Abstract
The study of cytotoxic T cell responses to measles antigens during infection and after vaccination may provide insight into the immunopathology of the infection. It will also provide a knowledge of the immunity conferred by wild or attenuated virus, which will help in the design of new vaccines. Direct cytotoxic T cell responses, which did not require in vitro restimulation, were measured from peripheral blood by a standard 51Cr-release assay in 35 patients with acute measles, using HLA class I matched allogeneic B cells as targets. 77% showed specific responses to measles fusion protein, 69% to the hemagglutinin, and 50% to the nucleoprotein. These responses, which were related to severity of disease and history of previous vaccination, had waned by 14-24 wk after measles when memory responses to the same antigens could be elicited by restimulation in 71% of the 13 patients tested. A similar pattern followed vaccination: direct cytotoxic responses to fusion and hemagglutinin proteins were shown in 70% of the 20 children tested while 50% responded to the nucleoprotein. These responses, which were mediated by both CD8(+) and CD4(+) cells, faded over 6 wk when memory responses could be restimulated. Thus, a vigorous cytotoxic T lymphocyte response to fusion, hemagglutinin, and nucleoproteins is important in both natural and vaccine-induced immunity to measles.
Full Text
The Full Text of this article is available as a PDF (166.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aaby P., Bukh J., Lisse I. M., Smits A. J., Gomes J., Fernandes M. A., Indi F., Soares M. Determinants of measles mortality in a rural area of Guinea-Bissau: crowding, age, and malnutrition. J Trop Pediatr. 1984 Jun;30(3):164–168. doi: 10.1093/tropej/30.3.164. [DOI] [PubMed] [Google Scholar]
- Albrecht P., Ennis F. A., Saltzman E. J., Krugman S. Persistence of maternal antibody in infants beyond 12 months: mechanism of measles vaccine failure. J Pediatr. 1977 Nov;91(5):715–718. doi: 10.1016/s0022-3476(77)81021-4. [DOI] [PubMed] [Google Scholar]
- Auwaerter P. G., Hussey G. D., Goddard E. A., Hughes J., Ryon J. J., Strebel P. M., Beatty D., Griffin D. E. Changes within T cell receptor V beta subsets in infants following measles vaccination. Clin Immunol Immunopathol. 1996 May;79(2):163–170. doi: 10.1006/clin.1996.0063. [DOI] [PubMed] [Google Scholar]
- Beauverger P., Buckland R., Wild T. F. Measles virus antigens induce both type-specific and canine distemper virus cross-reactive cytotoxic T lymphocytes in mice: localization of a common Ld-restricted nucleoprotein epitope. J Gen Virol. 1993 Nov;74(Pt 11):2357–2363. doi: 10.1099/0022-1317-74-11-2357. [DOI] [PubMed] [Google Scholar]
- Bunce M., O'Neill C. M., Barnardo M. C., Krausa P., Browning M. J., Morris P. J., Welsh K. I. Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens. 1995 Nov;46(5):355–367. doi: 10.1111/j.1399-0039.1995.tb03127.x. [DOI] [PubMed] [Google Scholar]
- Burnet F. M. Measles as an index of immunological function. Lancet. 1968 Sep 14;2(7568):610–613. doi: 10.1016/s0140-6736(68)90701-0. [DOI] [PubMed] [Google Scholar]
- Callan M. F., Steven N., Krausa P., Wilson J. D., Moss P. A., Gillespie G. M., Bell J. I., Rickinson A. B., McMichael A. J. Large clonal expansions of CD8+ T cells in acute infectious mononucleosis. Nat Med. 1996 Aug;2(8):906–911. doi: 10.1038/nm0896-906. [DOI] [PubMed] [Google Scholar]
- Clements C. J., Cutts F. T. The epidemiology of measles: thirty years of vaccination. Curr Top Microbiol Immunol. 1995;191:13–33. doi: 10.1007/978-3-642-78621-1_2. [DOI] [PubMed] [Google Scholar]
- ENDERS J. F., McCARTHY K., MITUS A., CHEATHAM W. J. Isolation of measles virus at autopsy in cases of giant-cell pneumonia without rash. N Engl J Med. 1959 Oct 29;261:875–881. doi: 10.1056/NEJM195910292611801. [DOI] [PubMed] [Google Scholar]
- Elliott T., Smith M., Driscoll P., McMichael A. Peptide selection by class I molecules of the major histocompatibility complex. Curr Biol. 1993 Dec 1;3(12):854–866. doi: 10.1016/0960-9822(93)90219-e. [DOI] [PubMed] [Google Scholar]
- Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
- Fugier-Vivier I., Servet-Delprat C., Rivailler P., Rissoan M. C., Liu Y. J., Rabourdin-Combe C. Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med. 1997 Sep 15;186(6):813–823. doi: 10.1084/jem.186.6.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOOD R. A., ZAK S. J. Disturbances in gamma globulin synthesis as experiments of nature. Pediatrics. 1956 Jul;18(1):109–149. [PubMed] [Google Scholar]
- Gellin B. G., Katz S. L. Measles: state of the art and future directions. J Infect Dis. 1994 Nov;170 (Suppl 1):S3–14. doi: 10.1093/infdis/170.supplement_1.s3. [DOI] [PubMed] [Google Scholar]
- Gotch F. M., Nixon D. F., Alp N., McMichael A. J., Borysiewicz L. K. High frequency of memory and effector gag specific cytotoxic T lymphocytes in HIV seropositive individuals. Int Immunol. 1990;2(8):707–712. doi: 10.1093/intimm/2.8.707. [DOI] [PubMed] [Google Scholar]
- Gotch F., McAdam S. N., Allsopp C. E., Gallimore A., Elvin J., Kieny M. P., Hill A. V., McMichael A. J., Whittle H. C. Cytotoxic T cells in HIV2 seropositive Gambians. Identification of a virus-specific MHC-restricted peptide epitope. J Immunol. 1993 Sep 15;151(6):3361–3369. [PubMed] [Google Scholar]
- Griffin D. E., Ward B. J., Esolen L. M. Pathogenesis of measles virus infection: an hypothesis for altered immune responses. J Infect Dis. 1994 Nov;170 (Suppl 1):S24–S31. doi: 10.1093/infdis/170.supplement_1.s24. [DOI] [PubMed] [Google Scholar]
- Jacobson S., Richert J. R., Biddison W. E., Satinsky A., Hartzman R. J., McFarland H. F. Measles virus-specific T4+ human cytotoxic T cell clones are restricted by class II HLA antigens. J Immunol. 1984 Aug;133(2):754–757. [PubMed] [Google Scholar]
- Jacobson S., Shida H., McFarlin D. E., Fauci A. S., Koenig S. Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease. Nature. 1990 Nov 15;348(6298):245–248. doi: 10.1038/348245a0. [DOI] [PubMed] [Google Scholar]
- Jaye A., Magnusen A. F., Whittle H. C. Human leukocyte antigen class I- and class II-restricted cytotoxic T lymphocyte responses to measles antigens in immune adults. J Infect Dis. 1998 May;177(5):1282–1289. doi: 10.1086/515271. [DOI] [PubMed] [Google Scholar]
- Johnson R. P., Glickman R. L., Yang J. Q., Kaur A., Dion J. T., Mulligan M. J., Desrosiers R. C. Induction of vigorous cytotoxic T-lymphocyte responses by live attenuated simian immunodeficiency virus. J Virol. 1997 Oct;71(10):7711–7718. doi: 10.1128/jvi.71.10.7711-7718.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joseph B. S., Lampert P. W., Oldstone M. B. Replication and persistence of measles virus in defined subpopulations of human leukocytes. J Virol. 1975 Dec;16(6):1638–1649. doi: 10.1128/jvi.16.6.1638-1649.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura A., Tosaka K., Nakao T. Measles rash. I. Light and electron microscopic study of skin eruptions. Arch Virol. 1975;47(4):295–307. doi: 10.1007/BF01347970. [DOI] [PubMed] [Google Scholar]
- Kreth H. W., ter Meulen V., Eckert G. Demonstration of HLA restricted killer cells in patients with acute measles. Med Microbiol Immunol. 1979 Jan 24;165(4):203–214. doi: 10.1007/BF02152920. [DOI] [PubMed] [Google Scholar]
- Lucas C. J., Biddison W. E., Nelson D. L., Shaw S. Killing of measles virus-infected cells by human cytotoxic T cells. Infect Immun. 1982 Oct;38(1):226–232. doi: 10.1128/iai.38.1.226-232.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nanan R., Carstens C., Kreth H. W. Demonstration of virus-specific CD8+ memory T cells in measles-seropositive individuals by in vitro peptide stimulation. Clin Exp Immunol. 1995 Oct;102(1):40–45. doi: 10.1111/j.1365-2249.1995.tb06633.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Outlaw M. C., Jaye A., Whittle H. C., Pringle C. R. Clustering of haemagglutinin gene sequences of measles viruses isolated in the Gambia. Virus Res. 1997 May;48(2):125–131. doi: 10.1016/s0168-1702(96)01434-7. [DOI] [PubMed] [Google Scholar]
- Partidos C. D., Stanley C. M., Steward M. W. Immune responses in mice following immunization with chimeric synthetic peptides representing B and T cell epitopes of measles virus proteins. J Gen Virol. 1991 Jun;72(Pt 6):1293–1299. doi: 10.1099/0022-1317-72-6-1293. [DOI] [PubMed] [Google Scholar]
- Partidos C. D., Steward M. W. Prediction and identification of a T cell epitope in the fusion protein of measles virus immunodominant in mice and humans. J Gen Virol. 1990 Sep;71(Pt 9):2099–2105. doi: 10.1099/0022-1317-71-9-2099. [DOI] [PubMed] [Google Scholar]
- Partidos C. D., Steward M. W. The effects of a flanking sequence on the immune response to a B and a T cell epitope from the fusion protein of measles virus. J Gen Virol. 1992 Aug;73(Pt 8):1987–1994. doi: 10.1099/0022-1317-73-8-1987. [DOI] [PubMed] [Google Scholar]
- Richert J. R., McFarland H. F., McFarlin D. E., Johnson A. H., Woody J. N., Hartzman R. J. Measles-specific T cell clones derived from a twin with multiple sclerosis: genetic restriction studies. J Immunol. 1985 Mar;134(3):1561–1566. [PubMed] [Google Scholar]
- Rota J. S., Hummel K. B., Rota P. A., Bellini W. J. Genetic variability of the glycoprotein genes of current wild-type measles isolates. Virology. 1992 May;188(1):135–142. doi: 10.1016/0042-6822(92)90742-8. [DOI] [PubMed] [Google Scholar]
- Sabin A. B. Measles, killer of millions in developing countries: strategy for rapid elimination and continuing control. Eur J Epidemiol. 1991 Jan;7(1):1–22. doi: 10.1007/BF00221337. [DOI] [PubMed] [Google Scholar]
- Samb B., Aaby P., Whittle H. C., Seck A. M., Rahman S., Bennett J., Markowitz L., Simondon F. Serologic status and measles attack rates among vaccinated and unvaccinated children in rural Senegal. Pediatr Infect Dis J. 1995 Mar;14(3):203–209. doi: 10.1097/00006454-199503000-00007. [DOI] [PubMed] [Google Scholar]
- Samb B., Aaby P., Whittle H., Seck A. M., Simondon F. Decline in measles case fatality ratio after the introduction of measles immunization in rural Senegal. Am J Epidemiol. 1997 Jan 1;145(1):51–57. doi: 10.1093/oxfordjournals.aje.a009031. [DOI] [PubMed] [Google Scholar]
- Sissons J. G., Colby S. D., Harrison W. O., Oldstone M. B. Cytotoxic lymphocytes generated in vivo with acute measles virus infection. Clin Immunol Immunopathol. 1985 Jan;34(1):60–68. doi: 10.1016/0090-1229(85)90007-8. [DOI] [PubMed] [Google Scholar]
- Smythe P. M., Brereton-Stiles G. G., Grace H. J., Mafoyane A., Schonland M., Coovadia H. M., Loening W. E., Parent M. A., Vos G. H. Thymolymphatic deficiency and depression of cell-mediated immunity in protein-calorie malnutrition. Lancet. 1971 Oct 30;2(7731):939–943. doi: 10.1016/s0140-6736(71)90267-4. [DOI] [PubMed] [Google Scholar]
- Tomkinson B. E., Wagner D. K., Nelson D. L., Sullivan J. L. Activated lymphocytes during acute Epstein-Barr virus infection. J Immunol. 1987 Dec 1;139(11):3802–3807. [PubMed] [Google Scholar]
- Walker B. D., Chakrabarti S., Moss B., Paradis T. J., Flynn T., Durno A. G., Blumberg R. S., Kaplan J. C., Hirsch M. S., Schooley R. T. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature. 1987 Jul 23;328(6128):345–348. doi: 10.1038/328345a0. [DOI] [PubMed] [Google Scholar]
- Whittle H. C., Dossetor J., Oduloju A., Bryceson A. D., Greenwood B. M. Cell-mediated immunity during natural measles infection. J Clin Invest. 1978 Sep;62(3):678–684. doi: 10.1172/JCI109175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittle H. C., Mee J., Werblinska J., Yakubu A., Onuora C., Gomwalk N. Immunity to measles in malnourished children. Clin Exp Immunol. 1980 Oct;42(1):144–151. [PMC free article] [PubMed] [Google Scholar]
- Wild T. F., Bernard A., Spehner D., Drillien R. Construction of vaccinia virus recombinants expressing several measles virus proteins and analysis of their efficacy in vaccination of mice. J Gen Virol. 1992 Feb;73(Pt 2):359–367. doi: 10.1099/0022-1317-73-2-359. [DOI] [PubMed] [Google Scholar]
- Wu V. H., McFarland H., Mayo K., Hanger L., Griffin D. E., Dhib-Jalbut S. Measles virus-specific cellular immunity in patients with vaccine failure. J Clin Microbiol. 1993 Jan;31(1):118–122. doi: 10.1128/jcm.31.1.118-122.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Quadros C. A., Olivé J. M., Hersh B. S., Strassburg M. A., Henderson D. A., Brandling-Bennett D., Alleyne G. A. Measles elimination in the Americas. Evolving strategies. JAMA. 1996 Jan 17;275(3):224–229. doi: 10.1001/jama.275.3.224. [DOI] [PubMed] [Google Scholar]
- de Vries P., Versteeg-van Oosten J. P., Visser I. K., van Binnendijk R. S., Langeveld S. A., Osterhaus A. D., Uytdehaag F. G. Measles virus-specific murine T cell clones: characterization of fine specificity and function. J Immunol. 1989 Apr 15;142(8):2841–2846. [PubMed] [Google Scholar]
- van Binnendijk R. S., Poelen M. C., Kuijpers K. C., Osterhaus A. D., Uytdehaag F. G. The predominance of CD8+ T cells after infection with measles virus suggests a role for CD8+ class I MHC-restricted cytotoxic T lymphocytes (CTL) in recovery from measles. Clonal analyses of human CD8+ class I MHC-restricted CTL. J Immunol. 1990 Mar 15;144(6):2394–2399. [PubMed] [Google Scholar]
- van Binnendijk R. S., Versteeg-van Oosten J. P., Poelen M. C., Brugghe H. F., Hoogerhout P., Osterhaus A. D., Uytdehaag F. G. Human HLA class I- and HLA class II-restricted cloned cytotoxic T lymphocytes identify a cluster of epitopes on the measles virus fusion protein. J Virol. 1993 Apr;67(4):2276–2284. doi: 10.1128/jvi.67.4.2276-2284.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Binnendijk R. S., van Baalen C. A., Poelen M. C., de Vries P., Boes J., Cerundolo V., Osterhaus A. D., UytdeHaag F. G. Measles virus transmembrane fusion protein synthesized de novo or presented in immunostimulating complexes is endogenously processed for HLA class I- and class II-restricted cytotoxic T cell recognition. J Exp Med. 1992 Jul 1;176(1):119–128. doi: 10.1084/jem.176.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]