBL to provide additional infor-
mation for the predicted compounds, 
and maintains links to sources of mod-
eled endpoints and datasets.

Conclusions
Circular fingerprints can be applied to yield highly predic-
tive (Q)SAR models. Commonly, either unprocessed fin-
gerprints or folded fingerprint fragments are employed, 
even though the latter introduces bit collisions. This work 
provides a comprehensive comparison between folded 
and unprocessed fingerprints. We show that folding 
improves the model building run-time but yields slightly 
(yet often significant) less predictive models. Unprocessed 
fingerprints have also the advantage of retaining inter-
pretability of structural fragments. We introduce a super-
vised filtering approach, that combines the advantages of 
both methods: it produces a smaller, less redundant set 
of interpretable structural features, reduces the compu-
tational effort for model building, and yields predictive 
models. For the presented validation study, we selected 
the area under precision recall curve (AUPRC) as valida-
tion measure. This statistical measure is preferable to the 
commonly used area under ROC, as it has the advantage 
of being more sensible to predictions of compounds that 
are predicted as active with high probability. Moreover, 
we present a prediction web service that showcases our 
approach and provides rationales for predictions. To this 
end, we developed a technique to rank the structural frag-
ments according to their influence on the prediction. The 
model service is open-source, freely available and can 
be accessed directly with the browser or with a REST 
interface.

In the future, we plan to integrate the prediction models 
into the OpenTox service ToxPredict [40]. Additionally, fil-
tered circular fingerprints could be incorporated into our 
3D-space mapping and visualization tool CheS-Mapper 
[41].

Methods
Filtering fingerprints with supervised feature selection
We apply supervised feature selection to limit the 
amount of circular fingerprint fragments as an alterna-
tive to folding. The main advantage of this method is that 
bit-collisions are avoided. Hence, well-defined structural 
fragments that are either present or absent in a query 
compound are employed as features for the (Q)SAR 
model. The input for our method is a list of fragments 
(x-values) and the endpoint (y-values) of the training set 
compounds. The output is a reduced number of x-val-
ues, i.e., the number of columns in the training dataset 
decreases.

The high-level pseudo-code for our method is given 
in Table  6. After stripping compounds that match only 
a single compound, we remove non-closed fragments. 
In the context of graph mining, a fragment is not closed 
if there exists a sub-fragment that matches the exact 
same set of compounds. Closed fragment mining has 
been shown to be an effective way to greatly reduce the 
number of features and decrease redundancy [42]. Sub-
sequently, if the number of fragments is still to large, 
supervised feature selection is applied using a χ2 filter. 
Hence, features that have no measurable correlation to 
the target endpoint are removed. This supervised feature 
selection method for molecular fragments has been suc-
cessfully applied (and is nicely explained) by Maunz et al. 
[43]. The implementation of our filter method for circular 
fingerprints is freely available as described in the “Experi-
mental” section above.

Ranking of structural fragments that are used as (Q)SAR 
prediction features
Our method ranks features according to their contri-
bution to a particular (Q)SAR model prediction. Sub-
sequently, the most important present and absent 
substructures in the query compound can be presented 
to the user and aid in understanding the (Q)SAR model 
and in deriving a mechanistic interpretation. The input 

Table 6  Pseudo-code for filtering circular fingerprints with supervised feature selection

(1)Redundant := non-closed; i.e., a fragment is redundant if there exists a sub-fragment that matches the same compounds.
(2)Fragments with the lowest p value of a χ2 test are removed; the test measures the correlation between the endpoint value distribution of all compounds, and the 
compounds that match the fragment
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for our method is a classifier for binary class values (e.g. 
active and inactive), a query compound, and the struc-
tural features to be ranked. The result of our method 
is a ranking of features. Additionally, the features are 
divided into two lists of fragments that are either present 
or absent in the query compound. Moreover, it is deter-
mined whether a feature has an activating or deactivating 
effect on the prediction. An example is given in the result 
section [see (D1) and (D2) in Fig. 6].

The importance of a feature is computed by swap-
ping the feature value of the fragment and re-classifying 
the compound. The features are ranked according to the 
absolute value of the difference in predicted probabil-
ity. The prefix of the change is used to tag the feature as 
activating or deactivating: a feature is marked as activat-
ing if it is originally present in the compound and a re-
classification with swapped feature value leads to a lower 
probability of being active. Also, a feature is marked as 
activating if it was originally absent in the query com-
pound and the predicted probability with swapped fea-
ture value leads to a higher probability to be active. 
Otherwise, we consider the feature to be deactivating.

When swapping feature values for a fragment, the method 
takes the compound structure into account. If the evaluated 
fragment is originally present in a compound, its super-
fragments (that extend this fragment) will be switched off as 
well when evaluating the importance of the fragment. Addi-
tionally, sub-fragments that are included in this fragment 
and do not match the compound at a different location are 
disabled. Accordingly, if the evaluated fragment is originally 
absent in the compound and is switched on for evaluation, 
then all sub-fragments (that are contained within this frag-
ment) are switched on simultaneously.

A drawback of this method is that it might be com-
putationally extensive for large feature sets and slow 
prediction algorithms (like, e.g., instance based or local 
models). The main advantage of our method is that it is 
model independent, i.e., it can be applied with any classi-
fier that provides a probability estimate for a prediction. 
Moreover, even though we only use it for binary class 
values, the method can easily be extended to multi-class 
problems or quantitative prediction (i.e., regression).

A similar approach that computes the most important 
structural fragment for a single prediction of a query 
compound has been presented by Ahlberg et al. [44]. Like 
our approach, this method evaluates the importance of 
each feature by re-predicting the query compound with 
a modified feature vector. Our method has binary feature 
values (a sub-structure does either match or not match 
a compound), whereas the method by Ahlberg et  al. is 
based on numeric feature values, counting the number of 
occurrences of a sub-structure. Accordingly, our approach 
toggles the feature value for estimating the importance of 

a particular feature, whereas the other method increases 
the count. Moreover, the method by Ahlberg et  al. does 
not take dependencies between structural features into 
account (e.g., the count of N − C is increased but not the 
count for N), and absent fragments are not tested.

Coloring of compound fragments
We depict a circular fingerprint fragment by highlighting 
the atoms that match this fragment within a compound. 
Activating fragments are colored in red, deactivat-
ing fragments are colored in blue [see (D1) and (D2) in 
Fig. 6].

Additionally, we highlight activating and deactivating 
parts within the query compound. Hence, the weight of 
each present fragment (i.e., the difference in predicted 
probability when the feature was swapped) is summed 
up for all atoms and bonds that match the fragment. The 
weight is positive for activating and negative for deacti-
vating fragments. Subsequently, the summed-up weights 
are used as input for a color gradient that ranges from 
blue (deactivating) to white (neutral) to red (activating).

The implementation of the depiction is based on the 
CDK and freely available (see “Experimental” section).
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