
1Scientific Reports | 6:36325 | DOI: 10.1038/srep36325

www.nature.com/scientificreports

Large-scale identification of 
adverse drug reaction-related 
proteins through a random walk 
model
Xiaowen Chen1,*, Hongbo Shi1,*, Feng Yang1, Lei Yang1, Yingli Lv1, Shuyuan Wang1, Enyu Dai1, 
Dianjun Sun2 & Wei Jiang1

Adverse drug reactions (ADRs) are responsible for drug failure in clinical trials and affect life quality 
of patients. The identification of ADRs during the early phases of drug development is an important 
task. Therefore, predicting potential protein targets eliciting ADRs is essential for understanding the 
pathogenesis of ADRs. In this study, we proposed a computational algorithm,Integrated Network 
for Protein-ADR relations (INPADR), to infer potential protein-ADR relations based on an integrated 
network. First, the integrated network was constructed by connecting the protein-protein interaction 
network and the ADR similarity network using known protein-ADR relations. Then, candidate protein-
ADR relations were further prioritized by performing a random walk with restart on this integrated 
network. Leave-one-out cross validation was used to evaluate the ability of the INPADR. An AUC of 
0.8486 was obtained, which was a significant improvement compared to previous methods. We also 
applied the INPADR to two ADRs to evaluate its accuracy. The results suggested that the INPADR is 
capable of finding novel protein-ADR relations. This study provides new insight to our understanding of 
ADRs. The predicted ADR-related proteins will provide a reference for preclinical safety pharmacology 
studies and facilitate the identification of ADRs during the early phases of drug development.

Adverse drug reactions (ADRs) are a major cause of drug failure in clinical trials, and also limit the use of effective 
drugs1. The early identification and prevention of ADRs have become an important issue for drug development. 
A principle of drug discovery is that the function of therapeutic targets is regulated to achieve the desirable ther-
apeutic effects. However, drugs may also interact with off-targets to induce undesirable ADRs, which range from 
mild drowsiness to serious rhabdomyolysis. For example, terfenadine, a selective inhibitor of H1-receptors, is 
used to the treatment of allergies. However, terfenadine also causes arrhythmias due to the off-target inhibition 
of the human Ether-à-go-go-Related Gene (hERG)2. Thus, the key to avoiding ADRs is the investigation of the 
pathogenesis of ADRs, specifically, the identification of the protein targets responsible for ADRs.

Some computational methods have been proposed to identify ADR-related protein targets3–7. They are mainly 
based on establishing the associations between drug-target interaction data and the drugs’ ADRs. For example, 
Lounkine et al. screened for targets of marketed drugs from 73 targets that were included in Novartis in vitro 
safety panels. The predictions were validated using the chemical databases and Novartis in vitro assays. ADRs 
for three drugs were evaluated by constructing a drug-target-ADR network3. However, experimental tests of the 
interactions between drugs and thousands of proteins are very expensive. Yang and Pan used molecular docking 
methods to predict drug-target interactions4–6. However, molecular docking methods cannot be applied when 
the 3D structures of the target proteins are unknown8. These approaches have focused on relatively few ADRs. 
Later, Kuhn et al. used known drug-protein and drug-ADR relations to identify systematically overrepresented 
protein-ADR pairs through the enrichment analysis7. However, this method is dependent on the availability 
of drug-target interaction data. Molecular information for only 34% (1,428/4,192) ADRs could be obtained. 
Furthermore, Kuhn et al.’s work was unable to detect the causal proteins for approximately half of all the 1,428 
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investigated ADRs. In summary, the above-mentioned methods for ADR-related protein prediction have various 
limitations. Therefore, novel prediction methods are urgently needed to advance experimental research.

The goal of this study is to develop a new strategy for systematically predicting the relations between pro-
teins and ADRs. Currently, many studies used similarity as a measure to investigate the relations between drugs, 
targets and ADRs9–12. For example, Campillos et al. used ADR similarity to infer drug targets, indicating that 
drugs that caused similar ADRs had similar protein binding profiles9. Hence, common drugs shared by two 
ADRs (also called co-occurrence drugs) can reflect the relations between these two ADRs and their associ-
ated proteins. Brouwers et al. investigated the contribution of the protein network neighborhood to ADR sim-
ilarity between drugs10. They found that similar ADRs were caused by sharing of drug targets and neighbor 
drug targets in the network. Additionally, drug targets with similar pharmacological actions tended to interact 
with each other in a protein-protein interaction network11. These studies suggested that ADR similarity and 
protein-protein interaction network could be used to detect the relations between ADRs and proteins. Protein 
targets with interactions in protein network tend to be related to similar ADRs. Based on such findings, a com-
putational algorithm, Integrated Network for Protein-ADR relations (INPADR), was developed to infer potential 
relations between proteins and ADRs. First, the co-occurrence drugs were used to quantify the similarity between 
ADRs, and an integrated network was constructed by combining the protein-protein network, the ADR-ADR 
similarity network and the protein-ADR network. Then, the random walk was implemented on the integrated 
network to rank the candidate proteins for an ADR of interest according to the stable probability of the walker. 
Leave-one-out cross validation was used to evaluate the ADR-related protein prediction performance. An AUC 
of 0.8486 was obtained, which suggested that the INPADR is superior to previous methods and capable of pre-
dicting ADR-related proteins. Case studies of two ADRs further revealed the high performance of our algorithm. 
This study provides a practical method to detect ADR-related proteins and will be valuable for ADR screening in 
clinical drug-discovery trials.

Methods
Datasets.  ADR-drug relations were extracted from the SIDER 2 database13, which includes data for 996 drugs 
implicated in 4,192 different ADRs labeled with a Unified Medical Language System (UMLS) Concept Unique 
Identifier (CUI). Protein target set was derived from public targetable protein databases14–17 and the literature7. 
The identifier for each protein was mapped to an Ensemble ID. After filtering redundant annotations across the 
databases, we finally obtained 3,198 unique proteins for further analysis.

An integrated protein-ADR network.  An integrated protein-ADR network was constructed by com-
bining three types of networks, namely the protein-protein interaction network, the ADR similarity network, 
and the protein-ADR network (see Fig. 1). Here, protein-protein interactions (PPI) were obtained from STRING 
v1018. STRING is a comprehensive database containing protein interactions from experimental evidence and 
comparative genomics prediction methods. It computed a confidence score for each protein interaction based on 
benchmarking the performance of the predictions against manually curated functional associations in the KEGG 
database, reflecting the confidence of the predicted interactions. After inputting the above-mentioned set of 3,198 
targetable proteins, we obtained the PPI network including 73,833 interactions between 1,153 proteins. In the PPI 
network, the vertex set of n proteins is denoted as the set VP =​ {vp1, …​, vpn}. Vertex vpi and vpj are linked by an 
edge, if the confidence score between vpi and vpj from STRING is more than 0. The confidence score was used as 
the weight of this edge. Next, we used the co-occurrence of drugs to evaluate ADR similarity. For two ADRs i and 
j, the Jaccard score was calculated as follows:
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where Di and Dj denote drug sets that cause ADR i and ADR j, respectively. The ADR similarity network was 
constructed according to the Jaccard score, where the set VA =​ {va1, …​, vam} represents the vertex set of m ADRs; 
vertex vai and vaj are linked by an edge, if the Jaccard score for them is greater than 0. The Jaccard score was 
used as the weight of this edge. Then, human protein-ADR relations were obtained from Kuhn’s work and the 
drug adverse reaction target database (DART, http://xin.cz3.nus.edu.sg/group/drt/dart.asp)7,14. DART is a man-
ually curated database of the known target proteins related to the ADRs that are obtained from the literature. 
After preprocessing and verifying the names of proteins and ADRs, 503 relations between 245 proteins and 166 
ADRs were used as the gold-standard dataset for evaluating the performance of the methods. Here, the identifiers 
for proteins were Ensemble IDs, and the ADRs were labeled with CUIs. The known 503 protein-ADR relations 
were represented as a bipartite graph, called the protein-ADR network. In the protein-ADR network, vertex 
vpi and vertex vaj are connected by an edge if the protein i is related to the ADR j. Finally, we constructed the 
integrated protein and ADR network by connecting the PPI network and the ADR similarity network using the 
protein-ADR network.

ADR-related protein prediction based on the integrated network.  In this work, we used the ran-
dom walk with restart-based predictor INPADR to infer potential protein-ADR relations (see Fig. 1). Random 
walk with restart (RWR) is a useful method to measure the proximity between two nodes of a network, and has 
been successfully applied to identify gene-disease relations and drug-target interactions19,20. The RWR method 
simulates a random walker starting from a source node (or a source set of nodes). At each step, the walker moves 
to one of the immediate neighbors with equal probability, and restarts from source nodes with a certain proba-
bility. After many iterations, the probability of finding the walker at node x converges to the stable probability, 
which is the proximity score. Therefore, the INPADR includes five steps as follows: (1) constructing the integrated 
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network; (2) determining the initial probability; (3) determining the transition matrix; (4) performing RWR on 
the integrated network; and (5) obtaining the stable probability and ranking the candidate proteins for each ADR.

As mentioned above, the integrated network was generated by combining the PPI network, the ADR similarity 
network and the protein-ADR network. Let the matrix 
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
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B CT

 represent the adjacency matrix of the integrated 

network, where An×n, Bn×m and Cm×m denote the adjacency matrices for the PPI network, the protein-ADR net-
work and the ADR similarity network, respectively. BT is the transpose matrix of B. Second, for an ADR i of 
interest, ADR vai is considered as the seed node in the ADR similarity network. If protein j is related to ADR i, 
then vpj is also considered as the seed node in the PPI network21. Let u0 denote the initial probability of the PPI 
network, where the seed nodes have the equal probabilities with the sum equal to 1 and the probabilities of 
non-seed nodes are zero. Therefore, the probability for a random walker of starting from each seed node is equal. 
Let v0 denote the initial probability of the ADR similarity network, where the probability of node vai is 1 and the 
probabilities of other nodes are equal to 0. Therefore, the initial probability of the integrated protein and ADR 
network is =


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

− η
η







p u
v

(1 )
0

0

0
. The parameter η ∈ (0, 1) is used to measure the importance of the PPI network and 

the ADR similarity network. The RWR algorithm identified potential proteins related to ADR i by simulating a 
random walker’s transition from its current nodes randomly to neighbors in the integrated protein and ADR 
network starting at the given seed nodes. From Fig. 1, we can observe that not all the proteins are linked to ADRs. 

Figure 1.  Workflow of the INPADR for predicting protein-ADR (Adverse Drug Reaction) relations. First, 
the protein interaction network is obtained by mapping a targetable protein set into the STRING database. 
The ADR similarity network is constructed using the co-occurrence of drugs. Then, the integrated protein and 
ADR network is constructed by connecting the protein interaction network and the ADR similarity network 
using known protein-ADR relations retrieved from Kuhn’s work and the DART database. Finally, random walk 
with restart on the integrated network is performed to obtain the stable probability, and candidate ADR-related 
proteins are ranked according to the stable probability.
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When the random walker is in the PPI network, it can jump to the ADR similarity network or stay in the PPI 
network. If it is at a protein node linked to ADRs, it can jump to one of the linked ADR nodes with the probability 
λ​, or jump to other protein nodes with the probability 1−​λ​. Otherwise, it only moves in the PPI network. Here, 
the parameter λ​ is called the jumping probability of the random walker from the PPI network to the ADR simi-
larity network or vice versa.

Third, the transition matrix needs to be defined to perform the random walk. Let =

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M M
M M

PP PA

AP AA
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the transition matrix of the integrated protein and ADR network, where MPP and MAA are intra-subnetwork tran-
sition matrices showing the probability from one protein (ADR) to other protein (ADR) in the random walk, 
respectively; MPA and MAP are inter-subnetwork transition matrices from the PPI (ADR similarity) network to 
ADR similarity (the PPI) network, respectively. The transition matrix M is defined as follows:

In the PPI network, the transition probability from vertex vpi to vpj is defined as
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In the ADR similarity network, the transition probability from vertex vai to vaj is defined as
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The transition probability from vpi in the PPI network to vaj in the ADR similarity network is defined as
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The transition probability from vai in the ADR similarity network to vpj in the PPI network is defined as

∑ ∑λ

= |

=






≠

M i j p v p va

B j i B j i if B j i

( , ) ( )

( , )/ ( , ), ( , ) 0
0, otherwise (5)

AP j i

j j

Next, a random walk is performed on the integrated protein and ADR network using the following Eq. (6)

= − ++p r M p r p(1 ) (6)t
T

t1 0

Here, pt is a vector in which the i-th element is the probability of finding the random walker at node i at step t. The 
parameter ∈r (0, 1) is the restart probability of the random walker at the seed nodes at each step. Finally, the 
stable probability =
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(1 )  is obtained after a number of iteration steps, and proteins are ranked 

according to ∞u . Based upon the previous work19, let the parameters r, λ​ and η​ equal to 0.7, 0.5 and 0.5 in our 
INPADR method, respectively.

Results
The basic properties of the protein-ADR network.  In this study, we first focused on the collection of 
known protein-ADR relations. We obtained 503 relations between 245 proteins and 166 ADRs (see Methods for 
details). The protein-ADR network was then constructed, which is shown in Fig. 2a. To view the global properties 
of the protein-ADR network, we performed network topology analysis (see Table 1). We further calculated the 
degree of ADR (protein) nodes, which is the number of proteins (ADRs) associated with the investigated ADR 
(protein). Each ADR interacted on average with 3 proteins, and each protein interacted on average with 2 ADRs. 
This result suggested that the dysfunction of multiple proteins contributed to the pathogenesis of ADRs. The 
degree distribution of the ADR and protein nodes both followed the power law distribution approximately with 
slopes of −​2.059 and −​1.508 and R2 =​ 0.9954 and 0.9824, respectively (see Fig. 2b,c).

Evaluating ADR-related protein prediction using leave-one-out cross validation.  The goal of our 
study is the prediction of novel protein-ADR relations based on an integrated network (see Methods for details). 
To evaluate the performance ability of the INPADR, leave-one-out cross validation (LOOCV) was applied to the 
503 known protein-ADR relations. The algorithm cannot prioritize all protein-ADR relations for all the ADRs at 
the same time. Namely, it can only prioritize candidate proteins for an ADR. Hence, each known protein-ADR 
relation was removed from the integrated network and was taken as the test dataset in each cross-validation 
run. The investigated ADR and the remaining proteins related to this ADR were used as seed nodes. For the 
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investigated ADR, all the proteins without known relations with this ADR were regarded as the candidate pro-
teins. When one known protein-ADR relation was taken as a test dataset, we measured how well this test protein 
ranked relative to the candidate proteins of this ADR. If the ranking of the test protein exceeded a given threshold, 
then this protein-ADR relation was considered to be successfully predicted by the INPADR.

When LOOCV was performed, the sensitivity and specificity for each threshold were calculated. The sensitiv-
ity indicates the percentage of the test proteins whose rank is higher than a given threshold, namely the ratio of 
successfully predicted protein-ADR relations to the total known protein-ADR relations. The specificity indicates 
the percentage of proteins that are below the threshold. The receiver operating characteristic (ROC) curve plots 
the sensitivity versus 1-specificity at different thresholds. Then, the area under the ROC curve (AUC) was calcu-
lated, which was used as a measure to evaluate the algorithm performance.

Here, we compared our INPADR with the enrichment analysis method based on a hypergeometric test using 
the integrated protein and ADR network. Enrichment analysis based on a hypergeometric test or Fisher’s exact 
test is a typical method for measuring the significance of the associations between two variables7,22–24. Kuhn et al. 

Figure 2.  Visualization and characteristics of the protein-ADR network. (a) The protein-ADR network. If 
one protein was related to one ADR, they were linked by an edge. The protein and ADR nodes were shown by 
green triangles and blue circles, respectively. We colored the hub nodes red. The hub nodes were defined as the 
top 5 percent of proteins and ADRs with the highest degree. (b,c) Degree distribution of the ADR and protein 
nodes, respectively.

Properties Values Properties Values

Number of nodes 411 Shortest paths 87,242

Number of edges 503 Characteristic path length 5.607

Cluster coefficient 0 Density 0.006

Connected components 37 Average number of neighbors 2.448

Diameter 15 Network heterogeneity 1.714

Radius 1 Centralization 0.121

Table 1.   The topological properties of the protein-ADR network.
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used Fisher’s exact test to identify associations between ADRs and proteins by integrating drug-ADR relations 
and drug-target interactions7. Jiang et al. used the hypergeometric distribution to prioritize the entire microR-
NAome for diseases based on a heterogeneous disease and miRNA network22. After performing LOOCV, the 
INPADR yielded an AUC of 0.8486, while the hypergeometric distribution method only produced an AUC of 
0.7437 (Fig. 3a). This result suggested the INPADR can recover known, experimentally verified protein-ADR 
relations, and has the power to predict potential protein-ADR relations.

Parameter effect of the INPADR.  In the INPADR, there were three parameters: restart probability r, 
jumping probability λ​, and η​ which controls the impact of two types of seed nodes. It has been shown that the 
restart probability has little effect on the predictive result19–21. Therefore, we chose a restart probability of 0.7 
according to a previous study19. The jumping probability λ​ is responsible for the reinforcement between the 
PPI network and the ADR similarity network. If λ​ =​ 0, the random walker will move in only one type of sub-
network. If λ​ =​ 1, the random walker will move only in the protein-ADR network. Namely, he will not reach 
nodes only in the PPI network or the ADR similarity network. If λ​ is larger, there is greater mutual dependence 
of ranking between proteins and ADRs. To investigate the effect of the parameter λ​, we set various values of 
λ​ ranging from 0.1 to 0.9. The performance of the INPADR was measured using the AUC in the process of 
LOOCV. The result is shown in Fig. 4. The performance was improved with an increase of the λ​ value. When 
the λ​ value ranged from 0.5 to 0.9, the AUC values were distributed from 0.85 to 0.89. The performance was 
comparatively poor for λ​ values <​0.5, but was superior to the hypergeometric distribution method. It suggested  
that the INPADR could successfully control the reinforcement between the PPI network and the ADR  
similarity network.

The parameter η​ regulates the impact of two types of seed nodes, namely, the protein node and ADR node. 
If η =​ 0.5, then the two subnetworks hold the same importance. If η is greater than 0.5, the random walker tends 
to return to the seed ADRs. The effect of the parameter value on cross-validation results according to the AUC is 
shown in Fig. 4. The performance of the INPADR slightly improved when η​ was set above 0.5, suggesting that the 
ADR similarity network has an important function for prioritizing the ADR-related proteins.

Comparison with similar method.  To further emphasize the importance of the ADR similarity network 
for the prediction of protein-ADR relations, we compared the INPADR with the RWR (Random Walk with 
Restart) on only the PPI network21. The RWR method is an iterative walker’s transition from the current node to 

Figure 3.  Method evaluation. (a) ROC curve of the INPADR and enrichment analysis method. The INPADR 
and enrichment analysis method are compared in terms of ROC curve and AUC using leave-one-out cross 
validation of 503 known protein-ADR relations. (b) ROC curve of the INPADR and the RWR. In the process of 
leave-one-out cross validation, the RWR only on the protein interaction network just is evaluated on the ADRs 
related with at least two proteins. Here, 398 known ADR-protein relations for ADRs related with at least two 
proteins are considered as the gold-standard set.

Figure 4.  The effects of two parameters on the cross-validation results of the INPADR. The AUC values were 
calculated for different values of one parameter and the other parameter was fixed at 0.5.
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its neighboring nodes starting at given seed nodes. Therefore, in the process of LOOCV, the RWR needs at least 
two proteins for an ADR due to performing a random walk only on the PPI network. Hence, in this comparative 
analysis, only ADRs related with at least two proteins were considered. We obtained 398 protein-ADR relations 
between 218 proteins and 61 ADRs as gold-standard data. We then performed LOOCV for each ADR. As shown 
in Fig. 3b, the ROC curve of the INPADR is above the RWR. The INPADR obtained an AUC value of 0.908, which 
is higher than the AUC value for the RWR (0.8437). Therefore, the INPADR is superior to the RWR on the protein 
network alone.

Potential ADR-related protein prediction and case study.  After confirming the power of the 
INPADR to predict novel ADR-related proteins, we applied the INPADR to predict potential proteins for each 
ADR investigated in this study. The INPADR is a top-k proximity query method which obtained the k proteins 
with the highest proximity (i.e., the highest stable probability) from a given ADR in the integrated network. In 
our study, we chose the k of 50 according to previous studies25,26. We publicly released the predictive results for 
each ADR in Supplementary Table S1, which will provide an experimental reference for biologists. In addition, we 
performed case studies of two ADRs (hypertension and atherosclerosis) to show the application of the INPADR 
in predicting the potential ADR-related proteins. For each ADR, all the known ADR-related proteins were used 
as seed nodes, and candidate proteins (non-seed proteins) were prioritized by the INPADR. The top 50 predictive 
proteins for two ADRs (see Supplementary Table S1) were validated by literature mining and the DisGeNet plat-
form27. Hypertension is defined as persistent high systemic arterial blood pressure. There were 18 known proteins 
related to hypertension. Among the top 50 predictive hypertension-related proteins, 39 proteins had been con-
firmed to be associated with hypertension by experimental evidence in the literature. Atherosclerosis sometimes 
occurs in patients treated with ropinirole and naltrexone. There were 7 known proteins related to atherosclerosis. 
Among the top 50 predictive atherosclerosis-related proteins, 46 proteins had been confirmed to be associated 
with atherosclerosis by experimental evidence in the literature.

A list of the top 50 potential hypertension-related proteins corresponded to 49 individual genes. 
According to KEGG gene classification, GPCR receptors and enzymes were the two largest classes of potential 
hypertension-related proteins (see Fig. 5a). GPCR receptors (23%) and enzymes (50%) are the most important 
classes of target proteins in the human genome28. The classification of top 50 potential atherosclerosis-related pro-
teins is shown in Supplementary Fig. S1. Enzymes were also the largest class of potential atherosclerosis-related 
proteins.

Additionally, the interactions between known ADR-related proteins and the top 50 potential proteins were 
shown for hypertension and atherosclerosis according to the protein-protein confidence scores (Fig. 5b: hyper-
tension; Supplementary Fig. S1: atherosclerosis). If the confidence score between two proteins was equal to or 
larger than 0.7, then the edge linking them was retained. It was found that ADR-related proteins preferred to form 
some modules, which was consistent with the basic assumption of the INPADR.

Finally, to verify the rationality of the INPADR, we performed functional enrichment analysis for the potential 
ADR-related proteins using the ClueGo Cytoscape plug-in29. Meanwhile, ClueGo constructed a GO biological 
process similarity network based on shared genes between Go terms (see Fig. 5c: hypertension; Supplementary 
Fig. S1: atherosclerosis). A review of the literature revealed that half of the enriched biological processes were 
related to hypertension (The biological processes validated in the literature for hypertension and atherosclerosis 
are listed in Supplementary Table S2). For instance, STAT (signal transducers and activators of transcription) 
proteins are a family of transcription factors that are activated by phosphorylation. Once phosphorylated, STAT 
protein dimers are transported to the nucleus. STAT family members were involved in diverse biological func-
tions including cell differentiation, proliferation, development, apoptosis, and inflammation30. In particular, it 
was reported that STAT3 played an important role in hypertension31. Thus, changes in STAT protein import into 
the nucleus can lead to the progression of hypertension32. The renin-angiotensin system (RAS) is a hormonal 
cascade regulating blood pressure. Inappropriate activation of the intrarenal RAS was a critical factor to the 
pathogenesis of hypertension. The plasma renin concentration was used to measure the overall activity of the 
RAS33. Inhibition of renin release into the bloodstream was associated with hypertension. Protein kinase C (PKC) 
is a family of phospholipid-dependent serine/threonine kinases distributed in different blood vessels. Multiple 
factors lead to hypertension including changes in neuronal, hormonal, renal and vascular control mechanisms of 
blood pressure34. The activity of PKC can perturb one or more of these physiological control mechanisms, causing 
persistent increases in blood pressure and hypertension35. Hence, dysfunction of protein kinase C deactivation 
could be associated with hypertension. Therefore, the independent case studies further showed the reliability of 
our INPADR for identifying the protein-ADR relations.

Discussion
The identification of ADR-related proteins can be used to explain the molecular mechanisms of reported 
drug-ADR pairs and can be helpful for in vitro ADR assessment at an early phase of drug development. In this 
study, based on the hypothesis that similar ADRs are caused by proteins that interacted with each other in the 
PPI network, a computational predictor, INPADR, was developed to identify the potential protein-ADR rela-
tions. We first constructed the protein-ADR network based on experimentally verified protein-ADR relations. 
Network topological analysis revealed that the degree of distribution of the ADR and protein nodes in the 
protein-ADR network approximately followed the power law distribution. Similar to other biological networks, 
the protein-ADR network was a scale-free network. We then constructed an integrated network by connecting 
the PPI network and the ADR similarity network using the protein-ADR network. Then, the candidate proteins 
for each ADR were ranked by implementing a random walk with restart on the integrated network using the ADR 
and corresponding known ADR-related proteins as seed nodes. LOOCV was used to evaluate the performance of 



www.nature.com/scientificreports/

8Scientific Reports | 6:36325 | DOI: 10.1038/srep36325

the INPADR. The results revealed that the INPADR was superior to the hypergeometric test and the RWR using 
only the protein interaction network. The INPADR had the ability to recover the known experimentally verified 
ADR-related proteins. Furthermore, we performed case studies for two ADRs, and most of the predictive results 
can be confirmed by database and literature. These case studies further demonstrated that the INPADR has good 
performance and application value for prioritizing candidate ADR-related proteins. Overall, the good perfor-
mance of the INPADR was attributed to the fact that the INPADR integrated three different networks into a het-
erogeneous network, and the experimentally verified ADR-protein relations were used as a gold-standard dataset 
in cross-validation and seed set to identify potential ADR-related proteins. In addition, the INPADR is based 
on the topological structure of the integrated network. The scarcity of the experimentally verified protein-ADR 
relations leads to the incompleteness of the integrated network. Obtaining more known ADR-related proteins will 
improve the performance of the INPADR. Meanwhile, we plan to integrate more biological data to measure ADR 
similarity and protein similarity more accurately in future work.
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