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Empirical estimation of genome-wide significance
thresholds based on the 1000 Genomes
Project data set

Masahiro Kanai1, Toshihiro Tanaka1,2 and Yukinori Okada1,3,4

To assess the statistical significance of associations between variants and traits, genome-wide association studies (GWAS) should

employ an appropriate threshold that accounts for the massive burden of multiple testing in the study. Although most studies in

the current literature commonly set a genome-wide significance threshold at the level of P=5.0×10−8, the adequacy of this

value for respective populations has not been fully investigated. To empirically estimate thresholds for different ancestral

populations, we conducted GWAS simulations using the 1000 Genomes Phase 3 data set for Africans (AFR), Europeans (EUR),

Admixed Americans (AMR), East Asians (EAS) and South Asians (SAS). The estimated empirical genome-wide significance

thresholds were Psig=3.24×10−8 (AFR), 9.26×10−8 (EUR), 1.83×10−7 (AMR), 1.61×10−7 (EAS) and 9.46×10−8 (SAS).

We additionally conducted trans-ethnic meta-analyses across all populations (ALL) and all populations except for AFR (ΔAFR),
which yielded Psig=3.25×10−8 (ALL) and 4.20×10−8 (ΔAFR). Our results indicate that the current threshold (P=5.0×10−8)

is overly stringent for all ancestral populations except for Africans; however, we should employ a more stringent threshold when

conducting a meta-analysis, regardless of the presence of African samples.
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INTRODUCTION

Genome-wide association studies (GWAS) have successfully identified
thousands of loci associated with human diseases and traits.1,2

To assess the statistical significance of associations between tested
variants and traits, GWAS should employ an appropriate threshold
that accounts for the massive burden of multiple testing undertaken in
the study.3,4 Although a variety of statistical approaches have been
developed to estimate this burden, including the Bonferroni
correction,5,6 Sidak correction,7 false discovery rate8 and permutation
test, most GWAS commonly set a genome-wide significance threshold
at the level of P= 5.0 × 10− 8, which is equivalent to the Bonferroni-
corrected threshold (α= 0.05) for 1 million independent variants
(approximately the number of independent single-nucleotide poly-
morphisms (SNPs) estimated using the HapMap Phase II data set9).
The number of variants tested in recent GWAS, however, has

increased dramatically because of the widespread use of genotype
imputation using the 1000 Genomes data set as a reference10–13 or
whole-genome sequencing,14–16 and therefore the supposition of the
above-mentioned Bonferroni correction has become untenable.
Additionally, the variants tested in a study are inevitably dependent
on population-specific factors, such as linkage disequilibrium (LD)
pattern and minor allele frequency (MAF), suggesting that
the appropriate threshold for genome-wide significance might vary

for different populations.17 For example, the threshold for a
population with a lower LD pattern, such as the African population,
should be more stringent than a population with higher LD, as the
number of independent markers tends to be greater in the former
population than the latter. To address the independence of genetic
markers in LD, several studies have proposed methods for estimating
the effective number of independent tests Me;

17–19 however, the
effectiveness of these methods remains unclear. On the other hand,
the current threshold, P= 5.0 × 10− 8, has been claimed to be overly
stringent.20,21 A previous study showed that 73% of ‘borderline’
associations (5.0× 10− 8oP⩽ 10− 7) could be replicated with the
inclusion of additional data from subsequent GWAS, suggesting the
potential for relaxation of the current threshold.20

We report here empirical estimation of genome-wide significance
thresholds for different populations based on GWAS simulations using
the 1000 Genomes Phase 3 data set, the most recently released and
widely used reference panel for genotype imputation containing five
major ethnic ancestries. For each ancestral population in this data set,
we tested associations of the variants with the simulated phenotypes
and calculated empirical genome-wide significance thresholds based
on the distributions of the minimum P-value of the associations.
Our empirical estimation revealed that different thresholds should
be adopted for different ancestral populations or trans-ethnic
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meta-analyses rather than the current single genome-wide significance
threshold of P= 5.0 × 10− 8.

MATERIALS AND METHODS

Samples and ancestral populations
We used the 1000 Genomes Project11,12 (http://www.1000genomes.org/) Phase

3 data set (version 5), which comprises approximately 51 million variants

(autosome and chromosome X) from 2504 individuals in 26 populations

(Table 1). We split the data set into five ancestral populations: African

(AFR; n= 661), European (EUR; n= 503), Admixed American (AMR;

n= 347), East Asian (EAS; n= 504), and South Asian (SAS; n= 489).

For each ancestral population, we excluded SNPs that were monomorphic,

singleton or MAFo0.5% and obtained 21 048 933, 11 980 247,

14 261 439, 10 201 713 and 12 641 702 variants for AFR, EUR, AMR, EAS

and SAS, respectively.

GWAS simulations
To empirically estimate appropriate genome-wide significance thresholds for

different ancestral populations, we calculated empirical null distributions of the

minimum P-values of the variants by randomly simulating case–control

phenotypes. We conducted the simulations 100 000 times for each ancestral

population using a permutation procedure. For each iteration, we randomly

assigned case–control phenotypes at a ratio of 1:1 within each single

subpopulation in the ancestral population. For autosomal variants, we tested

associations of the variants on a logistic regression model using the PLINK 1.9

software (https://www.cog-genomics.org/plink2).22,23 In order to account for

potential population stratification, we included the top two principal

components as covariates in the model; these were calculated for each ancestral

population using the smartpca program in the EIGENSOFT 6.0.1 package

(http://www.hsph.harvard.edu/alkes-price/software/).24 Additionally, we applied

post-genomic control (GC) correction25 if the population-specific genomic

inflation factor λGC was 41 in each simulation. For chromosome X variants,

Table 1 Overview of the 1000 Genomes Phase 3 (version 5) samples

No. of samples

Ancestral population Subpopulation Code Male Female Total No. of variantsa (MAF40.5%)

AFR African Caribbeans in Barbados ACB 47 49 96 21 048 933

Americans of African Ancestry in SW USA ASW 26 35 61

Esan in Nigeria ESN 53 46 99

Gambian in Western Divisions in the Gambia GWD 55 58 113

Luhya in Webuye, Kenya LWK 44 55 99

Mende in Sierra Leone MSL 42 43 85

Yoruba in Ibadan, Nigeria YRI 52 56 108

Subtotal 319 342 661

EUR Utah Residents (CEPH) with Northern and Western European Ancestry CEU 49 50 99 11 980 247

Finnish in Finland FIN 38 61 99

British in England and Scotland GBR 46 45 91

Iberian Population in Spain IBS 54 53 107

Toscani in Italia TSI 53 54 107

Subtotal 240 263 503

AMR Colombians from Medellin, Colombia CLM 43 51 94 14 261 439

Mexican Ancestry from Los Angeles, USA MXL 32 32 64

Peruvians from Lima, Peru PEL 41 44 85

Puerto Ricans from Puerto Rico PUR 54 50 104

Subtotal 170 177 347

EAS Chinese Dai in Xishuangbanna, China CDX 44 49 93 10 201 713

Han Chinese in Beijing, China CHB 46 57 103

Southern Han Chinese CHS 52 53 105

Japanese in Tokyo, Japan JPT 56 48 104

Kinh in Ho Chi Minh City, Vietnam KHV 46 53 99

Subtotal 244 260 504

SAS Bengali from Bangladesh BEB 42 44 86 12 641 702

Gujarati Indian from Houston, Texas GIH 56 47 103

Indian Telugu from the UK ITU 59 43 102

Punjabi from Lahore, Pakistan PJL 48 48 96

Sri Lankan Tamil from the UK STU 55 47 102

Subtotal 260 229 489

Total 1233 1271 2504 28 993 742

Abbreviations: AFR, African; AMR, Admixed American; EAS, East Asian; EUR, European; MAF, minor allele frequency; SAS, South Asian.
aMAF was calculated within each ancestral population.
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we first split a population into males and females and conducted separate

analyses using the same procedure as described for autosomal variants. We

then performed a meta-analysis across male and female subjects and integrated

this into the autosomal variants’ result to conduct a meta-analysis across all

ancestral populations.

Meta-analysis
To simulate trans-ethnic meta-analysis, we performed a GWAS meta-analysis

for a given iteration across all ancestral populations using the inverse-variance

method with the assumption of a fixed-effect model.26 We included 28 993 742

variants that existed in at least one ancestral population. To prevent potential

inflation from the inclusion of AFR samples, we also performed an additional

meta-analysis that excluded AFR but included all other ancestries (that is, EUR,

AMR, EAS and SAS).

Estimation of an empirical genome-wide significance
We measured the distributions of the minimum P-values of the variants (Pmin)

for each ancestral population and meta-analysis result. We defined an empirical

genome-wide significance threshold, − log10 Psig, as the 95th percentile (1−α)
of − log10 Pmin at a significance level of α= 0.05. We calculated − log10 Psig
using the Harrell–Davis distribution-free quantile estimator27 and calculated

95% confidence interval for − log10 Psig by bootstrapping method.

We also estimated the effective number of independent variants by

dividing the significance level α= 0.05 by Psig given the Bonferroni-corrected
threshold and calculated the ratio of the effective number of independent

variants to the total number of variants after quality control. All calculations

were performed using the authors’ scripts (http://mkanai.github.io/).
In order to confirm robustness of our approach for different MAF thresholds

(0.1, 1 and 5%), different number of principal components (5, 10 and 20) or

without post-GC correction, we additionally estimated empirical genome-wide

significance thresholds under these different conditions. We note that we

conducted the additional estimations for just 10 000 permutations each,

except for the one without post-GC correction, considering their intensive
computational cost.

LD pruning
Given that a population-specific LD structure significantly affects the number of

independent variants in a population, we evaluated how Psig would reflect the

effective number of independent variants estimated using the LD-based
approach.17 We applied LD pruning with the PLINK 1.9 software,22,23 using

a 40-kb sliding window size, a 4-kb window step size and a maximum r2

threshold ranging from 0.1 to 1.0 in increments of 0.1. The number of

remaining variants after LD pruning was considered as the effective number

of independent variants. We calculated the LD-based genome-wide
significance threshold by dividing the significance level α= 0.05 by the

population-specific effective number of independent variants, given the

Bonferroni-corrected threshold. The effective ratio was defined as the ratio of

the effective number of independent variants to the total number of variants
after quality control.

RESULTS

Empirical genome-wide significance
Based on the GWAS simulations for 100 000 times, we measured
the − log10 Pmin distribution for each ancestral population and
meta-analysis result (Figure 1). The empirical genome-wide signifi-
cance thresholds for AFR, EUR, AMR, EAS and SAS were
Psig= 3.24× 10− 8 (95% confidence interval: 3.11–3.36× 10− 8);
9.26× 10− 8 (9.01–9.51× 10− 8); 1.83× 10− 7 (1.79–1.87× 10− 7);
1.61× 10− 7 (1.57–1.64× 10− 7) and 9.46× 10− 8 (9.20–9.69× 10− 8),
respectively (Table 2). These results indicate that, with the exception of
the African population, each ancestral population requires a different
genome-wide significance threshold that is slightly more lenient than
the current threshold of P= 5.0 × 10− 8.

Figure 1 The − log10 Pmin distributions for five ancestral populations and
meta-analysis results. We conducted GWAS simulations using the 1000
Genomes Phase 3 data set and measured the minimum P-value of the
variants (Pmin). Each panel represents a population/meta-analysis result.
Each vertical bar in the panel represents the top five percentile of − log10
Pmin (that is, the estimated empirical genome-wide significance − log10 Psig).
The dotted vertical bar represents the common genome-wide significance
threshold of 5.0×10−8. AFR, African; AMR, Admixed American; EAS, East
Asian; EUR, European; SAS, South Asian; ALL, meta-analysis across all
ancestral populations; ΔAFR, meta-analysis including all ancestral
populations except for AFR (that is, EUR, AMR, EAS and SAS).

Table 2 Estimated genome-wide significance thresholds for ancestral populations and meta-analyses

Ancestry Psig (− log10 Psig)a 95% CIa No. of variantsb (MAF40.5%) No. of effective variantsc Ratio

AFR 3.24×10−8 (7.49) 3.11×10−8–3.36×10−8 (7.47–7.51) 21 048 933 1 545 429 0.073

EUR 9.26×10−8 (7.03) 9.01×10−8–9.51×10−8 (7.02–7.05) 11 980 247 540 128 0.045

AMR 1.83×10−7 (6.74) 1.79×10−7–1.87×10−7 (6.73–6.75) 14 261 439 273 444 0.019

EAS 1.61×10−7 (6.79) 1.57×10−7–1.64×10−7 (6.78–6.80) 10 201 713 311 275 0.031

SAS 9.46×10−8 (7.02) 9.20×10−8–9.69×10−8 (7.01–7.04) 12 641 702 528 484 0.042

ALL 3.25×10−8 (7.49) 3.16×10−8–3.33×10−8 (7.48–7.50) 28 993 742 1 539 237 0.053

ΔAFR 4.20×10−8 (7.38) 4.08×10−8–4.33×10−8 (7.37–7.39) 19 862 732 1 189 822 0.060

Abbreviations: AFR, African; ALL, meta-analysis across all ancestral populations; AMR, Admixed American; CI, confidence interval; EAS, East Asian; EUR, European; MAF, minor allele frequency;
SAS, South Asian; ΔAFR, meta-analysis including all ancestral populations except for AFR (that is, EUR, AMR, EAS and SAS).
aThe 5th percentile of Psig was calculated based on the 95th percentile of –log10 Psig.
bMAF was calculated within each ancestral population.
cThe effective number of independent variants was calculated by dividing the significance level α=0.05 by Psig.
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Trans-ethnic meta-analysis
Using the same procedure, we measured the − log10 Pmin distribution
for trans-ethnic meta-analysis results (Figure 1). The estimated Psig
values for ALL and ΔAFR were 3.25× 10− 8 (3.16–3.33× 10− 8) and
4.20× 10− 8 (4.08–4.33×10− 8), respectively (Table 2). Compared with
the current threshold for single-population GWAS (P= 5.0× 10− 8),
our estimations for both trans-ethnic meta-analyses (ALL and ΔAFR)
are more stringent, regardless of whether the data set contained
African samples or not.
We note that our empirical estimations remained approximately the

same when using different MAF thresholds (0.1, 1 and 5%) or different
number of principal components (5, 10 and 20) for calculations
(Supplementary Tables S1 and S2). With regard to post-GC correction,
although the empirical thresholds without the correction were slightly
stringent as expected, the discrepancy was so small that it did not
dismiss our conclusions (Supplementary Table S3).

Relationship between a population-specific LD structure and Psig
We applied LD pruning to each population using a maximum r2

threshold of 0.5 (Table 3; for a complete list, see Supplementary Tables
S4 and S5). Based on the effective number of independent variants, we
calculated an LD-based genome-wide significance threshold (PLD) by
dividing a significance level α= 0.05 given the Bonferroni-corrected
threshold (Figure 2). For most ancestries (AFR, EUR, EAS and SAS), a
− log10 Psig showed approximately positive correlation with − log10
PLD, suggesting that our estimation of the empirical genome-wide
significance threshold clearly corresponded to the population-specific
LD structure, as expected. However, we found that AMR was an
outlier among the ancestral populations, with a substantial imbalance
in the effective number of independent variants within the AMR
population (Table 3). Although the effective numbers of independent
variants for each subpopulation were well balanced in the other
ancestries, the numbers for CLM (Colombians from Medellin,
Colombia) and PUR (Puerto Ricans from Puerto Rico) were higher
than those for the other subpopulations in AMR, leading to a potential
increase in the overall effective number of independent variants
for AMR.

DISCUSSION

In the present study, we estimated the empirical genome-wide
significance thresholds for the five ancestral populations based on
the GWAS simulations conducted using the 1000 Genomes Project
Phase 3 data set. The results suggested that, for non-African
populations, we could apply a threshold less stringent than the current
level of P= 5.0× 10− 8. On the other hand, the meta-analysis results
revealed that more stringent thresholds should be adopted in
meta-analysis study, regardless of the inclusion of African samples.

Our empirical estimation based on the 1000 Genomes Project will be
applicable to various studies, as most current studies conduct genotype
imputation using the same data set.
To date, an increasing number of studies have conducted trans-

ethnic meta-analysis to improve the power to identify susceptible loci
by combining extremely large number of samples from single-
population studies.28 Although these studies commonly adopted the
same genome-wide significance threshold (P= 5.0× 10− 8) used in a
single-population GWAS, few have scrutinized the stringency of this
threshold for preventing false positives. Our present study fills this gap
and suggests that a more stringent threshold is needed for trans-ethnic
meta-analysis even though African samples are absent from the data set.
Li et al.19 reported genome-wide significance thresholds for AFR,

ASN (Asian) and EUR in the 1000 Genomes data set (released
in August 2010) of 1.62× 10− 8, 3.47× 10− 8 and 3.06× 10− 8,
respectively, based on the calculation of the effective number of
independent markers using eigenvalues. As the number of samples
and genotypes in the data set differed, we additionally applied their
method to each population (AFR, EUR, AMR, EAS and SAS) in our
data set, obtaining 4.94× 10− 9, 1.09× 10− 8, 9.05× 10− 9, 1.40× 10− 8

and 9.97× 10− 9, respectively. Our estimated thresholds were

Table 3 Estimated effective number of independent variants in the AMR subpopulations by LD pruning

Code No. of variantsa (MAF40.5%) No. of effective variantsb Ratio PLD (− log10 PLD)

AMR 14 261 439 2 129 877 0.149 2.35×10−8 (7.63)

CLM 7 512 590 1 343 116 0.179 3.72×10−8 (7.43)

MXL 7 218 484 985 773 0.137 5.07×10−8 (7.29)

PEL 6 570 123 873 604 0.133 5.72×10−8 (7.24)

PUR 7 735 691 1 542 788 0.199 3.24×10−8 (7.49)

Abbreviations: AMR, Admixed American; CLM, Colombians from Medellin, Colombia; LD, linkage disequilibrium; MAF, minor allele frequency; MXL, Mexican Ancestry from Los Angeles, USA; PEL,
Peruvians from Lima, Peru; PUR, Puerto Ricans from Puerto Rico.
aMAF was calculated within each population.
bThe effective number of independent variants was estimated by LD-based pruning (sliding window size: 40 kb; window step size: 4 kb; r2o0.5).

Figure 2 The relationship between − log10 PLD and − log10 Psig. We
calculated the LD-based genome-wide significance PLD based on the
effective number of independent variants, which was estimated by applying
LD pruning with a maximum r2 threshold of 0.5. Whereas − log10 Psig
showed approximately positive correlation with − log10 PLD for AFR, EUR,
EAS and SAS (blue), AMR (red) is an outlier. The error bars represent the
95% CI for − log10 Psig. The dotted lines represent the common genome-
wide significance threshold of P=5.0×10−8. AFR, African; AMR, Admixed
American; EAS, East Asian; EUR, European; SAS, South Asian.
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more lenient than both these previously reported and additionally
calculated thresholds for the 1000 Genomes data set based on
their method. This discrepancy arguably suggests the importance
of empirical estimation, given the complex genetic
backgrounds resulting from different LD structures among ancestral
populations.
Considering the limited sample size (~2500) of the data set, our

empirical estimation might not fully reflect the genetic backgrounds of
humans. The 1000 Genomes Project estimated that their power to
detect SNPs to be 495% for those with sample frequency of at least
0.5% and to be 475% with frequency of 0.1% for Europeans.11

Although it is difficult to exactly assess how far the data set of this
sample size reflects the current populations, we envisage that the
future panel will resolve the issue by providing new empirical
estimations, given the recent efforts in the field to create much larger
reference panels, such as the Haplotype Reference Consortium
(http://www.haplotype-reference-consortium.org/).
Although the least stringent genome-wide significance threshold

(Psig= 1.83× 10− 7) was estimated for the AMR population, we note
that further investigations would be required to fully assess the
confounding bias resulting from complex LD structure of this recently
admixed population, such as long-range LD regions.29 The observa-
tion of AMR as an outlier (Figure 2) suggests that the Psig estimated
from an empirical distribution of associations does not simply reflect
the population-specific LD structure but also other underlying
dependencies. A recent study revealed that South American popula-
tions have different admixture history from their ancestry, which
resulted in diverse proportions of African, European, Native American
and Asian ancestries.30 Association studies of such complex admixed
population should be carefully conducted to avoid potential false
positives.
Additionally, in a typical GWAS of today, genotype imputation is

commonly conducted to fine-map causal variants and increase a
power,10,13 which we should address its potential effect to our
empirical estimations. Although we used whole variants in the data
set that passed our quality control criteria, several variants would not
be well imputed in a typical study, depending on a genotyping
platform of the study. By defining imputable variants of the data
set with reference to ‘SNP and indel imputability database’31

(http://www.unc.edu/ ~ yunmli/1000G-imp/) for each combination
of genotyping platforms and ancestral populations, we observed that
the more variants an array has, the more stringent Psig is
(Supplementary Table 6). We note that, as the database was
constructed using the Phase 1 data set (version 3), we cannot simply
compare the original results to those with only imputable variants.
The relationship between array density and Psig supports that we
could apply a more lenient threshold for current imputation-based
single-population studies.
In this paper, we have presented empirically estimated genome-wide

significance thresholds based on the 1000 Genomes data set. Despite
the computational cost, our study illustrates the value of an empirical
estimation for genetic data through calculating the empirical
genome-wide significance threshold. The results indicate that we
should adopt a more stringent threshold compared with the
current level of P= 5.0× 10− 8 in future studies of African samples
or trans-ethnic meta-analyses, whereas the threshold might be relaxed
for non-African studies.
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