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Abstract
Synthetic biology is a new discipline that combines science and engineering approaches to
precisely control biological networks. These signaling networks are especially important in
fields such as biomedicine and biochemical engineering. Additionally, biological networks can
also be critical to the production of naturally occurring biological nanomaterials, and as a
result, synthetic biology holds tremendous potential in creating new materials. This review
introduces the field of synthetic biology, discusses how biological systems naturally produce
materials, and then presents examples and strategies for incorporating synthetic biology
approaches in the development of new materials. In particular, strategies for using synthetic
biology to produce both organic and inorganic nanomaterials are discussed. Ultimately,
synthetic biology holds the potential to dramatically impact biological materials science with
significant potential applications in medical systems.

Keywords: synthetic biology, biomaterials, gene circuits, cellular engineering

1. Introduction: synthetic biology and its potential
in materials science

Synthetic biology is revolutionizing approaches to cellular
engineering and has already shown the potential to impact
cell-based materials science. Whenever attempting to
engineer materials, care should be taken to ensure robust
design and synthesis processes, along with repeatable
and precise structures. Biological systems naturally
incorporate all of these requirements in their own synthesis
processes. Reproducing these systems by imitating them
through biomimicry is a widely used approach to capture
the useful qualities of biological materials [1]. Yet,
cells themselves hold potential as nanofactories for the
production of biomaterials [2, 3]. Like all cellular functions,
biomaterial synthesis processes are governed by underlying
biological networks—programs encoded in their DNA—and
synthetic biology aims to directly engineer these biological
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networks [4]. As a result, synthetic biology holds significant
promise in materials science.

In order to engineer materials using these precisely
controlled cellular processes, researchers must have access
to the unique set of cellular programming tools provided by
synthetic biology. Thirteen years ago, synthetic biology was
launched with reports of two synthetic gene networks [5, 6],
the ‘repressilator’ and the ‘toggle switch’. Rather than
open-loop control of biological processes, these systems
used feedback to provide a new level of complexity in
engineered cellular control of gene expression. These types
of engineered gene networks, also known as synthetic gene
circuits, have rapidly advanced to include control structures
such as counters, timers and logic gates [7–9]. The field has
also expanded from circuits initially based on DNA–protein
interactions, to include circuits based on protein–protein
interactions [10, 11]. Furthermore, sophisticated algorithms
and software tools have been developed to assist in
engineering biological networks [12, 13]. These research
thrusts have built a foundation for synthetic biology as a
complete discipline. This review will explore this new field’s
increasing promise, particularly in the cellular production of
materials.
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2. Synthetic biology’s potential in materials science
and nanoengineering

Nanobiomaterials are synthesized across the different
biological species ranging from bacteria to animals. For
example, some species of bacteria can fix carbon dioxide
in small nanoparticle structures called carboxysomes [14],
allowing them to optimize their metabolism. Mechanisms
to create metallic and magnetic particles are also present.
For example, magnetotactic bacteria create ferromagnetic
nanoparticles containing magnetite (Fe3O4) or greigite
(Fe3S4) inside their bodies, allowing them to orient
themselves using the geomagnetic field, thus optimizing their
navigation toward food [15]. Similarly, clusters of magnetic
particles have been found in several animals such as nanoscale
particles in pigeons [16–18]. Clearly, biological mechanisms
exist to create novel material particles. However, engineering
these processes to create materials in a controlled fashion is
critical for leveraging these processes in materials science.

Along these lines, the group of Sang Yup Lee
recently reported the intracellular formation of several
types of metallic nanoparticles in Escherichia coli [19],
including semiconducting, alkali earth and magnetic metal
nanoparticles. They formed these metal nanoparticles by
leveraging the metal binding properties of two proteins,
phytochelatin (PC) and metallothionein (MT) in engineered
E. coli. Examples of these particles are shown in figure 1.
Furthermore, the researchers could control the size of these
biogenic particles by varying metallic ion concentration in the
cellular environment.

3. Engineering synthetic circuits

3.1. Synthetic gene circuits

For the first synthetic circuits to be engineered, several
molecular biological control components were required, all
of which are ultimately encoded in the cell’s DNA. These
DNA molecules inside cells contain the blueprint for cellular
structure and function, as well as cellular control processes.
This DNA blueprint can be read by several proteins with
enzymatic activity. These enzymes are themselves encoded by
the DNA blueprint. Other DNA-encoded enzymes are able to
catalyze chemical reactions throughout the cell. Furthermore,
other proteins contain regions that can bind metallic ions.
Together, many structural and enzymatic proteins can form
complexes that allow organic or inorganic atoms to be
sequestered, resulting in the formation of nanomaterial
particles.

These different molecular biological steps emerged in
the last half of the 20th century as investigators began to
understand what is now known as molecular biology’s central
dogma. Briefly, this paradigm refers to the fact that the order
of DNA’s sugar bases correspond directly to the order of
amino acids in proteins monomers. More precisely, it refers
to the fact that genetic information flows unidirectionally [20].
DNA is first transcribed by RNA polymerase into a messenger
RNA (mRNA) molecule that mirrors the bases of DNA.
This mRNA is then translated at intracellular ribosomes into

protein monomers. These steps are critical to all biological
functions, including the synthesis of materials, because
proteins can serve as structural components or as catalysts (i.e.
enzymes) in the reactions that produce biological materials
(among many other functions).

Although these steps are now well known, they are
important to review, because synthetic biologists have built
components to control each aspect of this process. For
example, RNA polymerase must bind specifically to a
promoter region of DNA to transcribe its downstream
DNA bases into a complementary RNA molecule. As
shown in figure 2(a), RNA polymerase can be helped by
activator proteins that catalyze this binding event, or it
can be blocked completely by repressor proteins, shown in
figure 2(b), that bind directly to DNA. These polymerases and
transcription factors (i.e. the activators and repressors) have
known affinities for specific sequences of DNA. Similarly,
the sequence transcribed in RNA affects its binding to
ribosomes. By altering these sequences in a precise way,
engineering control can be placed on gene expression events.
In fact, extremely robust naturally occurring promoters were
optimized as tools for controlling gene expression throughout
the late 1990s. As an example, these tools include optimized
versions of the PBAD promoter along with its activator
AraC [21]. As another example, Lutz and Bujard [22]
produced several engineered promoters, consisting of hybrids
of viral and bacterial promoter regions, which displayed
strong and reliable ON and OFF outputs in bacteria. These
promoters responded well to the repressors lacI and tetR,
and in one hybrid case, allowed both repression by lacI and
activation by AraC.

These new engineered promoters were critical in the
design of networks like the aforementioned toggle switch
developed in the laboratory of James Collins [5]. As shown
in figure 3(a), the toggle consists of two mutually repressing
genetic operons, and when the strength of each repression
event is balanced, a bistable switch is formed. Over multiple
generations of bacterial cell division, the toggle will remain
in either an ON or OFF state, even without the presence of
its corresponding inducer molecule, lactose and tetracycline.
Yet, as noted, the potential for each operon to repress the
other must be balanced to ensure bistability, and this potential
repression is governed by multiple interactions, including
the strength of the promoter (i.e. the binding strength of
DNA and RNA polymerase), as well as the strength of
ribosome binding site on the mRNA transcript (i.e. the
binding strength of the initial few bases of a transcript
and a ribosome). By strategically altering these bases, the
toggle can be balanced. Furthermore, the toggle switch was
based on strong fundamental engineering theory, as the
Collins group first published an underlying theory showing
that bistable memory could be achieved using the nonlinear
dynamics of biological interactions [23]. Similar theoretical
and experimental approaches have been harnessed to make
other advances in synthetic biology.

For example, since these first circuits were reported,
synthetic biology efforts have illustrated the potential for
digital logic gate behavior in circuits [8, 24–26] using
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Figure 1. TEM images of various nanoparticles synthesized by engineered E. coli in the group of Sang Yup Lee: (a) CdSeZn, (b) PrGd, (c)
CdCs, (d) FeCo, (e) Au, (f) Ag. (g) Freeze dried E. coli cells containing diverse NPs each having crystalline nanostructures. Reprinted with
permission from Wiley-VCH Verlag GmbH & Co: Angewandte Chemie [19], copyright 2010.

Figure 2. Regulation of gene expression by transcription factors: (a) upregulation by transcriptional activators and (b) downregulation by
transcriptional repressors.

polymerases [8] as well as recombinases [27, 28]. In one case,
Anderson et al engineered a synthetic AND gate in bacteria as
shown in figure 3(b). This circuit consisted of an engineered

viral RNA polymerase with a slight defect in the middle of its
genetic code that blocked its complete translation [8]. Thus,
when one input (such as arabinose) was provided, only a
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Figure 3. Synthetic gene circuits: (a) bistable ‘toggle’ switch [5] and (b) engineered AND logic gate [8].

partial, useless portion of polymerase was expressed. When
another input, such as salicylate, activated the transcription
of a small RNA, this small molecule worked to reverse the
defect, and the fully translated viral polymerase could then
activate a viral promoter. In another study, the Voigt group
showed that communities of bacteria could work together
to produce NOR-gate behavior [26]. This was especially
important as NOR-gates are Boolean complete and can be
combined to form any other type of logic gate, thus suggesting
that with enough discrete bacterial colonies, complexity in
digital behavior could increase. Of course, applications may
also require analog signals, and work in the lab of Timothy
Lu at MIT has recently shown that synthetic techniques can
be applied to create sophisticated analogue circuits in single
bacteria cells [29].

Other synthetic control behaviors are also possible.
For example, Ellis et al [9] described the development
of synthetic timers in yeast, allowing flocculation to be
precisely timed (thus potentially providing precise control to
fermentation processes). In an especially interesting study,
Stricker et al [30] used a minimal set of components to build
an oscillator significantly more robust than the repressilator.
In fact, multiple oscillators have now been developed in
both bacterial and mammalian systems [6, 30–34]. Clearly,
many synthetic circuit modules (bistable memory, oscillation,
timing, counting, etc) can be further optimized.

3.2. Synthetic biology using proteins: components and circuits

As discussed above, engineering circuits that rely on
DNA–protein interactions has been one major thrust in
synthetic biology; yet, another key thrust has been the
development of protein–protein signaling components. Just
as genetic components have allowed the construction
of eclectic synthetic circuits, protein components have
allowed for new synthetic circuit designs as well. These
engineered protein interactions have been important in
providing new components to interface with the previously
described genetic circuits, as well as allowing for the
development of protein–protein interaction circuits. One key
advantage of these protein-based circuits is the opportunity
to take advantage of the speed at which proteins interact.
In comparison to gene expression, protein-mediated (i.e.
enzyme-mediated) single phosphorylation signals are evident
on the order of seconds, while gene expression events

Figure 4. Synthetic light sensor based upon engineered proteins.
Reprinted by permission from Nature Publishing Group:
Nature [10], copyright 2005.

frequently take on the order of minutes or longer to fully
emerge in a cell’s phenotype.

In the case of engineering new protein-based components
to interface with synthetic gene circuits, several exciting
components have been developed. Most notably, synthetic
biology has significantly impacted the field of optogenetics.
For example, in early work, a cyanobacterial photoreceptor
was fused to an E. coli intracellular histidine kinase domain
to control gene expression [10]. While researchers previously
could measure gene circuit behavior by observing expression
of GFP, light was not an accessible input to these engineered
circuits. However, as shown in figure 4, it is now possible to
use light directly as an input. This work has been expanded
to include multiple different wavelengths and multiple
applications in a significant expansion of the synthetic
biologist’s toolbox [35–38]. In yet another advance, June
Medford’s laboratory has developed a plant signaling receptor
that allows plants to bind to trinitrotoluene (TNT) and activate
internal reporters. Using this component, her laboratory
engineered sensitive Arabidopsis plants to turn white in the
presence of minute amounts of TNT explosives [39].

Perhaps the most interesting work in engineered protein
circuits has come from the laboratory of Wendell Lim. For
example, as shown in figure 5, Bashor et al [11] showed that
positive and negative feedback loops could be engineered into
living eukaryotes by anchoring synthetic protein signaling
components directly to an engineered protein scaffold using
leucine zippers.
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Figure 5. (a) Synthetic components and (b) circuits based upon engineered protein scaffold circuits. Reprinted by permission from The
American Association for the Advancement of Science: Science [11], copyright 2008.

3.3. Synthetic biology: rapid prototyping

Several key challenges must be overcome to build and
expand upon the systems described above. First, synthetic
biology is plagued by a lack of components with which
to develop circuits. Furthermore, engineering synthetic
circuits can be extremely labor intensive. Finally, the
behavior of designed circuits in vivo is often difficult to
predict. Multiple approaches and technologies have been
developed to address each of these challenges. In order to
address the lack of synthetic components, several groups
and consortia have focused on organizing repositories of
biological components [41]. However, a key drawback to
these repositories is often that the accompanying functional
annotations (descriptions of how a component should behave)
are often missing or unreliable. For example, synthetic
components can behave quite differently in the various cell
strains of a microbial or mammalian species. Thus, other
approaches have focused on building sets of components
that can be broadly extendable [42–46]. For example,
Khalil et al [46] recently produced a framework for
creating synthetic transcription factors in eukaryotes based
on zinc-finger protein domains, which potentially can be
extended to allow a broad range of designer-specified DNA
sequences to function as promoters.

In order to address the challenge of quickly building
synthetic systems, several exciting technologies have been
recently developed. One of the biggest challenges in creating
synthetic circuits is the laborious process of molecular

cloning, which involves assembling multiple components over
several days or weeks. Furthermore, as these components are
cut and pasted together at specific DNA sequences (called
restriction sites); the order of assembly is a challenge as
many components contain internal restriction sites. One way
around this challenge is to use techniques that allow long
chains of DNA molecules to be assembled in a single, one-pot
reaction, such as gene splicing by overlap extension [47, 48]
or Gibson assembly [49]. However, just as electrical engineers
can replace individual components to test circuit function,
synthetic biologists would ideally be able to do the same
in engineered biological circuits. Although cutting out
individual components with restriction enzymes would be
ideal, as mentioned, this could lead to unintended cuts in
other components. Furthermore, the faster one-pot reactions
typically avoid restriction sites altogether. In order to build
systems rapidly while adding plug-and-play capabilities to
molecular cloning, Litcofsky et al [40] recently reported a
broad set of common synthetic biology components that had
been reengineered to eliminate restriction sites. As a result, the
authors could rapidly construct several unique gene circuits
in just a few days, as opposed to weeks, while adding the
ability to adjust single components. This approach is shown
in figure 6.

One challenge of working with the molecular cloning
techniques described above is that the inserted genetic
components must provide an advantage to the host; otherwise,
the genes will ‘fall out’ due to genetic drift or natural
selection. As a result, most synthetic circuits must be inserted
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Figure 6. (a) Elements comprising the framework: parental cloning vectors harboring a custom multiple cloning site (MCS) of optimal
restriction enzyme sites, a library of commonly used synthetic genetic components designed to exclude the restriction sites, and a repository
of assembled constructs that includes synthetic modules, intermediates and circuits. (b) Generalized workflow for constructing and
modifying synthetic gene networks, which prioritizes and streamlines the iterative process of arriving at functional networks and modules.
Reprinted by permission from Macmillan Publishers Ltd: Nature Methods [40], copyright 2012.

along with an advantageous component, such as a genetically
encoded antibiotic resistance cassette. Cells must then be
treated perpetually with antibiotics to ensure that the inserted
components remain in the cell. A challenge is that most of
these techniques are used to produce plasmids containing
several genetic modifications, including the aforementioned
antibiotic resistance cassette. Making several modifications
directly to the host chromosome is onerous. To address
these challenges, the group of George Church developed
an automated method, multiplex automated genomic
engineering [50], which enables direct genome modifications.
Their approach initially allowed the optimization of up
to 24 genes simultaneously, creating billions of genetic
variants.

Moreover, key technologies have been developed to
predict the behavior of synthetically designed components and
circuits in vivo. As one of the best examples, Salis et al [51]
reported the automated design of ribosome binding sites
to control gene expression. Furthermore, the Anderson and
Densmore laboratories have developed specific programming
languages [52] and software [12] to enable the design of
synthetic biology circuits using the repositories of genetic
components mentioned above.

4. Biological material production

4.1. Engineering materials synthesis

In order to deploy synthetic biology in natural biological
materials synthesis pathways, it is critical to understand how
natural systems produce biomaterials. Extensive literature
exists that discusses biological production of complex
molecules and structures. Indeed, animal and plant anatomies
are a testament to the level of complexity and specialization
achievable by nature. For the purpose of understanding
how synthetic biology can assist in producing engineered
materials, it is important to consider how biological materials
can be made, and how bioengineers have often approached
this problem. For example, metabolic engineers have often
tackled the problem of converting simple sugars and
cellulosic biomass into useful substances. Over the past few
decades [53], they have developed the catalytic capacity of
organisms in the conversion of five-ring and six-ring carbon
sources into useful organic molecules like drugs [54] and
fuels [55]. By mapping the metabolic pathways of microbial
organisms, they have been able to predictively model and
experimentally confirm the conversion of these metabolites
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Figure 7. Pattern formation resulting from morphogens: (a) passively diffusing morphogens result in simple gradients capable yielding
basic striped patterns and (b) interacting morphogens result in oscillations capable of yielding more complicated patterns [66].

by cascades of intracellular reactions [56, 57]. Several of
the key components now useful in synthetic biology are
a direct result of these approaches and were specifically
developed to control these processes [58–61]. While the
line between these disciplines is blurry [62, 63], synthetic
biology is certainly characterized by a drive toward the
development of more complex pathways, cellular components
and design-and-build approaches. In the case of materials
synthesis, potential challenges loom in the production of
complicated materials [64, 65] and patterns [66–68].

4.2. Natural and synthetic biological pattern formation

Biological patterning is critical in the material scaffold
systems widely used in biomaterial design and synthesis.
Just as the engineered protein scaffolds described above
enabled the development of intracellular signaling circuits
in yeast [11], patterned material scaffolds can coordinate
extracellular binding events as well, and thus, extracellular
material assembly. This paradigm has impacted broad
fields ranging from tissue engineering [69] to molecular
self-assembly for nanoelectronics (e.g. the engineered viral
scaffolds [70–73] developed in the Belcher laboratory).
As a result, strategies incorporating synthetic biology into
biological patterning could be critical in leveraging cellular
processes to build materials.

A robust example of biological patterning was reported
by the Weiss group in work that coupled components of
bacterial quorum sensing with engineered pigment changes.
Some bacteria can naturally alter their behavior based upon
their cellular density around them in a process known
as quorum sensing [74, 75]. In these bacterial species,
individual cells have the ability to secrete quorum sensing
molecules. The bacteria then detect elevated levels of these
secreted molecules and alter their behavior. Using this
process, bacteria can regulate a range behaviors including
bioluminescence [76], biosurfactant synthesis [77] and
extracellular polymer production [78–80].

By transferring quorum sensing components to
non-quorum sensing bacteria the Weiss group was able
to engineer bacterial communication between cells that
functioned as ‘sender’ and ‘receiver’ strains. As a result, when
a colony of ‘sender’ cells was placed on a ‘receiver’ bacterial
lawn, a bull’s-eye pattern formed around the ‘sender’ colony.
This pattern could be further altered by placing multiple
‘sender’ colonies on a lawn [67]. In another interesting study,
the Voigt lab expanded upon their work with light-detection
to develop a synthetic circuit that allowed a lawn of bacteria
to distinguish the edges of projected silhouettes [68]. These
first circuits, driving synthetic biological pattern formation,
portend increasingly complicated engineered biological
patterns. To this end, we can look at embryogenesis,
the process by which a single fertilized egg grows into
uniquely patterned tissues. In a now widely accepted model,
Turing proposed that interactions between two molecular
morphogens could give rise to the complicated patterns
seen in development [81]. Rather that two molecules
passively diffusing through a tissue and signaling cellular
differentiation, in the proposed reaction–diffusion model,
shown in figure 7, morphogens could also react with one
another, and these reactions could give rise to increasingly
complicated patterns [66]. These reaction networks are
especially amenable to synthetic biology, and synthetic
biological circuits that alter these networks could potentially
control the patterning of molecular scaffolds through
engineered cellular secretion machinery [82].

4.3. Nanomaterial assembly in biological compartments

In addition to engineering biological systems to secrete
patterned scaffolds for molecular assembly, control of
biological systems producing more complex molecular
assemblies is also possible. Although it has been widely
understood that eukaryotic cells contain compartmental
organelles, several important examples of primitive organelles
have now been observed in bacteria as well. These
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Figure 8. Hypothesized mechanism of magnetosomes in MTB. Reprinted by permission from Royal Society Publishing: Journal of Royal
Society Interface [83], copyright 2008.

Figure 9. Superparamagnetic nanoparticles programmed by a synthetic network and synthesized in HEK 293 cells [90].
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microcompartments and nanocompartments can form either
as a result of protein shells that allow the internal assembly of
materials [84], or through complex processes that coordinate
the assembly of internal material structures [83]. For
example, in structures called carboxysomes [14], bacteria
can synthesize protein shells that resemble virus capsids
and contain carbon. These nanoscale inclusions have now
been widely studied, and reengineered compartments can
have been transferred between heterologous hosts [85]. These
approaches may yield new intracellular nanoscale particles,
as well as compartments housing cascades of designed
reactions for the production of critical biomolecules [86], thus
following an intracellular nanofactory paradigm [3].

Beyond compartments formed by protein shells, some
bacteria have the capacity to form even more complicated
internal compartments. As an example, magnetotactic bacteria
(MTB) synthesize linear chains of ferromagnetic particles
that effectively serve as compass needles [87], allowing them
to orient their movements with the geomagnetic field [15].
A well-studied genomic island contributes to the production
of multiple proteins that coordinate the initial invagination
of the MTB inner membrane, as well as the nucleation of
Fe3O4 crystals [83, 88], as shown in figure 8. These crystals
are spatially coordinated within the cell by structural scaffold
proteins. In one example, when a scaffold gene was removed,
crystals still formed but would no longer spatially arrange
in a linear fashion [89]. Thus, synthetic circuits that control
the expression of these key genes could potentially shape
the assembly of these nanoparticles and their intracellular
superstructure.

Two efforts to synthetically engineer magnetic
nanoparticles in living cells were recently published in
separate studies by the groups of Martin Fussenegger
and Pamela Silver, showing the production of magnetic
nanoparticles within mammalian [90] and yeast cells [91],
respectively. In the example from the Fussenegger group,
shown in figure 9, both an iron transporter and a heavy-chain
ferritin monomer were produced by synthetic networks
in cells. In a process significantly less complicated than
magnetosome formation, heavy-chain ferritin assembled into
apoferritin, a protein shell capable of storing 4500 Fe3+ ions in
its 8 nm cavity. While insufficient for ferromagnetic behavior,
these particles produced paramagnetic behavior that was
sufficient to allow cells to be separated from non-magnetic
cells in complex cell mixtures.

5. Conclusions and outlook

Synthetic biology has tremendous potential in creating
cells that produce biological nanomaterials. Engineered
biological circuits and control structures continue to
improve, along with the computational and software tools
necessary to optimize design with synthetic components.
Concurrently, synthetic biologists are tackling problems in
the development of new patterning approaches and the
development of new microscale and nanoscale intracellular
compartments. As these technologies evolve toward creating
nanoscale biomaterials, it will be critical to integrate new

synthetic patterning and materials synthesis components into
collections of synthetic biology parts and tools. Ultimately,
synthetic biology holds the potential to transform engineered
biological cells beyond their role as metabolic catalysts in
the production of simple organic molecules, allowing cells to
serve as cellular foundries and nanofactories.
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