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Abstract

When generalized estimating equations (GEE) incorporate an unstructured working correlation 

matrix, the variances of regression parameter estimates can inflate due to the estimation of the 

correlation parameters. In previous work, an approximation for this inflation that results in a 

corrected version of the sandwich formula for the covariance matrix of regression parameter 

estimates was derived. Use of this correction for correlation structure selection also reduces the 

over-selection of the unstructured working correlation matrix. In this manuscript, we conduct a 

simulation study to demonstrate that an increase in variances of regression parameter estimates can 

occur when GEE incorporates structured working correlation matrices as well. Correspondingly, 

we show the ability of the corrected version of the sandwich formula to improve the validity of 

inference and correlation structure selection. We also study the relative influences of two popular 

corrections to a different source of bias in the empirical sandwich covariance estimator.
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1. Introduction

Generalized estimating equations (GEE) [1] are commonly utilized for the analysis of 

correlated data when a marginal model is desired. When GEE incorporates an unstructured 

working correlation matrix, it has been shown that the covariance matrix of the regression 

parameter estimates may inflate due to the need to estimate nuisance correlation parameters 

[2]. We note that although relatively unknown, to our knowledge, in the GEE literature 

before the work of Westgate [2], this type of small-sample variance inflation is very well 

known when data arise from a multivariate normal distribution and a linear mixed model is 
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used [3]. In fact, the Kenward and Roger method [4, 5], which accounts for this inflation, 

has enjoyed great popularity when the working covariance structure is assumed to be 

correctly specified such that model-based standard error estimates can be utilized.

With respect to GEE, Westgate [2] derived an approximation for this inflation when utilizing 

an unstructured working correlation matrix, resulting in a corrected version of the well-

known sandwich formula for the covariance matrix of the regression parameter estimates. 

Furthermore, Westgate [6] showed that, in order to improve regression parameter estimation 

via correlation structure selection, this covariance correction can be used to penalize the 

estimation of the multiple nuisance correlation parameters within the unstructured matrix in 

order to reduce its over-selection. In this manuscript, we conduct a simulation study to 

demonstrate that even when GEE incorporates structured correlation matrices, the variances 

of the regression parameter estimates can still inflate. Therefore, we also apply and study the 

use of the covariance inflation correction when GEE incorporates structured correlation 

matrices. Specifically, we show that use of this correction can improve inference when using 

structured working correlation matrices, and that this correction should be utilized as a 

penalty by correlation selection criteria for all structures under consideration. Furthermore, 

unrelated to the covariance inflation correction, a correction for the bias in the meat of the 

empirical sandwich covariance matrix estimator is needed in small-sample settings. 

Therefore, we study the relative influences of two such corrections, proposed by Kauermann 

and Carroll [7] and Mancl and DeRouen [8], that have found popularity.

Section 2 introduces notation and discusses GEE, the covariance inflation correction, 

estimation of the sandwich covariance matrix, and correlation structure selection. Our 

simulation study is presented in Section 3. Finally, concluding remarks are given in Section 

4.

2. Notation, GEE, Covariance Correction and Estimation, and Correlation 

Selection

Assume we have data from N independent clusters. The observed outcome vector for the ith 

cluster is denoted by Yi = [Yi1, …, Yini]
T, which has a marginal mean given by E(Yi) = μi 

that is linked to covariates via a function, f, such that  for xij = [1, x1ij, …, 

x(p−1)ij]T and β = [β0, β1, …, βp−1]T. The corresponding working covariance matrix for Yi is 

given by , i = 1, …, N. Here, Ai = diag[ϕν(μi1), …, ϕν(μini)] is a 

diagonal matrix of working marginal variances, ϕ is an assumed common dispersion 

parameter, ν is a known function, and Ri(α) is a working correlation matrix with 1 along the 

diagonal and one or more parameters given by α.

Let Di = ∂μi/∂βT, and denote a consistent working estimate for β by β̃. To obtain the final 

estimate of the regression parameters, β̂, using GEE [1], we iteratively solve

(1)
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for which β̃ = β̂ at the end of the iterative procedure. The well-known sandwich formula for 

the covariance matrix of β̂ is given by Cov(β̂) ≈

(2)

The sandwich formula of Equation (2) assumes correlation parameters are known, although 

in practice they must be estimated. Additionally, α̂(β) must be replaced with α̂(β̃) in 

Equation (1). As a result, because  varies about , the estimation 

variability of GEE can increase, thus inflating Cov(β̂) [2]. Specifically, Westgate [2] showed 

that

(3)

after accounting for covariance inflation via a Taylor series expansion. Here, Ip is a p × p 
identity matrix, and G = (G0, G1, …, Gp−1),

We note that although Westgate [2, 6] only applied the covariance inflation correction in 

Equation (3) when GEE incorporates an unstructured working correlation matrix, this 

correction is not restricted and can be applied with GEE regardless of the type of working 

correlation structure, as will be demonstrated in our simulation study.

In practice, unknown parameters must be estimated within the formula for Cov(β̂). 
Therefore, an arbitrary estimator can be denoted by (Ip + Ĝ)Σ̂(Ip + Ĝ)T. Within G, unknown 

parameters can be estimated using β̂, resulting in Ĝ. However, Σ can be estimated in 

different manners. If we assume the working covariance structure is correctly specified, then 

Cov(Yi) in Equation (2) can be replaced with Vi, i = 1, …, N, resulting in the model-based 

estimator . However, if the working structure is misspecified, 

Σ̂MB will be biased. Therefore, a common form for Σ̂ is the Liang and Zeger [1] empirical 

estimator, Σ̂LZ, that replaces Cov(Yi) in Equation (2) with (Yi − μ̂
i)(Yi − μ̂

i)T, i = 1, …, N. 

This estimator is routinely used with GEE because it generally is a consistent estimate for 

Cov(β̂) that does not require the working and true covariance structures to be equivalent [1]. 

We further note that in small-sample settings, Σ̂LZ can be biased for Σ because (Yi − μ̂
i), i = 

1, …, N, tends to be too small [8]. Therefore, multiple corrections have been proposed to 

reduce this bias, such as the popular corrections proposed by Kauermann and Carroll [7] and 

Mancl and DeRouen [8]. As these two corrections can yield notably different standard error 

estimates in small-sample settings, in our simulation study we will assess the performances 

of both corrections in conjunction with the covariance inflation correction.
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Accurate modeling of the working correlation structure has the potential to improve 

estimation efficiency [1, 9]. Therefore, multiple criteria have been proposed to select a 

working structure, many of which are summarized in and studied by Westgate [6]. For 

instance, the ‘correlation information criterion’ (CIC) and ‘trace of the empirical covariance 

matrix’ (TECM) criterion have been shown to work well [6, 10]. When incorporating the 

covariance inflation correction, as proposed by Westgate [6] to penalize, or account for, the 

estimation of nuisance correlation parameters, the CIC selects the working structure that 

gives the smallest value for , where 

, and the TECM chooses the structure that yields the smallest 

value for . We note that Σ̂ must be Σ̂LZ or a bias-corrected version 

of this estimator. Furthermore, Westgate [6] only applied the covariance inflation correction 

for the unstructured correlation matrix, whereas in our simulation study we show that it 

should be applied with all working structures that are under consideration for selection. For 

instance, structures such as independence, exchangeable, AR-1, and less parsimonous 

Toeplitz forms do not all have the same number of correlation parameters, and therefore 

each will have a different degree of covariance inflation that must be taken into account.

3. Simulation Study

3.1. Study Description

We now conduct a simulation study to show that variances of regression parameter estimates 

can inflate when GEE incorporates well-known structured working correlation matrices. 

Furthermore, we demonstrate the corresponding use, and study the necessity and utility, of 

the covariance inflation correction in Equation (3). Specifically, we study standard error (SE) 

estimation and the validity of inference via empirical covarage probabillities (CPs) of 95% 

confidence intervals (CIs). We further study correlation selection accuracy via the ability of 

correlation selection criteria to choose the true structure. As our focus in this manuscript is 

on structured working correlation matrices, we do not present results from an unstructured 

working matrix. Furthermore, because we focus on small-sample settings, we study the use 

of the covariance inflation correction in conjunction with the Kauermann and Carroll [7] and 

Mancl and DeRouen [8] corrections in order to assess the impact these latter two corrections 

for the bias in Σ̂LZ has on the necessity and utility of the covariance inflation correction.

Multivariate normal data were generated from

where β = [0, 0.3, 0.3]T and Var(εij) = 1, j = 1, …, n; i = 1, …, N, and correlated binary 

outcomes were generated from the marginal model given by
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where β = [0, 0.1, 0.1]T. In both models, x1ij and x2ij, j = 1, …, n, were independently 

generated from Uniform(0, 1). Models are similar to the ones used in Hin et al. [11], Hin and 

Wang [10], and Westgate [6].

Simulations were conducted in R version 2.13.1 [12]. Each setting was examined via 1,000 

replications. Normal outcomes were generated using rmvnorm of the mvtnorm package [13, 

14], whereas binary outcomes were generated using rmvbin of the bindata package [15]. 

When correlated outcomes are binary, additional constraints are required on the correlation 

parameters [16, 17]. Therefore, to avoid problems with data generation, and to enhance the 

stability of working correlation matrices, we utilized αexch = αAR−1 = 0.2 in these settings.

In Tables 1 and 2, we focus on results for normal outcomes that only correspond to β̂1, as 

results for β̂2 are similar and the intercept is not of interest. Furthermore, we present two sets 

of results based on the use of either α̂(β) (no resulting covariance inflation) or α̂(β̃) (results 

in covariance inflation, as will realistically be the case in practice) within Equation (1), 

denoted by “Theoretical Analyses” and “Realistic Analyses”, respectively. SE estimates 

corresponding to the theoretical and realistic analyses are obtained from Σ̂ and 

(Ip+Ĝ)Σ̂(Ip+Ĝ)T, respectively, and are denoted by SET and SER. We note that Σ̂ is Σ̂LZ with 

either the Kauermann and Carroll [7] or Mancl and DeRouen [8] correction. For each type of 

analysis, we present empirical standard deviations (ESDs) of β̂1, empirical means of SE 

estimates and corresponding 95% confidence interval (CI) empirical coverage probabilities 

(CPs). Variance inflation does not occur with the Theoretical Analyses, in which case SER is 

not applicable and is therefore not presented. As in Westgate [2], CIs use critical values 

based on a t-distribution with N − p degrees of freedom. The working correlation structures 

for which results are presented are exchangeable, AR-1, and Toeplitz. In Table 1, we present 

results from when the Kauermann and Carroll [7] correction is used, whereas in Table 2 the 

Mancl and DeRouen [8] correction is utilized. Results are from settings in which the true 

structure is exchangeable with αexch = 0.5. Results for other true structures do not provide 

additional insight. We therefore include corresponding results from a true AR-1 structure 

with αAR−1 = 0.5 in Supplementary Material. For the same reason, results from settings in 

which correlated outcomes were binary are also included in Supplementary Material.

In Tables 3 and 4, we present results from the use of unpenalized, based on Σ̂ and thus 

unrealistically assuming correlation parameters are known, and penalized, based on (Ip + 

Ĝ)Σ̂(Ip + Ĝ)T, versions of the CIC and TECM to select either independence, exchangeable, 

AR-1, or Toeplitz working correlation matrices for normal outcomes. Corresponding results 

for binary outcomes are given in Supplementary Material. For each version of each criterion, 

we present the number of times each structure was selected, with the goal of selecting the 

true structure as often as possible. For each setting, the true structure is either exchangeable 

or AR-1 with true parameter value of 0.5, and n = 4. In Table 3, we present results based on 

the incorporation of the Kauermann and Carroll [7] correction, whereas in Table 4 the Mancl 

and DeRouen [8] correction is utilized.

3.2. Results

Numerical instability was encountered with the working Toeplitz structure when N = 10. In 

such instances, we do not present ESDs or empirical means of SE estimates because they 
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were highly influenced. However, because stable results were observed for the analyses of 

most simulated datasets, empirical CPs are still presented. Furthermore, we include an 

additional setting with N = 25, as this is a small-sample setting in which results were stable.

For theoretical analyses, the ESD of β̂1 and corresponding empirical mean of SET were 

typically close in value when utilizing the Kauermann and Carroll [7] correction (Table 1). 

Furthermore, corresponding CPs were often relatively close to the nominal 0.95 value. 

Specifically, to determine if empirical CPs are acceptably close to 0.95, we note that 

empirical CPs between 0.936 and 0.964 have corresponding 95% CIs that cover 0.95. In 

short, these results suggest that if β did not have to be estimated for use in α̂ within Equation 

(1), then SE estimates obtained from Σ̂ and utilizing the Kauermann and Carroll [7] 

correction would result in valid inference. Alternatively, the Mancl and DeRouen [8] 

correction (Table 2) sometimes yielded positive bias in SE estimates, particularly for small 

N, and thus resulted in over-coverage of CIs in such settings.

ESDs of β1̂ from the realistic analyses were greater than the corresponding ESDs from the 

theoretical analyses, demonstrating that variance inflation does occur when GEE 

incorporates structured working correlation matrices due to the need for replacing β with β̃ 

inside α̂ within Equation (1). However, empirical means for SET were approximately the 

same for both theoretical and realistic analyses in most settings. Therefore, when utilizing 

the Kauermann and Carroll [7] correction, SET was negatively biased, or smaller than the 

ESD, for the realistic analyses in some settings. This bias was also inherently observed via 

the degree of undercoverage by the CI that is constructed with SET in the realistic analyses. 

In contrast, use of the inflation correction worked very well at approximating the magnitude 

of variance inflation, and therefore improved inference overall when used in conjunction 

with the Kauermann and Carroll [7] correction. Specifically, utilizing SER notably reduced 

bias relative to SET, and typically resulted in near-nominal empirical CPs (Table 1). 

Alternatively, when utilizing the Mancl and DeRouen [8] correction (Table 2), use of the 

covariance inflation correction was often not needed due to the Mancl and DeRouen [8] 

correction resulting in a positively biased estimate for Σ. However, use of both corrections 

did perform best when incorporating a Toeplitz working structure.

The magnitude of covariance inflation that occurred, and therefore the need for the inflation 

correction, depended on n, N, and the number of estimated correlation parameters. For 

instance, a more notable variance inflation occurred when n = 2 (in which case the three 

working correlation structures are equivalent), particularly for N = 10, relative to the use of 

exchangeable or AR-1 when n = 4 because fewer empirical correlations were used to 

estimate the single correlation parameter. Furthermore, the magnitude of inflation increased 

as N decreased or the dimension of α̂ increased. For AR-1 and exchangeable, only one 

correlation parameter was estimated. Therefore, in settings in which n = 4, the covariance 

inflation was very small, especially when N = 50. Due to this result, SET and SER were 

similar, on average, in these settings. More notable inflations occurred with the Toeplitz 

structure due to the need to estimate three correlation parameters when n = 4. We further 

note that the number of parameters this structure estimates increases with n. Therefore, the 

need for the covariance inflation correction will be more apparent for larger values of n 
when utilizing this structure.
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Although it is ideal to select the true structure, either exchangeable or AR-1, in Tables 3 and 

4, unpenalized versions of the TECM and CIC using Σ̂ selected Toeplitz more often. 

However, penalized versions using (Ip + Ĝ)Σ̂(Ip + Ĝ)T appropriately took into account the 

degree of covariance inflation that occurs with each of these structures, and therefore the 

corresponding penalized versions of these criteria correctly chose the true, simpler structure 

much more frequently, greatly reducing the number of times Toeplitz was selected. We note 

that the selection accuracy of the penalized criteria enhanced as N increased, because (Ip + 

Ĝ)Σ̂(Ip + Ĝ)T is estimated more precisely. Another interesting result is that selection 

frequencies were similar whether using the Kauermann and Carroll [7] or Mancl and 

DeRouen [8] correction. In short, the TECM and CIC were not notably influenced by this 

type of correction for Σ̂LZ, whereas use of the covariance inflation correction with all 

working structures under consideration greatly improved the performances of the TECM and 

CIC.

4. Concluding Remarks

With GEE, correlation parameters are estimated, therefore potentially inflating the 

covariance matrix of the regression parameter estimates. Westgate [2] derived an 

approximation for this inflation when utilizing an unstructured working correlation matrix, 

and Westgate [6] proposed the use of this approximation to penalize the estimation of the 

unstructured matrix’s parameters. In this manuscript, we showed that the resulting corrected 

version of the well-known sandwich covariance formula and the use of this correction as a 

correlation selection penalty are also applicable when GEE incorporates structured working 

correlation matrices. In our study, use of the corrected formula improved standard error 

estimation, and thus the validity of inference, when the Kauermann and Carroll [7] 

correction was used. Alternatively, when the Mancl and DeRouen [8] correction was used, 

the covariance inflation correction appeared to be useful for attaining valid inference only 

when GEE incorporated a working Toeplitz structure, as the Mancl and DeRouen [8] 

correction often over-corrected for the bias in the Liang and Zeger [1] empirical sandwich 

estimator. Furthermore, irrelevent of which correction is applied to the Liang and Zeger [1] 

empirical sandwich estimator, use of the covariance inflation correction as a penalty greatly 

improved correlation structure selection accuracy.

Simulation results showed that, even for small N, the inflation of the variances of regression 

parameter estimates can be negligible for the AR-1 and exchangeable structures. Therefore, 

it is no surprise that, to our knowledge, this variance inflation has gone relatively unnoticed 

in practice with these working structures that require the estimation of only one nuisance 

parameter. This also implies that the inflation correction is often not needed to penalize these 

structures when compared against the working independence structure, which is a 

comparison that is routinely demonstrated in the GEE correlation selection literature. 

However, the need for the covariance inflation correction can be apparent for structures that 

require multiple nuisance parameters to be estimated. Another situation in which multiple 

correlation parameters may be estimated is when different trial arms, for instance, are 

allowed to have different exchangeable or AR-1 parameter values, in which case the 

covariance inflation correction can be useful. Furthermore, the need for the covariance 

inflation correction increases as the number of independent clusters decreases.
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An alternative approach to GEE is the quadratic inference function (QIF) method [18]. 

Theoretically, the QIF approach is equally or more efficient than GEE. However, finite-

sample covariance inflation of the regression parameter estimates must be taken into 

account, as is done in Westgate [19, 20]. Westgate [20] proposed a method that utilizes the 

TECM to select both a working correlation structure and one of these two methods, 

analogous to the approach we used in this manuscript. Therefore, our study results imply 

that the covariance inflation correction can also be used with GEE incorporating structured 

working correlation matrices in the context of Westgate [20].

An R function that implements GEE and outputs results based on the methods presented in 

this manuscript can be found in Supplementary Material or obtained by contacting the 

author.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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