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Abstract

Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick 

diagnosis and risk stratification of coronary artery disease. However, one major drawback of 

dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic images 

acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT 

deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for 

accurate residue function estimation with low-mAs data acquisitions. For simplicity, the presented 

method is termed as “MPD-AwTTV”. More specifically, the gains of the AwTTV regularization 

are from the anisotropic edge property of the sequential MPCT images over the original tensor 

total variation regularization. To minimize the associative objective function we propose an 

efficient iterative optimization strategy with fast convergence rate under the framework of iterative 

shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both 

digital XCAT phantom and preclinical porcine data. The preliminary experimental results have 

demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable 

gains in noise-induced artifacts suppression, edge details preservation and accurate flow-scaled 

residue function and MPHM estimation as compared with the other existing deconvolution 

algorithms in the digital phantom studies, and the similar gains can be obtained in the porcine data 

experiment.
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1. Introduction

Coronary artery disease (CAD) as a most common type of heart disease has been the main 

cause of death worldwide (Becker and Becker et al 2013). Dynamic myocardial perfusion 

computed tomography (MPCT) is a promising technique for assessing CAD via myocardial 

perfusion hemodynamic maps (MPHM) including myocardial blood flow (MBF), 

myocardial blood volume (MBV), and mean transmit time (MTT) (McCommis et al 2009, 

Troalen et al 2014). However, dynamic MPCT as a quantitative technique need to acquire 

the complete time-attenuation curves (TAC) of the aorta and left ventricular myocardium for 

yielding an accurate MPHM estimation (So and Lee et al 2011a, Rossi et al 2014). As a 

result, dynamic MPCT unavoidably leads to high cumulative radiation dose as compared to 

the routine CT examination (Patel et al 2013, Ebersberger et al 2014). To address this issue, 

several highly publicized approaches have been proposed (Ma et al 2012b, Achenbach et al 
2011, Dewey et al 2009, So et al 2011b). Among them, a straightforward and cost effective 

approach is to perform dynamic MPCT scan with lower milliampere-seconds (mAs) data 

acquisitions. But, one major drawback of this approach is that conventional filtered back-

projection (FBP) algorithm without introducing any other operations would fail in high 

quality image reconstruction and accurate MPHM estimation due to the seriously noisy low 

mAs data acquisitions.

Up to now, various advanced image processing and reconstruction algorithms with different 

capability for noise suppression in the case of low-mAs data acquisition have been reported 

(Speidel et al 2013, Ramirez-Giraldo et al 2012, Sawall et al 2012, Lauzier et al 2012, 

Modgil et al 2014, Lin and Ehsan et al 2014, Tao et al 2014, Bian et al 2015). For instance, 

Speidel et al (2013) proposed a highly constrained backprojection (HYPR) image processing 

method to directly reduce the noise in the MPCT image domain. Modgil et al (2014) 

developed a dynamic MPCT sinogram data restoration method for successful MPCT image 

reconstruction using the FBP algorithm. Recently, Tao et al (2014) introduced a penalized 

weighted least-squares (PWLS) approach by modeling the statistics of the measurement for 

noise-induced artifacts reduction. Bian et al (2015) also proposed a statistical iterative 

reconstruction scheme by incorporating a motion adaptive sparsity prior model for 

acceptable dynamic MPCT image reconstruction. To sum up, the above-mentioned 

algorithms can yield reasonable MPHM estimation from the restored/reconstructed dynamic 

MPCT images using conventional singular value decomposition (SVD) based deconvolution 

method (Ostergaard et al 1996). However, they fail to fully consider the procedure of 

dynamic MPCT deconvolution modeling and partially loses efficacy in the case of ultra-low-

mAs data acquisition. To overcome the drawback, in this work we propose a robust 

deconvolution model with superior performance on accurate flow-scaled residue function 

estimation over other similar methods with less image spatial resolution loss.

Recently, Fang et al (2015) introduced a tensor total variation (TTV) regularization for low-

dose cerebral perfusion CT (CPCT) deconvolution. Although the TTV regularization based 

deconvolution algorithm can achieve noticeable gains in cerebral perfusion hemodynamic 

maps estimation, the TTV regularization as an extension of conventional total variation (TV) 

regularization may suffer from loss of fine structures and contrast and may produce 

staircasing artifacts due to the assumption of isotropic edge property of TTV regularization 

Zeng et al. Page 2

Phys Med Biol. Author manuscript; available in PMC 2017 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Liu et al 2012). To address the issue of TV/TTV regularizations, Liu et al (2012) developed 

an adaptive-weighted TV (AwTV) model for low-dose CT image reconstruction wherein the 

weights in the AwTV regularization is adaptively adjusted with the local image-intensity 

gradient aiming to preserve the edge details information. Inspired by the deconvolution 

framework of CPCT imaging (Fang et al 2015) and the AwTV regularization in CT image 

reconstruction (Liu et al 2012), in this work we present a robust dynamic MPCT 

deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) 

regularization for accurate residue function estimation with low-mAs data acquisitions. For 

simplicity, the presented algorithm is termed as “MPD-AwTTV”. The contributions of this 

study can be summarized as follows: (1) we present an AwTTV regularization that involves 

the anisotropic edge property of the sequential MPCT images for dealing with the dynamic 

MPCT deconvolution problem with low-dose scan; (2) we propose a heuristic convergent 

algorithm with a robust solution under the relative root mean square error (rRMSE) metric 

(Niu et al 2014); (3) we study the performance of the algorithm on both digital XCAT 

phantom and preclinical porcine data; and (4) we compare the presented MPD-AwTTV 

algorithm with other existing deconvolution algorithm (Calamante et al 1996, Fang et al 
2015) and demonstrate that the presented algorithm can achieve remarkable gains in noise-

induced artifacts suppression, edge details preservation and accurate flow-scaled residue 

function and MPHM estimation.

The remainder of this paper is organized as follows. Section 2 gives a brief review of 

dynamic MPCT convolution model, the presented MPD-AwTTV deconvolution algorithm 

and the associative optimization algorithm. The experimental setup and evaluation metrics 

are also given in this section. Section 3 presents the experimental results. Finally, discussion 

and conclusion are included in Section 4.

2. Methods and materials

2.1. Brief review of dynamic MPCT convolution model

The indicator dilution theory for analyzing contrast clearance data from myocardium was 

studied (Jerosch-Herold et al 2002, Zierler et al 1962, Zierler et al 2000), and the amount of 

contrast agent concentration CV(t) measured in the myocardial volume V can be calculated 

as follows:

(1)

where ρV denotes the mean density of the myocardial volume V, Ca(t) denotes the arterial 

input function (AIF), and R(t) represents the residue function which quantifies the relative 

amount of contrast agent remaining in the given volume V over time. * denotes the 

convolution operator.

Let K(t) = MBF·R(t) represent the flow-scaled residue function, Ca(t) and CV(t) are sampled 

at discrete time points ti (ti = (i − 1)·Δt,t = 1, 2, …, N), and then Eq. (1) can be rewritten as 

follows:
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(2)

where Δt is the sampling period, N denotes the number of samples. In the implementation 

for simplicity, a global AIF estimated in larger feeding artery is usually used to replace Ca(t) 
with a reasonable signal-to-noise (SNR). For a volume of interest with N voxels, Eq. (2) can 

be further formulated as a following matrix multiplication (Fang et al 2015):

(3)

where C = [c1, …, cN], K = [k1, …, kN] denote the contrast agent concentration and flow- 

scaled residue function for N voxels in the volume of interest, respectively. Δt and AIF are 

combined in the matrix A. A straightforward way to find the solution to Eq. (3) is by 

minimizing (in the least-square sense) the residual error between the model predicted 

contrast agent concentration and the actual measured data C. However, the main K 
shortcoming of this method is its ill-posed nature: small perturbations of the measured data 

C could cause a large variation in the reconstructed flow-scaled residue function K. 

Therefore, regularization is required to stabilize the solution. Mathematically, the cost 

function can be written as follows:

(4)

where T(K) is a regularization term. After the flow-scaled residue function K ̂ is obtained, 

MPHM parameters can be determined as follows:

(5)

2.2. Description of the MPD-AwTTV deconvolution method

Usage of regularization term tending to smooth out noise while preserving image edges has 

demonstrated a profound impact on PCT imaging research. One typical family is TV/TTV 
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regularization term (Tao et al 2014, Fang et al 2015). Although the TV/TTV regularization 

based algorithms can achieve noticeable gains in PCT imaging, they have the drawbacks of 

over-smoothing homogenous regions and producing staircase artifacts. To overcome these 

issues, Liu et al (2012) proposed an adaptive-weighted TV (AwTV) regularization to 

improve CT images quality by adjusting the local image-intensity gradient for edge-details 

preservation. Similar to the idea of AwTV regularization in low-dose CT image 

reconstruction, in this study we present an improved cost function for dynamic MPCT flow- 

scaled residue function estimation, which is written as follows:

(6)

where ‖K‖AwTTV represents the AwTTV regularization and is defined as follows:

(7)

where w is hyper-parameter controlling the strength of regularization, and δ is a scale factor 

controlling the strength of the diffusion during each iteration (Liu et al 2012). By the form of 

the AwTTV regularization, we can see that it takes into account the anisotropic edge 

property among neighboring volume voxels in the sequential MPCT images. The associated 

weights w are sensitive to the change of local voxel intensities. In particular, a stronger 

weight can be given for a smaller change of voxel intensity, and vice versa. It is also worth 

to note that TV/TTV regularization is a special case of the AwTV/AwTTV regularization 

when δ → ∞.

To minimize Eq. (6), the fast iterative shrinkage/thresholding algorithm (FISTA) (Beck and 

Teboulle et al 2009) was modified, which has been successfully used in perfusion CT 

Zeng et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2017 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deconvolution with reasonable convergent rate (Fang et al 2015). Mathematically, 

minimizing (6) can be split as two sub-problems:

(8)

(9)

The sub-problem (1) is first minimized to find an intermediate variable Ks after n-th iteration 

using the following steepest descent scheme:

(10)

where  with G AT (AK̅n − C). Second, due to the nonlinear definition of 

‖K‖AwTTV, to effectively optimize sub-problem (2) with Ks as an input, a widely-used one-

step-late (OSL) implementation (Ma et al 2010) is employed wherein the weight coefficients 

at current iteration are estimated from the result of the previous iteration. Then, the steepest 

descent scheme is utilized to minimize the sub-problem (2) according to Ref. (Liu et al 
2012).

In summary, the implementation of the presented MPD-AwTTV deconvolution algorithm for 

dynamic MPCT flow-scaled residue function estimation can be described as follows:

1:Initial: K̅(1) = K(0) = 0, m(1) = 1;

2:Initial: η = 1.0×10−3, δ;

3: For n = 1, 2, …, J;

4: Ks = K̅(n) − r(n+1) AT (AK̅(n) − C),

5:

wi, i + 1, j, j, t, t = exp − (
Ks(i, j, t) − Ks(i + 1, j, t)

δ )
2

,

wi, i, j, j + 1, t, t = exp − (
Ks(i, j, t) − Ks(i, j + 1, t)

δ )
2

,
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wi, i, j, j, t, t + 1 = exp − (
Ks(i, j, t) − Ks(i, j, t + 1)

δ )
2

,

6: For d = 1, 2, ⋯, D;

7:   If d == 1;

8:

K(n − 1) + d = Ks − Ks − K(n − 1) 2 · η ·
∇ Ks AwTTV
∇ Ks AwTTV

;

9:

  Else 

10:   End If ;

11:  End For;

12: K(n) = K(n−1)+D;

13:

m(n + 1) =
1 + 1 + 4 m(n) 2

2 ;

14: K̅(n+1) = K(n) + ((m(n) − 1) / m(n+1))(K(n) − K(n−1));

15: η = 0.995* η;

16: End For;

17: K̂ = K(N);

18: Return K̂.

In line 1, both the parameters K̅ and m are acceleration operators. In line 2, the parameter δ 
is empirically determined through extensive experiments by visual inspection for eye-

appealing result, together with the normal-dose images for comparison. The value of δ can 

be used to simulate the strength of the diffusion among neighbors (Liu et al 2012, Perona et 
al 1990, Wang et al 2008). In lines 3 and 6, n denotes the index of outer cycles and d denotes 

the index of inner cycles of AwTTV minimization. In line 8, η denotes the steepest-descent 

parameter and its value is adaptively adjusted but not critical. Three mainly separate steps 

are included in outer loop (lines 3–16), i.e. the steepest descent scheme for sub-problem (1) 

in Eq. (8) (line 4), the weights calculation (line 5) by using the latest estimation Ks, and the 

steepest descent scheme for sub-problem (2) in Eq. (9) (lines 6–11). Fig. 1 shows the final 

result estimated from the presented MPD-AwTTV deconvolution algorithm could 

heuristically converge to a solution of Eq. (6) with the rRMSE metric (Niu et al 2014). It can 

be further seen that 12 iterations for the presented algorithm reached a solution with 

sufficient stability in terms of the rRMSE measurements.
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2.3. Experimental data acquisition

To validate and evaluate the performance of the presented MPD-AwTTV algorithm for low-

dose dynamic MPCT image deconvolution a modified XCAT phantom (Segars et al 2010) 

and preclinical porcine data were used in the experiments.

2.3.1. Digital myocardial perfusion phantom—Fig. 2 shows the modified digital 

XCAT phantom used in this study (Segars et al 2010). In the work, contrast dynamic of the 

left ventricle, aorta healthy myocardium, ischemic myocardium and right ventricle were 

represented by the time attenuation curves (TAC) which is shown in Fig. 2 (b). The scanning 

time was 30 s, enabling reconstruction of 30 cardiac cycles/scan with a time interval of 1 s 
between images. Images were generated at end diastole without cardiac motion. The low-

dose MPCT sinogram data were acquired using the simulation method in our previous study 

(Ma et al 2012b, Zeng et al 2015) and the noisy measurements were reconstructed by the 

FBP algorithm to obtain the low-dose MPCT images. The simulated CT imaging parameters 

were the same as these of a commercial 64-slice multi-detector CT scanner (Discovery 

CT750 HD GE MEDICAL SYSTEMS) and are illustrated in Table 1. In this study, two 

noise levels related to the projection data acquired with about 50 and 20 mAs at a fixed kVp 
were simulated respectively.

2.3.2. Preclinical porcine data—A healthy Chinese minipig (weight, 22.5 kg, female) 

was used in this study, which was approved by the Animal Care Committee at the Tianjin 

Medical University General Hospital (Tianjin, China). An Intramuscular injection of 

ketamine (20 mg/kg), Xylazine Hydrochloride (1.5 mg/kg) and atropine (0.02 mg/kg) was 

performed in premedication. A cuffed endotracheal tube with inner diameter of 4.5 mm was 

placed in the trachea for anesthesia inspiration and respiration. With the support of the 

animal aspirator (Matrx VMS Plus VMC, Anesthesia Machines, Midmark Corporation, New 

York), the pig was mechanically ventilated and anaesthetize with Sevoflurane (2.5%–3.5% 

in oxygen) during the angioplasty and MPCT scanning. The angioplasty balloon was 

positioned in the left anterior descending (LAD) just distal to the first diagonal artery. Acute 

myocardial infarction was confirmed by electrocardiogram which showed distinct ST 

segment elevation. After 90 minutes occlusion, the angioplasty balloon was flattened and 

taken back. Physiological parameters, such as arterial blood pressure, oxygen saturation, 

heart rate, and electrocardiography (ECG), were consecutively monitored before and after 

experiment. All scans were performed on the same day, with at least 15 min between scans 

to allow for clearance of contrast media from the myocardium.

The acquisition was operated on the 64-slice multi-detector CT scanner (Discovery CT750 

HD, GE MEDICAL SYSTEMS) in cine mode with the following protocol: 120 kVp,100 

mA, slice thickness of 5 mm, using 0.4 s gantry rotation time, and the total scan duration is 

about 30 s. In all reconstructions, the ECG signal was used to select projections center on 

75% R-R for each cardiac cycle. From the acquired high-dose enhanced scan, we simulated 

the low-dose MPCT images from the high-dose data using the simulation technique 

described in Section 2.3.1 according to the above described CT imaging parameters.
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2.4. Performance evaluation

2.4.1. Evaluation by noise reduction—Three quantitative metrics (i.e. the peak signal-

to-noise ratio (PSNR), the mean per cent squared error (MPSE) and the mean per cent 

absolute error (MPAE)) were utilized to evaluate the noise reduction performance of the 

presented MPD-AwTTV deconvolution algorithm. The MPHM estimated from ideal or 

high-mAs MPCT data are served as the reference standard. The three metrics are defined as 

follows:

(11)

(12)

(13)

where X denotes the voxel value of the estimated MPHM in the region of interest (ROI) at 

low dose, Xtrue represents the voxel value of the reference standard in the ROI, MAX(Xtrue) 

represents the associated maximum intensity value of Xtrue, and X̅
true denotes the average 

pixel value of Xtrue wherein n indexes the pixels in the ROI, and Q is the number of pixels in 

the ROI.

2.4.2. Evaluation by image similarity—In order to assess the image quality of ROIs by 

different deconvolution algorithms, the UQI (Wang et al 2004) was utilized to evaluate the 

similarity between the MPHM at low-dose and the reference standard. Mathematically, the 

UQI can be defined as follows:

(15)

where 

and . The UQI quantifies 

the intensity similarity between two images and its value ranges from zero to one, and a QUI 

value closer to one suggests great similarity to the reference standard.
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2.4.3. Evaluation by histogram map—It is necessary to analyze MBF values of left 

ventricular myocardium quantitatively in MPCT with a histogram map to better visualize 

MBF differences among the deconvolution algorithms (Likhite et al 2015). In the 

experiments, we manually selected two ROIs located at the healthy myocardium and 

ischemic myocardium regions in the MBF map, respectively, with the assistance of clinical 

expert. The histogram maps of the estimated MBF map and the reference standard over the 

specified ROIs were plotted together. A smaller histogram discrepancy means better 

accuracy of the MBF map estimation.

2.5. Comparison methods

To validate and evaluate the performance of the presented MPD-AwTTV deconvolution 

algorithm, two different deconvolution algorithms are adopted for comparison, i.e. standard 

truncated singular value decomposition (sSVD) algorithm (Calamante et al 2000), and the 

tensor total variation regularization algorithm (Fang et al 2015) which is hereafter referred to 

the MPD-TTV deconvolution algorithm. The cost function of the MPD-TTV deconvolution 

algorithm can be written as follows:

(15)

where , ∇d is the forward finite difference operator in 

dimension d. ϖd is hyper-parameter used to balance the fidelity term (the first term in Eq. 

(15) and the TTV regularization term. In this study, the parameter ϖd could be determined 

by a broader range of parameter values in terms eye-appealing visualization and quantitative 

measurements compared with the ground truth. All of the algorithms were implemented in 

Matlab R2011a (The MathWorks, Inc.) programming environment. The codes were run on a 

PC with Intel (R) Pentium (R) 2.6 GHz CPU.

3. Results

3.1. Phantom study

3.1.1. Visualization-based evaluation—Fig. 3 shows the MPHM calculated by three 

different deconvolution algorithms under a low noise level. The first row shows the noise-

free MPHM, which serves as the reference standard for comparison. The second row 

represents the MPHM calculated by the sSVD deconvolution algorithm. It can be observed 

that serious noise-induced artifacts present in all MPHM. The last two rows show the 

MPHM calculated by the MPD-TTV and the presented MPD-AwTTV deconvolution 

algorithms from noisy measurements, respectively. We can observe that the MPHM from the 

two deconvolution algorithms are better than the results of sSVD deconvolution algorithm 

by visual inspection. Furthermore, noticeable difference among the results can be seen at 

ischemic myocardium and healthy myocardium regions indicted by the white arrows in Fig. 

3. As a result, the presented MPD-AwTTV deconvolution algorithm is superior to the MPD-
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TTV deconvolution algorithm in successful noise-induced artifacts reduction and structure 

detail preservation.

3.1.2. Noise reduction performance—Fig. 4 shows the PSNR, MPSE and MPAE 

measurements of three selected ROIs as indicated by the yellow squares in Fig. 3. We can 

observe that the MPD-TTV and MPD-AwTTV results have much larger PSNR values and 

smaller MPSE and MPAE values than the results of sSVD deconvolution algorithm, and the 

presented MPD-AwTTV deconvolution algorithm yields an average of more than 15% gains 

over the MPD-TTV deconvolution algorithm in terms of PSNR, MPSE and MPAE 

measurements on three different ROIs. Thus the results could evidently demonstrate that the 

presented MPD-AwTTV deconvolution algorithm can achieve significant ability over other 

algorithms for noise and artifacts suppression.

3.1.3. Flow-scaled residue function recovery—Fig. 5 shows the results of flow-

scaled residue function calculated by three different deconvolution algorithms. The ‘black 

solid line’ is corresponding to the ground-truth for comparison. Some oscillations in the 

MPD-TTV recovered flow-scaled residue function occurred (‘blue dash dot line’). However, 

the MPD AwTTV deconvolution algorithm (‘red solid line with circle marker’) can obtain 

higher level of agreement with the ground truth by utilizing the anisotropic edge property of 

the sequential MPCT images, when compared with the MPD-TTV deconvolution algorithm. 

In other words, the presented MPD-AwTTV deconvolution algorithm is capable in accurate 

flow scaled residue function estimation.

To further demonstrate the performance of the present MPD-AwTTV deconvolution 

algorithm, we conduct the MPCT deconvolution experiments under a higher noise level as 

shown in Fig. 6. As can be seen, the MPD-TTV deconvolution algorithm can reduce the 

noise level to a certain extent but serious noise-induced artifacts still exist in the MPHM. 

Meanwhile, the present MPD-AwTTV deconvolution algorithm shows superior image 

quality. The UQI measurements depicted in Fig. 7 also demonstrate the present MPD 

AwTTV deconvolution algorithm outperforms the other two deconvolution algorithms in 

both resolution preservation and noise reduction.

3.2. Preclinical porcine study

3.2.1. Visualization-based evaluation—Fig. 8 shows the MPHM from the high- and 

low dose MPCT images calculated by three different deconvolution algorithms. It can be 

seen that the MPHM estimated by the presented MPD-AwTTV deconvolution algorithm are 

better than those estimated by the MPD-TTV and sSVD deconvolution algorithm in terms of 

visual inspection. Moreover, the local magnification views of ROIs as indicated by the 

yellow rectangle in Fig. 8 are illustrated in Fig. 9, which indicates that the presented MPD-

AwTTV deconvolution algorithm could show a more pleasant image quality in all the 

MPHM. It can be further demonstrated that the presented MPD-AwTTV deconvolution 

algorithm outperforms other two deconvolution algorithms in preserving dynamic detail 

information overall. Fig. 10 shows the horizontal profiles through the center of left ventricle 

region as indicated by a black solid line in Fig. 8. These profiles show that the loss of 

homogeneous regions is observed in the MPD-TTV results while the intensity values of the 
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MPD-AwTTV results are more structurally similar to the reference. The profile comparisons 

further reveal that higher resolution and noticeable edge preservation can be obtained by the 

presented MPD-AwTTV deconvolution algorithm compared with the other two 

deconvolution algorithms.

3.2.2. Histogram map evaluation—Fig. 11 shows the histogram maps of the MBF in 

two ROIs as indicated in Fig. 8. It can be observed that a larger histogram discrepancy exsits 

in the MPD-TTV results in the first column compared with the presented MPD-AwTTV 

results in second column, especially in the healthy myocardium region (ROI 1) and the 

ischemic myocardium region (ROI 2). In other words, the results further demonstrate that 

the presented MPD-AwTTV deconvolution algorithm can yield more accurate MPHM 

estimation than the MPD-TTV deconvolution algorithm.

3.2.3. UQI study—Fig. 12 shows the local UQI measurements of the selected ROI as 

indicated by the yellow rectangle in Fig. 8. The results indicate that the MPD-TTV and the 

presented MPD-AwTTV deconvolution algorithms achieve more significant gains over the 

sSVD deconvolution algorithm. Furthermore, the presented MPD-AwTTV deconvolution 

algorithm performs better than the MPD-TTV deconvolution algorithm with 4% gains for 

the MBF map, 6% gains for the MBV map and 13% gains for the MTT map. The results are 

consistent with the previous observations in both the XCAT phantom and preclinical porcine 

study.

To further demonstrate the improvement over the MPD-TTV deconvolution algorithm, we 

conduct the porcine preclinical experiments under a higher noise level as shown in Fig. 13. 

As can be seen, the MPD-TTV deconvolution algorithm can reduce such noise-induced 

artifacts in the MPHM to some extent. Meanwhile, it can be observed that the present MPD-

AwTTV deconvolution algorithm outperforms better than the MPD-TTV deconvolution 

algorithm in terms of noise-induced artifacts suppression and image quality improvement.

3.3. Parameter selection

Fig. 14 shows the UQI and RMSE measurements for the presented MPD-AwTTV 

deconvolution algorithm with different δ values in the phantom and porcine data studies, 

respectively. As can be seen, the corresponding optimal δ values are 9×10−2 and 6×10−2 in 

terms of the highest UQI and lowest RMSE measurements.

4. Discussion and conclusion

Inspired by the success of AwTV minimization model in CT image processing scenario (Liu 

et al 2012), an AwTTV model is proposed and incorporated into the deconvolution 

framework for accurate MPHM estimation with low-mAs data acquisitions. One motivation 

of this work is that the AwTTV regularization introduces anisotropic adaptive penalty 

weights to voxels to preserve the edge details by taking into account characteristics of 

MPCT imaging procedure and anisotropic edge property of local voxels in MPCT images. 

The presented MPD-AwTTV deconvolution algorithm has been validated and evaluated on 

both the XCAT phantom and preclinical porcine data. The experimental results have clearly 

demonstrated the presented MPD-AwTTV deconvolution algorithm outperforms other 
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existing deconvolution algorithms in noise-induced artifacts suppression, edge details 

maintenance and accurate flow-scaled residue function and MPHM estimation in the digital 

phantom studies, and the similar gains can be obtained in the porcine data experiment, as 

shown in Section 3. The results further indicate that the presented MPD-AwTTV 

deconvolution algorithm has a bright prospect in clinical applications for a significant 

reduction of radiation exposure to patients.

It is worth to note that the presented MPD-AwTTV deconvolution algorithm also has some 

potential limitations. The first one is the parameter tuning. It is well known that optimizing 

all the parameters is a difficult task and there is still no global tactic for choosing them in 

most CT reconstruction/deconvolution applications. In order to choose the best value, in our 

studies, we applied a range of parameters and identified the ones that result in the best 

results based on the visual inspection or other empirical determination. Therefore, the 

parameters varied case by case and were chosen manually for optimal results in this study. In 

addition, in this study, we have shown that the final results estimated from the MPD AwTTV 

deconvolution algorithm could heuristically converge to an acceptable solution with the 

rRMSE metric in the phantom study (Fig. 1). This study can provide a valuable instruction 

for parameters selection in clinical patient imaging. In practice, more extensive experiments 

must be performed to optimize them which is also our further work. Second, the calculation 

of anisotropic weights in the AwTTV regularization unavoidably increases the calculative 

burden. In practice, a dedicated hardware and software can be introduced with significant 

efficiency. In addition, the presented MPD-AwTTV does not consider the cardiac motion 

within or between simulated/preclinical scans on the basis that the gantry rotation speeds 

have increased and the ECG-triggered technique is introduced which may freeze the cardiac 

motion. However, in clinical application, the individual frames may suffer from acquisition 

artifacts (Bindschadler et al 2014). Therefore, adopting some robust registration (Isola et al 
2011) or motion correction (Bian et al 2015) techniques to compensate for these artifacts 

could be another significant task in the future study. Last but not the least, it is noted that 

severe noise-induced artifacts are present in the MPHM calculated by the sSVD 

deconvolution algorithm in Figs. 3, 6 and 8 because the sSVD algorithm is well known to be 

sensitive to noise. However, there are denoising algorithms to first remove the noise before 

using the sSVD deconvolution algorithm, which have been shown to significantly improve 

its performance, such as time-intensity profile similarity (TIPS) bilateral filter (Mendrik et 
al2011), previous normal-dose scan induced nonlocal means (ndiNLM) filter (Ma et al 2011) 

and sequential-images iterative reconstruction approach (Ma et al 2012b). Further studies are 

warranted to validate the effectiveness of combining the sSVD deconvolution algorithm with 

other denoising algorithms.

In this work, we presented a robust dynamic MPCT deconvolution framework by 

incorporating the AwTTV model under the low dose context. In clinics, the presented 

algorithm could potentially applied in other application, such as dynamic CT cerebral 

perfusion imaging (Ma et al 2012b, Fang et al 2015), dynamic PET imaging (Lu et al 2012), 

and 4D CT imaging (Zhang et al 2014), which may be another topic in our future research.
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Figure 1. 
The rRMSE measurements of the present MPD-AwTTV deconvolution algorithm versus the 

number of iteration in phantom study under a low noise level.
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Figure 2. 
(a) A modified XCAT phantom composed of the left and right ventricular cavities, aorta, 

healthy and ischemic myocardium. (b) Contrast dynamic of the left ventricle, aorta, healthy 

myocardium, ischemic myocardium, and right ventricle.
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Figure 3. 
The MBF (column one), MBV (column two) and MTT (column three) maps calculated by 

three different deconvolution algorithms under a low noise level. The first row was the 

noise-free MPHM used as ground-truth; the second row was estimated by the sSVD 

deconvolution algorithm from noisy measurements; the third row was calculated by the 

MPDTTV deconvolution algorithm from noisy measurements; and the fourth row was 

calculated by the presented MPD-AwTTV deconvolution algorithm from noisy 
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measurements. MBF in unit of ml/100g/min, MBV in unit of ml/100g, and MTT in unit of 

sec.
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Figure 4. 
The PSNR, MPSE and MPAE measurements on the ROIs indicated by the yellow squares in 

Fig. 3 from different deconvolution algorithms: (a) MBF maps; (b) MBV maps; and (c) 

MTT maps.
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Figure 5. 
The flow-scaled residue function calculated by three different deconvolution algorithms.
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Figure 6. 
The MBF (column one), MBV (column two) and MTT (column three) maps estimated by 

different algorithms under a higher noise level. The first row was noise-free MPHM used as 

ground-truth; the second row was estimated by the sSVD deconvolution algorithm; the third 

row was calculated by the MPD-TTV deconvolution algorithm and the fourth row was 

obtained by the present MPD-AwTTV deconvolution algorithm.
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Figure 7. 
The UQI measurements of the MPHM estimated by the three deconvolution algorithms.
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Figure 8. 
The MBF (column one), MBV (column two) and MTT (column three) maps estimated by 

three different algorithms from the low-dose MPCT images, respectively. The first row was 

calculated from the high-dose MPCT images; the second row was estimated by the sSVD 

deconvolution algorithm; the third row was estimated by the MPD-TTV deconvolution 

algorithm; and the fourth row was estimated by the presented MPD-AwTTV deconvolution 

algorithm. MBF in unit of ml/100g/min, MBV in unit of ml/100g, and MTT in unit of sec.
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Figure 9. 
The zoomed details of ROIs of MPHM in Fig. 8.
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Figure 10. 
The horizontal profiles of the MPHM shown in Fig. 8. The first row denotes the results of 

the MBF maps; the second row denotes the results of the MBV maps; and the third row 

denotes the results of the MTT maps. The corresponding algorithms are illustrated in figure 

legend
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Figure 11. 
The histogram maps of the two ROIs for the high-dose MBF map and low-dose MBF map 

estimated by two different deconvolution algorithms. The ROI 1 represents the healthy 

myocardium region. The ROI 2 represents the ischemic myocardium region.
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Figure 12. 
The UQI measurements on the ROI indicated by the yellow rectangle in Fig. 8.
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Figure 13. 
The MBF (column one), MBV (column two) and MTT (column three) maps estimated by 

different algorithms under a higher noise level in the porcine study.
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Figure 14. 
The RMSE and UQI measurements for the presented MPD-AwTTV deconvolution 

algorithm with different δ values in the phantom (a) and porcine (b) data studies, 

respectively. The ‘blue solid line with circle marker’ and ‘red solid line with x-mark marker’ 

represent the UQI and RMSE measurements, respectively.
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Table 1

The imaging parameters of the GE Discovery CT750 HD CT scanner

Parameter

Source-to-detector distance 946.746 mm

Source-to-object distance 538.52 mm

Number of detector bins 888

Detector bin spacing 0.625 mm

Projection views per rotation 984

Rotation time 0.4 s
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