Table 1.
Type of nanomaterialsa | Analytes | Detection mechanisma | Detection limit | Reference | |
---|---|---|---|---|---|
Noble metal nanomaterials | Metal NPs | Pb2+ | fluorescence quenching | 0.51 nM | 76 |
fluorescence enhancement | 1.5 nM | 83 | |||
Hg2+ | fluorescence enhancement | 0.32 μM | 80 | ||
30 nM | 88 | ||||
NSET | 2 nM | 92 | |||
Zn2+ | fluorescence enhancement | 0.76 μM | 81 | ||
Cu2+ | FRET | 0.3 nM | 82 | ||
9.83 pM | 87 | ||||
K+ | FRET | 100 μM | 90 | ||
Tb3+ | FRET | N. A. | 93 | ||
Metal NCs | Hg2+ | fluorescence quenching | 0.5 nM | 114 | |
Cu2+ | fluorescence quenching | 5 nM | 110 | ||
Pb2+ | fluorescence quenching | 2 nM | 126 | ||
Fe3+ | AIFQ | 3.5 μM | 132 | ||
Upconversion nanoparticles | Hg2+ | LRET | 0.06 nM | 156 | |
41 nM | 158 | ||||
Pb2+ | FRET | 80 nM | 161 | ||
fluorescence enhancement | 20 nM | 162 | |||
Cu2+ | FRET | 1 μM | 166 | ||
Semiconductor nanoparticles | Undoped QDs | Cu2+ | fluorescence quenching | 7.1 nM | 195 |
fluorescence enhancement | 2.75 nM | 220 | |||
Pb2+ | fluorescence enhancement | 0.2 nM | 216 | ||
Ca2+ | FRET | 2 μM | 219 | ||
Doped QDs | Hg2+ | fluorescence enhancement | 0.18 nM | 232 | |
Ag+ | NSET | 7.9 nM | 233 | ||
Fe2+ | fluorescence quenching | 3 nM | 234 | ||
Carbon Materials | CDs | Hg2+ | fluorescence enhancement | 20 nM | 246 |
fluorescence quenching | 0.1 μM | 247 | |||
GQDs | Cu2+ | fluorescence quenching | 282.9 nM | 255 | |
Cr6+ | fluorescence quenching | 40 nM | 257 | ||
CNTs | Ag+ | fluorescence enhancement | 1 nM | 268 | |
Hg2+ | FRET | 15 nM | 264 | ||
Ag+ | 18 nM | ||||
Pb2+ | 20 nM | ||||
Graphene | Hg2+ | fluorescence enhancement | 0.92 nM | 261 | |
Ag+ | FRET | 20 nM | 279 | ||
Hg2+ | 5.7 nM |
NPs: nanoparticles; NCs: nanoclusters; CDs: carbon dots; GQDs: graphene quantum dots; CNTs: carbon nanotubes; NSET: nanometal surface energy transfer; FRET: fluorescence resonance energy transfer; N. A.: Not available; AIFQ: aggregation-induced fluorescence quenching; LRET: luminescence resonance energy transfer