Sci. Technol. Adv. Mater. 11 (2010) 069801 (3pp)

CORRIGENDUM

Processing of polysiloxane-derived porous ceramics: a review

B V Manoj Kumar and Young-Wook Kim

2010 Sci. Tech. Adv. Mater. 11 044303

Received 29 October 2010 Accepted for publication 19 November 2010 Published 11 January 2011 Online at stacks.iop.org/STAM/11/069801

Reference numbers after [49] in table 1, table 2, figure 6, figure 7, and the caption of figure 2 should be decreased by 1. The corrected tables and figures are shown below.

Figure 2. (A) Macroporous cellar structure of SiC ceramics after pyrolysis of polysilane-infiltrated polyurethane (PU) foams (reproduced with permission from [58] © 2000 Springer). (B) The crack-free SiOC-C ceramic structure developed using extracted, maleic acid anhydrate (MA)-modified and polymethylhydrosiloxane (PMHS)-infiltrated pine wood compounds after pyrolysis at 800 °C in nitrogen atmosphere (reproduced with permission from [53] © 2004 Elsevier).

 Table 1. The classification of major processing strategies and corresponding compositions of porous ceramics produced from polysiloxane precursors.

Processing strategy	Composition	Remarks	References
I. Replica	SiC	Open cells Cell size:> 150 μm Porosity range: 85–96%	[56-60, 62]
	SiC–Si ₃ N ₄ SiC–TiC SiOC/C		[56, 58, 59] [56] [53]
II. Sacrificial template NaCl compact	SiC	Open cells	[67]
LDPE	SiOC	Open or closed cells Cell density: > 10^4 cells cm ⁻³ Porosity range: 21–80%	[68, 69]
Expandable or PMMA templates	SiOC	Open, closed or partially interconnected cells Cell size: $0.5-80 \mu\text{m}$ Cell density: >10 ⁹ cells cm ⁻³ Porocity range: 56–88%	[66, 72–75]
Expanded (hollow) templates	SiC SiOC	Porosity range: $32-64\%$ Closed cells Cell size: $> 30 \mu\text{m}$. Cell density: $>10^9 \text{cells cm}^{-3}$ Porosity range: $70-87\%$	[18] [65]
III. Direct foaming Foaming by chemical agent	SiOC	Open, closed or interconnected cells Cell size: $80-800 \mu\text{m}$	[6, 77, 80–84, 86, 138]
	SiOC + SiC	Open cells Cell size: 100–700 μ m	[81]
Foaming using CO ₂ Batch process	SiOC	Closed cells Cell size: $2-50 \mu\text{m}$ Cell density: $10^7 - 10^{12}$ cells cm ⁻³	[78, 89, 91, 95]
Extrusion process	SiC SiOC	Porosity: 45% Open or closed cells Cell density: >10 ⁷ cells cm ⁻³ Porosity range: 27–90%	[90] [92, 93]
IV. Reaction technique	SiC	Open cells Cell size: 10–45 μ m Cell density: >10 ⁹ cells cm ⁻³ Porosity range: 32–94%	[18, 96–101, 103– 105]
	Mullite	Partially interconnected open cells Cell size: > $20 \mu\text{m}$ Cell density: > $10^9 \text{cells cm}^{-3}$ Porosity range: $32-85\%$	[106–108]
	Cordierite	Interconnected open cells Cell size: $13 \mu\text{m}$ Cell density: $10^9 \text{ cells cm}^{-3}$ Porosity range: $11-75\%$	[109, 110]

Figure 6. Compressive strength as a function of porosity of polysiloxane-derived porous ceramics produced by different strategies. Data points are labeled with the corresponding reference numbers.

Figure 7. Flexural strength as a function of porosity of polysiloxane-derived porous ceramics produced by different strategies. Data points are labeled with the corresponding reference numbers.

Table 2. List of polysiloxane-derive	d ceramic	compositions
produced by different cross-linking	methods.	

Cross-linking method	Ceramic composition	References
Heat treatment		
	SiOC	[94]
	SiC	[116–118]
	SiC fibers	[14]
	SiC nanoparticles	[119, 120]
	Si-O-C	[121]
Catalysis		
Boron-containing catalyst	SiC	[122–124]
Metallocene	SiC	[125, 126]
Chlorine-containing catalyst	SiC	[127]
Amine catalyst condensation	SiOC	[69, 74, 80, 81, 95]
Laser treatment		
	SiC nanopowders	[128, 129]
Kadiation	SiC or SiOC	[130–133]