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Abstract
The introduction of new technologies has dramatically changed the current
practice of prenatal screening and testing for genetic abnormalities in the fetus.
Expanded carrier screening panels and non-invasive cell-free fetal DNA-based
screening for aneuploidy and single-gene disorders, and more recently for
subchromosomal abnormalities, have been introduced into prenatal care. More
recently introduced technologies such as chromosomal microarray analysis
and whole-exome sequencing can diagnose more genetic conditions on
samples obtained through amniocentesis or chorionic villus sampling, including
many disorders that cannot be screened for non-invasively. All of these options
have benefits and limitations, and genetic counseling has become increasingly
complex for providers who are responsible for guiding patients in their
decisions about screening and testing before and during pregnancy.
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Introduction
For more than 30 years, identifying women at increased risk for 
pregnancies with Down syndrome has been the focus of prenatal 
screening programs that combine maternal age, levels of specific 
analytes in maternal serum, and ultrasound findings in the first or 
second trimester to derive a risk estimate for Down syndrome and 
secondarily for trisomy 18. These programs now reach a detection 
rate of up to 88–96% for Down syndrome and up to 85–95% for 
trisomy 181,2, depending on whether screening is performed in the 
first or second trimester of pregnancy, or both. In parallel, programs 
for universal parental carrier screening for autosomal recessive 
disorders, such as cystic fibrosis, as well as ethnicity-based carrier 
screening, such as for conditions more prevalent in the Ashkenazi 
Jewish population, were developed to identify parents at 25% 
risk of having an affected child with these disorders3. Identified  
carrier couples can then choose preimplantation genetic diagnosis 
to avoid affected pregnancies, or prenatal diagnosis, allowing them 
to consider termination of affected pregnancies or be prepared for 
the birth of an affected child.

With recent technological advances in methods to identify  
numerical and structural chromosome abnormalities and point 
mutations, such as array-based copy-number analysis, also known 
as chromosomal microarray analysis (CMA), and next-genera-
tion sequencing (NGS), the screening for and diagnosis of genetic 
abnormalities in the fetus is undergoing an unprecedented rapid 
evolution4–13. In parallel, CMA and NGS have also accelerated 
the discovery of causes of intellectual disability, birth defects, 
and many rare genetic and genomic disorders14–17. This has  
motivated the development of expansive carrier screens for hun-
dreds of genetic disorders at once as well as the development of 
non-invasive cell-free fetal DNA (cffDNA)-based screens for fetal 
chromosomal aneuploidy, subchromosomal abnormalities, and 
single-gene disorders. The availability of CMA- and NGS-based 
methods, such as targeted gene-panel sequencing and, recently, 
whole-exome sequencing (WES), has also resulted in the ability 
to diagnose more fetal genetic conditions from samples obtained 
through amniocentesis or chorionic villus sampling (CVS).

All of these new tests have created new, exciting opportunities 
for comprehensive prenatal diagnosis and screening, but they are 
accompanied by important challenges. Healthcare providers must 
consider the consequences of their rapid introduction into the  
clinic because of the still-limited knowledge about the test  
performance of some assays in routine clinical practice, concerns 
related to cost-conscious implementation of optimized screening 
and testing strategies, equal access, and appropriate selection 
of who will benefit most. The ever-increasing amount of genetic  
information that can be obtained preconceptionally and prenatally 
also brings about ethical and genetic counseling challenges9,18–21.

The introduction of chromosomal microarray 
analysis into prenatal diagnosis
The early goal of prenatal genetic screening was to identify women 
at increased risk for having a pregnancy with Down syndrome, 
resulting from an extra chromosome 21 (trisomy 21), the most com-
mon aneuploidy in liveborns, and, secondarily, Edwards syndrome 
(trisomy 18) and Patau syndrome (trisomy 13), so that a diagnostic 

amniocentesis (withdrawing amniotic fluid from inside the uterus 
that contains fetal cells) or CVS (obtaining a small sample from the 
placenta) can be offered to those at increased risk. For many years, 
the standard test on cultured cells from prenatally obtained amniotic 
fluid or CVS has been a karyotype (chromosome analysis) that can 
detect chromosomal aneuploidy (extra or missing chromosomes) 
and structural abnormalities larger than 5–10 megabases (Mb) 
in size. This is sometimes supplemented by fluorescence in situ 
hybridization (FISH) to rapidly test for a few common aneuploi-
dies if an expedited diagnosis is desired. FISH with locus-specific 
probes was also the method of choice to test for smaller structural 
chromosomal abnormalities but requires knowledge about which 
locus might be of interest, and only a few loci can be investigated 
in a single assay.

This dramatically changed when CMA became available, in which 
fluorescently labeled DNA is hybridized to a slide that carries 
thousands of probes spread across the genome. Higher or lower 
fluorescence intensity coming from DNA hybridized to specific 
probes identifies regions that have extra or missing copies of DNA, 
respectively. CMA has a much higher resolution than karyotyping, 
spanning from entire chromosomes (aneuploidy), to deletions and 
duplications of just several kilobases (kb) or even single exons. 
It also does not require cell culture, thus results can be available 
faster. CMA is now the first-tier genetic diagnostic test for children 
and adults with multiple congenital anomalies, genetic syndromes, 
and intellectual and developmental disabilities, where its diag-
nostic yield is 15 to 20%22. Widespread use of CMA for prenatal 
diagnosis lagged behind until results from a landmark multicenter 
trial sponsored by the National Institutes of Health, confirmed by 
other studies, demonstrated that CMA detects a clinically signifi-
cant and potentially clinically significant copy number change in 
1.7% of pregnancies with a normal karyotype and no observable 
fetal abnormalities; others have found a rate of 1% for clinically 
significant copy number variations (CNVs)23. However, CMA also 
detects CNVs of uncertain clinical significance and that predispose 
to later-onset disorders in about 1% of cases (up to approximately 
2%, depending on the study). This increases to 6% when there are 
congenital anomalies in the fetus6,23. CMA also performs better than 
a karyotype for the analysis of stillbirth samples24. The American 
College of Obstetrics and Gynecology now recommends that CMA 
is offered as the first-line test when fetal abnormalities are present 
and for stillbirth samples25. CMA is also better than karyotyping  
for genetic studies of early miscarriages. Although about 50% of 
miscarriages are aneuploid, some have subchromosomal abnor-
malities and standard karyotyping is compromised in 40% owing to 
culture failure or maternal-cell contamination26.

The significantly higher detection rate of chromosomal abnormali-
ties with CMA, along with recommendations that amniocentesis 
should be made available to all women27, led to predictions that 
more women would accept the small risk of amniocentesis or CVS 
for this benefit, which in a recent meta-analysis was found to be 
0.11% or 1:909 and 0.22% or 1:454, respectively28, and not elevated 
compared to background in another recent study29. However, new 
developments in cffDNA-based non-invasive screening of maternal 
plasma or fetal aneuploidy reversed this expected trend, with a dra-
matic decrease in the number of diagnostic procedures performed30. 
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Contributing to this decrease are a combination of assertive  
marketing of the new cffDNA-based tests by industry, incomplete 
understanding about the clinical performance and screening nature 
of cffDNA analysis, and a desire by women to avoid any potential 
risk to their pregnancies.

How cell-free fetal DNA analysis has changed the 
approach to prenatal diagnosis of genetic and 
chromosomal abnormalities
An ideal prenatal genetic diagnostic test would be both non- 
invasive and comprehensive, capable of simultaneously detecting 
chromosomal aneuploidy, structural chromosomal abnormalities, 
and single-gene mutations. Early efforts in the 1990’s focused on 
isolating fetal cells and analyzing them for chromosomal aneu-
ploidy, but the success rate was no better than standard maternal 
serum screening31. This was primarily because these circulating 
fetal cells are rare and difficult to purify and the diagnostic tools, 
mostly single-cell FISH, were limited. When Lo et al. discovered 
in 1997 that male fetal DNA could be amplified by PCR from 
maternal plasma32, attention shifted to the analysis of cffDNA 
from maternal plasma. Initially, PCR-based assays to identify fetal  
gender33, fetal Rhesus genotype34–39, and mutations that cause  
paternally inherited or de novo single-gene disorders were devel-
oped, which is an ongoing field of active investigation40–44. In 2008, 
two groups reported that shotgun NGS of cell-free DNA (cfDNA) 
from maternal plasma, of which about 10% originates from the pla-
centa and represents the fetal genome, can be used to determine 
if there is fetal aneuploidy by counting sequence tags mapped to 
each chromosome45,46. Following this, a number of technical and 
clinical validation studies collectively showed high sensitivity and 
specificity for the detection of Down syndrome and other com-
mon aneuploidies in pregnant women at increased risk for fetal  
aneuploidy47–56. Different technologies, one based on massively 
multiplexed PCR and another based on selection and sequencing of 
specific tags from chromosomes of interest, have also been devel-
oped and have similar performance57–65. Overall, cffDNA-based  
tests have a detection rate and false positive rate of 99.4% and  
0.16%, respectively, for Down syndrome, 96.6% and 0.05% for  
trisomy 18, 86.4% and 0.09% for trisomy 13, and 89.5% and 0.20% 
for monosomy X1. Those numbers were mostly obtained from  
studies in a high-risk population66, where the positive predic-
tive value (PPV) for common aneuploidies, such as trisomy 21, 
is high and does not take into account the small numbers of sam-
ples where no result was obtained. As a reminder, PPV indicates 
how often a positive test result reflects a true positive and depends 
on the prevalence of the condition in the population studied. The 
PPVs of cffDNA screening are lower in low-risk or average-risk  
populations52,56,59,62,65,67–69 but still significantly better than those 
of the standard multiple marker serum screening algorithms1. 
Together with reports from cytogenetic laboratories of relatively 
low confirmation rates in fetal samples studied because of posi-
tive cffDNA screening results70,71, this has raised concern that  
non-invasive cffDNA testing for aneuploidy is less accurate when 
applied in clinical practice than was expected based on the pub-
lished validation studies, which is an issue that has not yet been 
completely resolved and is to some degree also platform depend-
ent. This underscores the need for objective genetic counseling with 
emphasis on the screening nature and limitations on the accuracy 
of these tests. Some companies also offer cffDNA screening for 

twin pregnancies, but test performance is lower, in part because the 
cffDNA is a mixture of DNA from two fetuses72. One study has 
shown that this also influences results when a twin pregnancy has 
very early loss of one fetus or “vanishing twin” and that cffDNA 
from the trophoblast of the demised twin can be found up to 8 
weeks after the demise73.

As experience with cffDNA screening grows, other unknowns  
and caveats have emerged that complicate pre- and post-test  
genetic counseling. Because circulating cffDNA derives from 
the trophoblast, confined placental mosaicism for a tested  
chromosomal abnormality, known from CVS studies to be present 
in about 1%74, may result in a positive cffDNA test, but the fetus 
is unaffected72,75–77 when follow-up diagnostic testing on amniotic 
fluid samples (preferred over CVS in these situations) is per-
formed. Since cffDNA is admixed with a large excess of maternal  
cfDNA fragments, maternal mosaicism for the detected chro-
mosomal abnormality in the mother72 may also cause a positive 
cffDNA screening result. For example, low-level germline or 
acquired mosaicism for monosomy X has been well described78,79.  
Depending on which platform is used, <1 to 5% of the tests may 
fail, which has also been found to be associated with a higher  
risk for fetal aneuploidy80. One cause of this could be low fetal frac-
tion (i.e. the proportion of all the cfDNA in maternal plasma that 
is fetal) owing to placental abnormalities in some aneuploidies72,81. 
However, other more common causes for low fetal fraction are 
a high maternal body mass index or early gestational age72,82,83, 
the reason that cffDNA screening is not recommended before 
10 weeks’ gestation. Bianchi et al. first reported that rarely false  
positive cffDNA-screening results, particularly those suggestive 
of multiple aneuploidies or aneuploidy incompatible with embry-
onic or fetal development, may be associated with maternal malig-
nancy, with the chromosomally abnormal cfDNA originating from  
tumor cells84–86. While this is of potential high clinical impact, it 
is not currently established what the optimal follow-up for such 
women should be. Other maternal reasons for abnormal cffDNA-
screening results can be the presence of fibroids87 or, in rare cases, 
transplanted organs.

After initial demonstration that microdeletions can be detected in 
cffDNA88–92, some providers now offer the option to add screen-
ing for selected clinically significant microdeletions and also rarer 
aneuploidies (trisomy 9, 16, and 22)93–99. One provider in the United 
States recently began offering genome-wide cffDNA screening for 
deletions and duplications of >7 Mb100,101. Rigorous clinical valida-
tion of these expanded cffDNA tests is problematic102,103 because 
these additional genetic conditions are each very rare and there 
is significant concern for high cumulative false positive and false 
negative rates.

To date, guidance offered by professional societies on cffDNA 
analysis state that they are screening tests and do not replace 
diagnostic testing1,2,104–108. Most, but not all105,108, also recom-
mend offering it only to women at increased risk for aneuploidy, 
but all state that cffDNA screening for microdeletions has not 
yet been sufficiently clinically validated. Despite this, and likely 
because of intense marketing, many women are being offered 
cffDNA screening, irrespective of a priori risk, and the number 
of diagnostic procedures performed has dramatically declined. 
Many have voiced concern that this will result in failure to detect  
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significant chromosomal abnormalities currently only detectable  
by karyotyping and CMA. In addition, when diagnostic testing is 
performed after positive standard first trimester combined screen-
ing, 17–30% of chromosomal abnormalities identified in the fetus 
are not those for which the screen was positive109,110 and would not 
be detectable by currently offered cffDNA screening tests. Although 
it has recently been argued that this is less frequently a concern111, 
data from a study in which common aneuploidy-specific qfPCR as 
follow-up testing on amniotic fluid samples for an abnormal serum 
screening result was compared to karyotype analysis112, and another 
retrospective analysis also indicated that other chromosomal  
abnormalities that would be missed by cfDNA screening can be 
responsible for abnormal maternal serum screening results113, 
although at reported variable frequencies. Finally, reports that are 
not easy to confirm are also emerging that women have foregone 
confirmatory testing and made reproductive decisions based on 
cffDNA screening results alone114,115.

The emergence of expanded carrier screening
Another recent development is in the area of carrier screening. 
For autosomal recessive genetic conditions to manifest, both cop-
ies (alleles) of a disease gene have to carry a deleterious mutation 
and carriers with only one mutant copy are unaffected. However,  
carriers for a deleterious mutation in the same gene have a 25% (1/4) 
risk with each pregnancy to have an affected child. Professional 
societies recommend reproductive carrier screening for a limited 
number of conditions, some of which pan-ethnically (e.g. spinal 
muscular atrophy) and some based on ethnicity (e.g. thalassemia, 
sickle cell disease, and conditions prevalent in the Ashkenazi 
Jewish population)116–120. These recommendations are based on  
consensus among experts that take into account disease severity, 
age of onset and prevalence, cost effectiveness, and the availability 
of therapies or other management options for affected individuals 
(including preimplantation or prenatal genetic diagnosis). Impor-
tant limitations of this strategy for reproductive carrier screening 
include that many individuals do not have accurate knowledge of 
their ancestry, the increasing admixture in populations, and the 
focus of screening on more prevalent disorders, while other rarer but 
potentially equally or more severe conditions are not included121.

To overcome such limitations, newer high-throughput mutation 
screening or sequencing methods have been developed that com-
bine testing of multiple known disease genes in single “expanded” 
carrier tests and are beginning to be offered to women and their 
partners, irrespective of their ethnic background. Different compa-
nies are now offering such pan-ethnic expanded carrier screening 
panels, but there is variation in the number and identity of disor-
ders screened for between different panels. Some also include copy 
number analysis for specific conditions and carrier screening of 
women for X-linked disorders with 50% risk of transmission to 
affected sons or to carrier daughters. These expanded carrier tests 
are a significant improvement compared to the smaller panels, but 
current cost and reimbursement policies limit universal access. In 
addition, as the number of genes included on these panels increases, 
25%122 or more123,124 of those screened will be identified as carriers, 
yet the chance that both reproductive partners carry mutations in 
the same gene remains low. The need for genetic counseling about 

these aspects and residual risks after testing puts significant strain 
on available genetic counseling services120,121,125.

Prenatal whole-exome sequencing will change our 
ability to identify causes of fetal birth defects
The most recent development in prenatal and reproductive  
testing is fetal diagnostic WES. When fetal congenital abnormali-
ties are identified on prenatal ultrasound, karyotype and CMA 
reveal a diagnosis in up to 20–30%7,23, depending on the type of 
structural defect. For the remainder, single-gene tests or gene pan-
els, such as testing for Noonan syndrome when there is an increased 
nuchal translucency in a fetus with a normal karyotype126,127, may 
be useful, but very recent data suggest that diagnostic WES can 
provide answers in a substantial proportion of the remaining cases7. 
For WES, the majority of coding exons, which represent only 2% 
of the genome but contain 85% of disease-causing mutations, are 
sequenced. In the pediatric population, WES yields a molecular 
diagnosis in at least 25% of patients with a suspected genetic dis-
order and prior negative genetic testing128,129. Several recent case 
reports or small series128–133 (some embedded in larger reports) that 
describe diagnostic WES for fetuses or newborns with prenatally 
detected congenital abnormalities are now appearing10,134. Carss  
et al. report on their experience with WES on 30 prenatally or  
neonatally obtained samples from fetuses with congenital abnor-
malities but negative results on standard genetic testing. They 
found a genetic diagnosis in three (10%) and sequence variants of 
potential significance in five (17%)8. More recently, Alamillo et al. 
reported relevant mutations in four of seven prenatal cases135, and 
Drury et al. found a 25% total detection rate in 24 fetuses with 
abnormal ultrasound findings, including a definitive diagnosis in 
five and plausible diagnosis in one11. Our early results also indi-
cate that the detection rate of a significant genetic abnormality with  
prenatal exome sequencing for fetuses with single or multiple  
congenital anomalies is at least 30%18,128.

These combined data are very encouraging and indicate that prena-
tal diagnostic WES has the potential to double the number of preg-
nancies complicated by fetal congenital abnormalities for which a 
genetic etiology can be identified prenatally, but further larger stud-
ies are required.

Concluding remarks and forecasts for the future of 
prenatal and reproductive genetics
The recent rapid introduction of non-invasive prenatal screening 
for chromosomal abnormalities has changed the practice of pre-
natal genetic diagnosis and screening. Although both sensitivity 
and specificity of cffDNA screening for fetal Down syndrome and 
other common aneuploidies are very high, this technique does not 
have the same resolution or coverage as a karyotype or CMA nor 
does it replace the diagnostic capability or accuracy of amniocen-
tesis or CVS. Although laboratories have begun to add screening 
for other aneuploidies, such as microdeletions and duplications, 
there is significant concern as more rare conditions are included 
about adequate clinical validation, high cumulative false positive 
rates, resulting in unnecessary diagnostic procedures, and high false 
negative rates resulting in missed genetic diagnoses. Awareness of 
these issues by providers and patients is incomplete and marketing 
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of cffDNA screening is highly focused on avoidance of the risk 
of diagnostic procedures. This may result in some patients elect-
ing for cffDNA screening when diagnostic testing is more optimal, 
such as in the work-up for fetal abnormalities even though prena-
tal CMA detects clinically significant chromosomal abnormalities 
in 1 to 1.7% in pregnancies without fetal anomalies and in 6% of  
pregnancies complicated by fetal anomalies, in addition to those 
chromosomal abnormalities detected by karyotyping. Thus, until 
non-invasive tests become more accurate and comprehensive, 
the growing trend of replacing diagnostic testing with cffDNA  
screening comes at a cost of missed prenatal genetic diagnoses.  
Furthermore, it is predicted that diagnostic WES to search for 
single-gene disorders has the potential to double the number of 
identified genetic causes of fetal abnormalities. Women should be 
counseled about the limitations of cffDNA screening in view of 
results from a recent meta-analysis that indicates a lower risk of 
diagnostic procedures than previously considered (about 1:909 for  
amniocentesis and 1:600 for CVS). Finally, although proof-of-
principle studies have shown that it is technically feasible to non-
invasively sequence the entire fetal genome, this is not currently 
achievable in a time- and cost-effective manner136,137. Thus, until 
non-invasive analysis of fetal DNA improves to the point that it 
will have the same accuracy as that of karyotyping and CMA on 
amniotic fluid or CVS samples, genetic counseling should objec-
tively present the limitations and benefits of all currently available 
approaches in the context of the individual woman’s a priori risk, 
her desire for genetic knowledge about her pregnancy, and person-
alized risk-benefit considerations.

Since cffDNA is admixed with maternal cfDNA, it is unclear if 
diagnostic-level accuracy from this fetal DNA source will ever be 
achievable. This has sparked renewed interest by several groups 
in the isolation and analysis of intact fetal cells from maternal  

blood138–145, which contain a pure unmixed fetal genome, with a 
theoretical ability for similar diagnostic accuracy as that obtained 
through invasive diagnostic procedures. There is strong evidence 
that fetal cells can be recovered and analyzed, but the approach is 
currently labor intensive and costly and has not yet been proven 
to be robustly successful and adaptable to a high-throughput,  
relatively low-cost diagnostic testing option.

In conclusion, the advances of genomic medicine are impacting  
prenatal diagnosis, just like any other medical field. While these 
innovations offer exciting new opportunities and can empower  
families with increased knowledge about their reproductive risks 
and with decision-making autonomy, they have to be carefully  
introduced in an evidence-based and ethically responsible manner 
and monitored after implementation. Considering that many of  
these innovations are driven by for-profit companies, professional 
societies will play an increasingly important role in providing 
objective guidance to patients and providers.
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