Skip to main content
. 2012 Feb 2;13(1):013001. doi: 10.1088/1468-6996/13/1/013001

Table 1.

Coefficients of linear thermal expansion α and operating temperatures Toper of typical negative/low thermal expansion materials.

Materials α (ppm K−1) Toper (K) Category Methoda References
β-eucryptite −1 to −6b 300–900 1 D [1, 4, 15]
α-ZrW2O8 −9 <425 1 D/N [20]
β-ZrW2O8 −6 425–1030 1 D/N [20]
Cd(CN)2 −33.5 170–375 1 X [27]
ReO3 −0.5 <220 1 N [10]
ReO3 −0.7 600–680 1b N [10]
(HfMg)(WO4)3 −2b Room temp. ∼1070 1 D [11]
Sm2.75C60 −100b <30 2 X [29]
Bi0.95La0.05NiO3 −82b 320∼380 2 D [35]
Invar (Fe-36Ni) 0.1–1 <500 3 D [37, 38]
Invar (Fe3Pt) −6 to −30 100–420 3 D [49, 50]
Tm2Fe16Cr −9b 340–380 3 X [47]
CuO nano particles −36b <150 3b X [48]
Mn3Cu0.53Ge0.47N −16 265–340 3 D [73]
Mn3Zn0.4Sn0.6N0.85C0.15 −23 270–335 3 D [75]
Mn3Zn0.5Sn0.5N0.85C0.1B0.05 −30 280–340 3 D [76]

a D, dilatometry; N, neutron diffraction; X, x-ray diffraction.

b The thermal expansion is anisotropic and α is the averaged value.

c Details of the mechanism are unknown. The classification is temporary (see text).