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Hexafluoroisopropyl alcohol 
mediated synthesis of 2,3-dihydro-
4H-pyrido[1,2-a]pyrimidin-4-ones
Mohammad A. Alam1, Zakeyah Alsharif1, Hessa Alkhattabi1, Derika Jones1, Evan Delancey1, 
Adam Gottsponer1 & Tianhong Yang2

An efficient synthesis of novel 2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-ones has been reported. 
Inexpensive and readily available substrates, environmentally benign reaction condition, and product 
formation up to quantitative yield are the key features of this methodology. Products are formed by 
the aza-Michael addition followed by intramolecular acyl substitution in a domino process. The polar 
nature and strong hydrogen bond donor capability of 1,1,1,3,3,3-hexafluoropropan-2-ol is pivotal in 
this cascade protocol.

The 1,3-nitrogenous bicyclic frameworks have been illustrious in drug discovery. Many pyrido-pyrimidinone 
scaffolds (i.e., Fig. 1) have occupied privileged position in medicinal chemistry due to their unprecedented biolog-
ical activities. It is a key constituent of numerous natural products possessing wide range of therapeutic properties 
including antitumor, anti-influenza, oxidative burst inhibition, lipid droplet synthesis inhibition, and anti-obesity 
properties1–10. Recent studies have revealed that the molecules bearing pyrido-pyrimidinones are in different 
phases of drug development to treat cancer, hypertension, neurological disorders, etc11–16. Some of them have 
been recognized as aldose reductase inhibitors, efflux pump inhibitors, and hepatitis C virus NS3 protease inhib-
itors. 1,3-Nitrogenous bicyclics also include marketed drugs for depression and asthma treatment (Fig. 2)2,6,9,14,15.

Synthesis of structural variant of pyrido-pyrimidinones is challenging. Zeng et al. have utilized palladium 
catalyzed C-H activation entailed carbonylative cycloamidation of ketoimines (Fig. 3, Case A)17. It requires a 
bimetallic combination of palladium and copper along with toxic carbon monoxide in a sophisticated reaction 
setup. Spring and coworkers have used 2-aminopyrimidine and alkynoates in bicyclic pyrimidones synthesis. 
The use of butyl lithium is critical and require continuous monitoring of anhydrous condition (Fig. 3, Case B)18. 
Bicyclic pyrimidones have also been synthesized by using β-oxo esters and 2-amnionpyrimidines in the pres-
ence of BiCl3 catalyst (Fig. 3, Case C)11. The use of alkyne Michael addition helps in shifting the position of 
carbonyl group in pyrimidones19. Dai et al. have reported the Michael addition of anilines with acrylates by 
using polymer-supported AlCl3 in which they reported one cyclized molecule; 2,3-dihydro-4H-pyrido[1,2-a]
pyrimidin-4-one (1) among other aza-Michael adducts20. From literature survey it was apparent that there are no 
reports on the dihydropyrido-pyrimidinones chemistry and their biological activity. It motivated us to design and 
developed a protocol for their synthesis and investigate their biological activities (Fig. 3, Case D). In this article, 
we present our results involving sustainable design and catalyst free synthesis of 2,3-dihydro-4H-pyrido[1,2-a]
pyrimidin-4-one derivatives.

Results and Discussion
Engage in small molecule research, we wanted to explore the synthesis of dihydropyrido-pyrimidinones and 
their biological activities. Dearth of literature and our interest in its medicinal chemistry encouraged us to design 
and synthesize bicyclic dihydropyrido-pyrimidinone derivatives. We speculated that the introduction of amine 
group at second position in pyridine will increase the nucleophilicity of ring-nitrogen and activity of amino group 
towards nucleophilic aza-Michael addition to electron deficient double bonds. Accordingly, a reaction pathway 
was envisaged where the amine group undergoes aza-Michael addition and ring nitrogen participates in the 
exo-trig cyclization for the formation of bicyclic pyrimidinones architecture (Fig. 4).

The first step in the synthesis of dihydropyrido-pyrimidinones is the aza-Michael addition of 2-aminopyridines 
with α,β-unsaturated ester. The addition of aromatic amine over electron deficient double bond is well known. 
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Figure 1.  Synthesis of dihydropyrido-pyrimidinones. 

Figure 2.  Pyrido-pyrimidones bearing marketed drug and drug targets. 

Figure 3.  Strategies for the synthesis of pyrido-pyrimidinone and their derivatives. 

Figure 4.  Proposed reaction pathway towards pyrimidones. 
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In most of the cases, it requires acid catalyst to facilitate nucleophilic aza-Michael type addition. We believed that 
the use of aromatic nitrogen ring in conjugation with amine functional group increase the probability of catalysis 
free aza-Michael type addition; which on intramolecular cyclization may yield the desire product. Our aim was 
to find the reaction condition and appropriate solvent for the facile conversion of aminopyridine to desired dihy-
dropyrimido derivatives. We began our study with the reaction of 2-amino-5-chloropyridine and methyl acrylate 
in different solvents towards the aza-Michael addition and cyclization protocol. In the beginning the reaction 
outcome was disappointing as it did not yield the desire product in most of the solvents (Fig. 5, entry 1–15). The 
increase in reaction temperature did not alter the reaction outcome. The twilight of success started emerging with 
the reaction in methanol and ethanol (Fig. 5, entries 5 and 6) as it gave the desired product in detectable amount. 
We attributed the formation of dihydropyrido-pyrimidinones to high polarity and inter molecular hydrogen 
bonding with polar hydroxyl group of methanol and ethanol. Hitherto, we explored the reaction in fluorinated 
alcohols (Fig. 5, entries 16 and 17). The reaction in hexafluoroisopropanol (HFIP) persuaded the aza-Michael 
addition cyclization with the quantitative yield of desired product (Fig. 5, entry 16). The most promising part of 
the reaction was the purity of the isolated product after evaporation or filtration.

The aza-Michael addition is greatly facilitated by the strong inter molecular hydrogen bonding between 
hexafluoro-2-propanol (HFIP) and carbonyl group of the Michael acceptor. After the first step, the nucleophilicity 
of ring nitrogen increases exponentially due to the direct conjugation with amino group; facilitating the exo-trig 
cyclization to form thermodynamically stable dihydropyrido-pyrimidinones (Fig. 6).

The reaction outcome impelled us to use HFIP as a reaction medium. Subsequently, reactions were performed 
in HFIP at room temperature without the use of external catalyst. A wide range of substituted 2-aminopyridines 
were treated with an α,β-unsaturated ester. The reaction of 2-aminopyridine with methyl acrylate (Michael 
acceptor) completed in 12 hours to give the product (1) in quantitative yield. The presence of electron donat-
ing or electron withdrawing substituent had an unfavorable response on the rate of reaction. It may be due to 
an imbalance on the optimum electron density in the aromatic system (Fig. 7, Substrate 2–16). The methyl 
substituted 2-aminopyridines formed dihydropyrido-pyrimidinones without differentiating the position of 
methyl substituent in the ring system. As the use of 2-amino-3-methylpyridine, 2-amino-4-methylpyridine, and 
2-amino-5-methylpyridine in catalyst free cascade aza-Michael addition cyclization protocol does not alter reac-
tion rate and product outcome. All methyl substituted substrates gave the desired dihydropyrido-pyrimidinones 
(2, 3, and 4) in very high yield after 36 hours of stirring at room temperature. The halogen substituted 
2-aminopyridines were also utilized in the synthesis of dihydropyrido-pyrimidinones. Fluoro substituted 
2-aminopyridine gave the desired products (5 and 6) in excellent yield and required 48 hours for the com-
pletion of the reaction. Refluxing 2-amino-4-chloropyridine in HFIP for ~8 h formed the product (8) in 70% 
yield further refluxing of the reaction to completely consume the reactants resulted in the hydrolysis of the 
pyrido-pyrimidinone to acid derivative. Reactions of bromo substituted aminopyridines were found to be pro-
ceeding faster, as these reactions were completed in 48 hours at ambient conditions to give the desired products  
(9, 10, and 11). The iodo derived substrate also gave the cyclized product (12) in 85% yields. The trifluorome-
thyl substituted 2-aminopyridines too gave the dihydropyrido-pyrimidinones (13 and 14) in excellent yield. 
The disubstituted 2-aminopyridines were also investigated in the cascade aza-Michael cyclization strategy. 
Interestingly, all the substrates gave the desired products (15, 16, 17, and 18) in excellent yields (Fig. 7).

The effect of alkoxy group in the cyclization step was examined by treating 2-aminopyridine with methyl 
acrylate, ethyl acrylate, and tert-butyl acrylate. The reaction outcome confirmed that these groups does not 
involve in the rate determining step and have a trifling effect over the rate of the reaction. Additionally, the scal-
ing up of the reaction to multi-gram scale does not require any special modification and product is isolated in 
pure form without any difficulty. The reaction solvent was easily recovered, and recycled by simple distillation to 
achieve the best possible Environmental Factor (E) =​ 021.

Electron withdrawing groups, specially –​NO2, and –COOH, inhibited the formation of desired products. The 
analysis of reaction mixture confirms the absence of aza-Michael adducts, corroborating that fact that the electron 
withdrawing groups diminish the nucleophilicity of amino group, which does not allow it to participate in the 
aza-Michael addition. The incorporation of substituent at 6-position in 2-aminopyridine inhabited the cyclization 
step as the aza-Michael adduct (19) was isolated as a sole product in the reaction of 2-amino-6-methylpyridines 
with methyl acrylates (Fig. 8). The ceasing of cyclization is due to the steric hindrance created by methyl substit-
uent at the sixth position (Supporting Information).

We found abnormal product formation for the reaction of 4-chloro-2-aminopyridine with methyl acrylate 
under the optimized reaction condition. Analysis of the reaction mixture showed the formation of desired prod-
uct (8) but refluxing for longer period of time (~24 h) to complete the reaction resulted the further hydrolysis to 
acid derivative (20). The acid product (20) formed in quantitative yield. Abnormal product formation may be due 
to the strong electron withdrawing effect of chlorine at 4th position, which facilitate the hydrolysis of pyrimidi-
none derivative (8) to thermodynamically stable acid derivative (Fig. 9).

The reaction of 3-aminopyridine with methyl acrylate gave the aza-Michael addition product (Fig. 10). The 
exclusive formation of Michael adduct with 3-aminopyridine is may be due to increased ring strain and imbal-
ance electronic behavior in seven member ring system.

In this article, we designed and developed a strategy for the synthesis of 2,3-dihydro-4H-pyrido[1,2-a]
pyrimidin-4-one and their derivatives. These molecules are not known in literature except compound (1). The 
key factor in the discovery is the use of polar and strong hydrogen bonding hexafluoroisopropanol (HFIP) as a 
solvent. The use of HFIP facilitates the efficient aza-Michael addition and cyclization in one pot reaction. Detail 
reaction analysis supported by control experiments gave insight view of the reaction mechanism and its future 
scope. Ease in synthesis and scalability to multi-gram scale have been the strength of the developed methodology. 
It gives immense scope to generate a library of new scaffolds required for the drug discovery and biological study. 
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The developed reaction is clean and product could be isolated by simple filtration or evaporation. Additionally, it 
does not require any purification as the reaction is clean and free from the unwanted by products.

Figure 5.  Solvent screening and reaction optimization. 
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Methods
General procedure for the synthesis of dihydropyrido-pyrimidinone.  Mixture of 2-aminopyridine 
(1 mmol) and methyl acrylate (1.1 mmol) in 1 mL HFIP was stirred or refluxed for a specified time. Progress of the 

Figure 6.  Tentative mechanism for the dihydropyrido-pyrimidinones formation. 

Figure 7.  Synthesis of dihydropyrido-pyrimidinones using aza-Michael-cyclization strategy. 

Figure 8.  Reaction of 2-amino-6-methylpyridine and steric hindrance. 
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reaction was monitored by TLC. After the completion of the reaction, solid was filtered to get the product. For a 
homogenous reaction mixture, solvent was evaporated to get the product.

7-Methyl-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (2).  White solid powder, m. p. =​ 121.3 °C. 
IR (thin film, cm−1): 1635, 1584, 1387. 1H NMR (300 MHz, CDCl3): δ​ 7.39 (dd, J =​ 2.0, 9.0 Hz, 1 H), 7.28 (s, 1 H), 
6.93 (d, J =​ 9.0 Hz, 1), 4.25 (t, J =​ 7.3 Hz, 2 H), 2.71 (t, 7.5 Hz, 2 H), 2.21 (s, 3 H); 13C NMR (75 MHz, DMSO-d6): 
δ​ =​ 174.9, 156.9, 142.4, 135.2, 123.3, 121.8, 50.5, 29.2, 17.2. ESI Mass (m/z): calcd for C9H11N2O [M +​ H]+ 163.1, 
found 163.1.

8-Methyl-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (3).  Colorless solid needles,  
m. p. =​ 145.8 °C. IR (thin film, cm−1): 1642, 1475. 1H NMR (300 MHz, CDCl3): δ​ 7.27 (d. J =​ 6.6 Hz, 1 H), 6.53  
(s, 1 H), 6.32 (d, J =​ 6.5 Hz, 1 H), 4.10 (t, J =​ 7.1 Hz, 2 H), 2.48 (t, J =​ 7.3 Hz, 2 H), 2.11 (s, 3 H); 13C NMR (75 MHz, 
DMSO-d6): δ​ =​ 174.0, 156.5, 152.0, 136.3, 120.4, 113.8, 49.0, 28.5, 20.6. ESI Mass (m/z): calcd for C9H11N2O 
[M +​ H]+ 163.1, found 163.1.

9-Methyl-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (4).  Fluffy white solid, m. p. =​ 122.7 °C. 
IR (thin film, cm−1): 1638, 1593, 1531. 1H NMR (300 MHz, DMSO-d6 +​ CDCl3): δ​ 7.30 (d, J =​ 7.0 Hz, 1 H), 
7.23 (d, J =​ 6.4 Hz, 1 H), 6.44 (t, J =​ 6.8 Hz, 1 H), 4.18 (t, J =​ 7.2 Hz, 2 H), 2.57 (t, J =​ 7.3 Hz, 2 H), 2.15 (s, 3 H);  
13C NMR (75 MHz, DMSO-d6): δ​ =​ 174.9, 157.2, 138.3, 135.2, 131.7, 111.4, 50.6, 29.2, 18.3. ESI Mass (m/z): calcd 
for C9H11N2O [M +​ H]+ 163.1, found 163.1.

7-Fluoro-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (5).  White solid powder, m. p. =​ 262.0 °C. 
IR (thin film, cm−1): 1653, 1558, 1498, 1308. 1H NMR (300 MHz, DMSO-d6 +​ CDCl3): δ​ 8.12 (t, J =​ 3.7 Hz, 
1 H), 7.73 (dt, J =​ 2.9, 7.2 Hz, 1 H), 6.67 (dd, J =​ 5.4 Hz, 1 H), 4.27 (t, J =​ 7.4 Hz, 2 H), 2.49 (t, J =​ 7.5 Hz, 2 H); 
13C NMR (75 MHz, DMSO-d6 +​ CDCl3): δ​ =​ 174.4, 156.0, 150.5 (1JC-F =​ 232.4 Hz), 131.7 (2JC-F =​ 22.3 Hz), 126.3 
(2JC-F =​ 37.7 Hz), 123.4 (3JC-F =​ 6.9 Hz), 50.0, 29.1. ESI Mass (m/z): calcd for C8H8FN2O [M +​ H]+ 167.1, found 
167.1.

9-Fluoro-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (6).  White amorphous solid,  
m. p. =​ 205.0 °C. IR (thin film, cm−1): 1635, 1620, 1483, 1340. 1H NMR (300 MHz, DMSO-d6 +​ CDCl3): δ​ 7.69 
(d, J =​ 6.5 Hz, 1 H), 7.56 (t, J =​ 9.4 Hz, 1 H), 6.63 (dd, J =​ 6.6 Hz, 1 H), 4.36 (t, J =​ 7.2 Hz, 2 H), 2.52–2.49 (m, 2 H); 
13C NMR (75 MHz, DMSO-d6 +​ CDCl3): δ​ =​ 174.2, 149.8 (1JC-F =​ 226.8 Hz), 135.6, 122.7 (2JC-F =​ 17.4 Hz), 122.6, 
109.3, 49.9, 29.4. ESI Mass (m/z): calcd for C8H8FN2O [M +​ H]+ 167.1, found 167.1.

7-Chloro-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (7).  White amorphous solid,  
m. p. =​ 127.0 °C. IR (thin film, cm−1): 1623, 1485, 1395, 826. 1H NMR (300 MHz, CDCl3): δ​ 7.46 (d, J =​ 2.3 Hz, 
1 H), 7.42 (s, 1 H), 6.93 (dd, J =​ 1.1, 8.9 Hz, 1 H), 4.29 (t, J =​ 7.2 Hz, 2 H), 2.75 (t, J =​ 4.2 Hz, 2 H); 13C NMR 
(75 MHz, CDCl3): δ​ =​ 174.6, 156.7, 140.4, 135.0, 124.7, 118.4, 50.7, 28.9. ESI Mass (m/z): calcd for C8H7ClN2O 
[M +​ H]+ 183.0, found 183.0.

8-chloro-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (8).  White solid powder, m. p. =​ 142.0 °C. IR 
(thin film, cm−1): 1639, 1490, 750. 1H NMR (300 MHz, DMSO-d6): δ​ 8.69 (d, J =​ 6.8 Hz, 1 H), 7.23 (s, 1 H), 7.71  
(d, J =​ 6.8 Hz, 1 H), 4.77 (t, J =​ 6.9 Hz, 2 H), 2.95 (t, J =​ 6.9 Hz, 2 H); 13C NMR (75 MHz, DMSO-d6): δ​ =​ 167.2, 
151.0, 150.3, 143.4, 119.6, 115.0, 50.4, 28.8. ESI Mass (m/z): calcd for C8H7ClN2O [M +​ H]+ 183.0, found 183.0.

7-Bromo-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (9).  Brownish solid, m. p. =​ 167 °C. IR 
(thin film, cm−1): 1640, 1493, 529. 1H NMR (300 MHz, DMSO-d6 +​ CDCl3): δ​ 7.93 (d, J =​ 2.0 Hz, 1 H), 7.54 (dd, 
J =​ 2.2, 9.4 Hz, 1 H), 6.71 (d, J =​ 9.4 Hz, 1 H), 4.29 (t, J =​ 9.4 Hz, 2 H), 2.54 (t, J =​ 7.5 Hz, 2 H); 13C NMR (75 MHz, 

Figure 9.  Formation of acid derivative (20) of 4-chloro-2-aminpyridine. 

Figure 10.  Reaction with 3-aminopyridine with methyl acrylate. 
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DMSO-d6 +​ CDCl3): δ​ =​ 174.7, 156.5, 142.8, 138.7, 123.8, 103.8, 50.0, 29.0. HRMS (ESI-FTMS Mass (m/z): calcd 
for C8H7BrN2O [M +​ H]+ 228.9820, found 228.9795.

8-bromo-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (10).  White solid powder, m. p. =​ 305.0 °C. 
IR (thin film, cm−1): 1636, 1479, 549. 1H NMR (300 MHz, DMSO-d6 +​ CDCl3): δ​ 8.51 (d, J =​ 6.9 Hz, 1 H), 
7.85 (d, J =​ 6.8 Hz, 1 H), 7.52 (s, 1 H), 4.71 (t, J =​ 6.6 Hz, 2 H), 2.96 (t, J =​ 6.9 Hz, 2 H); 13C NMR (75 MHz, 
DMSO-d6 +​ CDCl3): δ​ =​ 167.4, 149.3, 142.9, 141.4, 122.8, 118.0, 50.5, 28.7. HRMS (ESI-FTMS Mass (m/z): calcd 
for C8H7BrN2O [M +​ H]+ 228.9820, found 228.9795.

9-Bromo-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (11).  White solid powder, m. p. =​ 235.0 °C. 
IR (thin film, cm−1): 1640, 1479, 541. 1H NMR (300 MHz, DMSO-d6 +​ CDCl3): δ​ 8.19 (d, J =​ 5.6 Hz, 1 H), 8.05 
(d, J =​ 7.5 Hz, 1 H), 6.58 (t, J =​ 7.4 Hz, 1 H), 4.34 (t, J =​ 7.3 Hz, 2 H), 2.48 (t, J =​ 7.7 Hz, 2 H); 13C NMR (75 MHz, 
DMSO-d6 +​ CDCl3): δ​ =​ 174.6, 154.6, 143.3, 139.7, 116.0, 111.0, 50.7, 29.4. HRMS (ESI-FTMS Mass (m/z): calcd 
for C8H8BrN2O [M +​ H]+ 228.9820, found 228.9800.

7-Iodo-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (12).  Brownish solid, m. p. =​ 156.0 °C.  
1H NMR (300 MHz, DMSO-d6 ): δ​ 8.35 (s, 1 H), 7.77 (dd, J =​ 2.0, 9.2 Hz, 1 H), 6.56 (d, J =​ 9.2 Hz, 1 H), 4.27  
(t, J =​ 7.5 Hz, 2 H), 2.43 (t, J =​ 6.9 Hz, 2 H); 13C NMR (75 MHz, DMSO-d6): δ​ =​ 174.6, 153.3, 147.4, 144.1, 123.5, 
49.5, 29.3. ESI Mass (m/z): calcd for C8H7IN2O [M] 274.9681, found 274.9678.

7-(Trifluoromethyl)-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (13).  Colorless solid,  
m. p. =​ 126.0 °C. IR (thin film, cm−1): 1652, 1558, 1336. 1H NMR (300 MHz, DMSO-d6 +​ CDCl3): δ​ 8.44 (s, 1 H), 
7.79 (dd, J =​ 2.1, 9.3 Hz, 1 H), 6.82 (d, J =​ 9.3 Hz, 1 H), 4.37 (t, J =​ 7.3 Hz, 2 H), 2.52 (t, J =​ 7.4 Hz, 2 H); 13C NMR 
(75 MHz, DMSO-d6 +​ CDCl3): δ​ =​ 175.1, 157.9, 139.5, 139.4, 135.3, 122.9, 49.8, 29.1. ESI Mass (m/z): calcd for 
C9H8F3N2O [M +​ H]+ 217.0, found 217.0.

9-(trifluoromethyl)-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (14).  White amorphous solid, 
m. p. =​ 91.0 °C. IR (thin film, cm−1): 1624, 1483, 1366. 1H NMR (300 MHz, DMSO-d6): δ​ 8.07 (d, J =​ 7.0 Hz, 2 H), 
6.74 (t, J =​ 1.0 Hz, 1 H), 4.38 (t, J =​ 7.3 Hz, 2 H), 2.54–2.49 (m, 2 H); 13C NMR (75 MHz, DMSO-d6): δ​ =​ 174.1, 
154.0, 144.2, 140.1, 140.0, 118.8, 109.2, 50.0, 29.0. ESI Mass (m/z): calcd for C9H8F3N2O [M +​ H]+ 217.0, found 
217.0.

9-Bromo-7-methyl-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (15).  Brownish solid,  
m. p. =​ 115.2 °C. IR (thin film, cm−1): 1664, 1587, 1478, 603. 1H NMR (300 MHz, DMSO-d6 ): δ​ 8.01 (d, J =​ 1.6 Hz, 
1 H), 7.76 (s, 1 H), 4.29 (t, J =​ 7.3 Hz, 2 H), 2.44 (t, J =​ 7.2 Hz, 2 H), 2.11 (s, 3 H); 13C NMR (75 MHz, DMSO-d6): 
δ​ =​ 174.6, 153.5, 145.3, 137.6, 120.6, 115.7, 50.7, 29.5, 16.6. HRMS (ESI-FTMS Mass (m/z): calcd for C9H10BrN2O 
[M +​ H]+ 242.9898, found 242.9889.

7-Bromo-9-methyl-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (16).  Yellowish amorphous 
solid, m. p. =​ 110.8 °C. IR (thin film, cm−1): 1640, 1604, 1583, 1482, 603. 1H NMR (300 MHz, CDCl3): δ​ 7.45  
(d, J =​ 1.1 Hz, 1 H), 7.37 (s, 1 H), 4.26 (t, J =​ 7.2 Hz, 2 H), 2.73 (t, J =​ 7.3 Hz, 2 H), 2.31 (s, 3 H); 13C NMR (75 MHz, 
CDCl3): δ​ =​ 173.6, 157.8, 147.6, 160.5, 159.3, 157.8, 157.2, 50.7, 19.7, 19.0.; HRMS (ESI-FTMS Mass (m/z): calcd 
for C9H10BrN2O [M +​ H]+ 242.9898, found 242.9913.

7-Bromo-8-methyl-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (17).  White solid,  
m. p. =​ 130.5 °C. IR (thin film, cm−1): 1641, 1593, 530. 1H NMR (300 MHz, CDCl3): δ​ 7.71 (s, 1 H), 6.76 (s, 1 H), 
4.31 (t, J =​ 7.2 Hz, 2 H), 2.64 (t, J =​ 7.4 Hz, 2 H), 2.30 (s, 3 H); 13C NMR (75 MHz, CDCl3): δ​ =​ 169.8, 151.7, 147.7, 
133.0, 117.4, 104.1, 45.3, 24.3, 17.9. HRMS (ESI-FTMS Mass (m/z): calcd for C9H10BrN2O [M +​ H]+ 242.9898, 
found 242.9899.

7-Iodo-9-methyl-2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-one (18).  Brown solid,  
m. p. =​ 138.3 °C. IR (thin film, cm−1): 1640, 1483, 537. 1H NMR (300 MHz, DMSO-d6): δ​ 8.52 (s, 1 H), 8.22 (s, 
1 H), 4.53 (br s, 2 H), 2.72 (br s, 2 H), 2.20 (s, 3 H); 13C NMR (75 MHz, DMSO-d6): δ​ =​ 170.7, 150.9, 150.3, 149.6, 
143.2, 129.2, 50.4, 29.1, 17.1. ESI Mass (m/z): calcd for C9H9IN2O [M +​ H]+ 288.9, found 288.9.

Methyl 3-[(6-methylpyridin-2-yl)amino]propanoate (19).  Viscous liquid, 1H NMR (300 MHz, 
CDCl3): δ​ 7.34–7.27 (m, 1 H), 6.45 (d, J =​ 7.2 Hz, 1 H), 6.21 (d, J =​ 8.2 Hz, 1 H), 3.69 (s, 1 H), 3.60 (q, J =​ 6.3 Hz, 
2 H), 2.64 (t, J =​ 6.3 Hz, 2 H), 2.38 (s, 3 H); 13C NMR (75 MHz, CDCl3): δ​ =​ 172.8, 157.8, 157.0, 137.7, 112.3, 103.4, 
51.7, 37.6, 34.0, 24.3. ESI Mass (m/z): calcd for C10H15N2O2 [M +​ H]+ 165.1, found 165.1.

3-[(4-chloropyridin-2-yl)amino]propanoic acid (20).  White solid powder, m. p. =​ 283.3 °C. IR (thin 
film, cm−1): 3360, 1710, 1483. 1H NMR (300 MHz, DMSO-d6): δ​ 8.78 (d, J =​ 7.3 Hz, 1 H), 7.68 (d, J =​ 4.2 Hz, 1 H), 
7.23 (s, 1 H), 4.71 (t, J =​ 6.9 Hz, 2 H), 2.96 (t, J =​ 7.0 Hz, 2 H); 13C NMR (75 MHz, DMSO-d6): δ​ =​ 171.8, 171.6, 
126.0, 150.3, 112.0, 105.6, 54.7, 33.7. ESI Mass (m/z): calcd for C8H7ClN2O [M +​ H]+ 183.0, found 184.0.
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