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Abstract

The Base Excision Repair (BER) pathway removes the vast majority of damages produced by 

ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first 

enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and 

removing the damaged base. Although much is known about the biochemistry of DNA 

glycosylases, how these enzymes locate their specific damage substrates among an excess of 

undamaged bases has long remained a mystery. Here we describe the use of single molecule 

fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along 

undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA 

molecule and employ a wedge residue to search for and locate damage. The search behavior of the 

Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian 

counterparts.
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Introduction

Base excision repair (BER) (Figure 1) is a multistep pathway involving a number of repair 

enzymes, which are conserved from bacteria to humans. BER evolved to protect cellular 

DNA against the deleterious effects of endogenous metabolic processes, as well as damage 

produced by exogenous agents such as ionizing radiation (David et al., 2007; Duclos et al., 

2012; Kim and Wilson, 2012; Prakash et al., 2012; Wallace, 2013; Wilson et al., 2003). In 

fact, the great majority of damages produced by ionizing radiation are repaired by BER 

(Wallace, 1998). The BER pathway can be entered at three different places: at a base 

damage, at a site of base loss, and at a single strand break, all produced by ionizing radiation 

(Ward, 1985, 1988). Faulty BER has also been implicated in the production of double strand 
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breaks at radiation-induced clustered lesion sites (Blaisdell and Wallace, 2001; Harrison et 

al., 1999; Sage and Harrison, 2011; Sutherland et al., 2000; Ward, 1981; Yang et al., 2006; 

Yang et al., 2004). Although many aspects of BER are well-defined, very little is known 

about the how the first enzymes in this pathway, the DNA glycosylases, locate radiation-

damaged purines and pyrimidines in a sea of undamaged bases using only thermal energy, 

particularly when the damages are often nearly indistinguishable from normal bases.

Once the DNA glycosylase locates a lesion, the initial action on a damaged base is eversion 

of the lesion into the enzyme’s active site pocket, then cleavage of the N-glycosyl bond 

leaving an abasic site, which is the final product when the DNA glycosylase is 

monofunctional. A bifunctional glycosylase also cleaves the DNA backbone, leaving a 

polymerase-blocking group attached to the 3' side of the single strand break. The DNA 

glycosylases that recognize radiation-damaged bases are bifunctional enzymes that belong to 

either of two structural families, the Fpg/Nei family or the HhH-GPD superfamily, which 

includes Nth. In bacteria, removal of radiation-damaged pyrimidine bases is initiated by Nth 

(endonuclease three) or Nei (endonuclease eight) while damaged purines are removed by 

Fpg (formamidopyrimidine DNA glycosylase). All three of these DNA glycosylases are 

bifunctional and have a tightly coupled lyase activity. The lyase products, an α,β-

unsaturated aldehyde (Nth) or a phosphate (Fpg and Nei), are removed by an apurinic (AP) 

endonuclease. The gap is filled in by a DNA polymerase and sealed by DNA ligase (Duclos 

et al., 2012).

In mammalian cells (Hazra et al., 2007; Hegde et al., 2008a; Izumi et al., 2003) (Figure 1), 

once the glycosylase removes the initial base damage, APE1, an AP endonuclease, cleaves 

the abasic site left by a monofunctional enzyme or removes the α,β unsaturated aldehyde 

left by the Nth superfamily members, NTHL1 and OGG1. The phosphate group left by the 

Fpg/Nei family members (NEIL1, NEIL2 and NEIL3) is removed by polynucleotide kinase 

phosphatase (PNKP) (Wiederhold et al., 2004). APE1 also initiates repair on free radical-

generated sites of base loss as well as on single strand breaks by helping to clean the 3’ end 

for polymerase action. In short patch repair, DNA polymerase β fills in the resulting gap, 

usually one or two nucleotides, which is then sealed by ligase IIIα-XRCC1 or Ligase I. 

Alternatively, repair can be shunted into a longer patch process that utilizes the replicative 

polymerases, together with PCNA, FEN1 and Ligase I. The repair of free radical-induced 

base damage occurs primarily by single nucleotide short patch repair, analogous to BER in 

bacteria (Dogliotti et al., 2001).

The Target Search on Undamaged DNA

With the advent of structural biology and sophisticated enzymological techniques, much has 

been learned about BER over the past several decades. However, much less is known about 

how these DNA repair proteins find their targets amongst the billions of non-target DNA 

bases. Random three-dimensional diffusion among various locations in the DNA would be 

highly inefficient for finding low-occurrence damage sites. Instead, it has been suggested 

that glycosylases maintain contact with the DNA through various specialized interactions. 

These interactions include sliding processively along the DNA chain, transferring between 

DNA chains using interstrand or intrastrand crossover, and/or hopping between close sites 
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on the same chain (reviewed in (Lee et al., 2014; Zharkov and Grollman, 2005)). The 

processive sliding mechanism has been tested using correlated cleavage experiments, and it 

does appear that several glycosylases are able to sequentially process closely spaced lesions. 

However, these assays are unable to directly observe long range interactions between the 

glycosylase and DNA, and they also are unable to characterize glycosylase interactions with 

undamaged DNA (Bennett et al., 1995; Dowd and Lloyd, 1990; Gruskin and Lloyd, 1988; 

Higley and Lloyd, 1993; Mechetin and Zharkov, 2011; Porecha and Stivers, 2008; Purmal et 

al., 1994; Sidorenko et al., 2008).

To address this issue, we employed single molecule techniques to investigate the target 

search in more detail than was formerly possible using classical ensemble-based kinetics. 

Our single molecule approach utilizes DNA tightropes, DNA glycosylases labeled with 

quantum dots (Qdots, highly fluorescent semiconductor nanocrystals), and Total Internal 

Reflectance Fluorescence (TIRF) microscopy which allows us to visualize the initial damage 

search mechanisms of individual BER glycosylases in real time, with high spatial (10nm) 

and temporal (30ms) resolution (Figure 2). We have characterized the motion of single 

molecules of the three bacterial glycosylases that recognize free radical-damaged DNA 

bases, Fpg, Nei and Nth, as they scan along λ DNA. We observed that the motion of these 

glycosylases is bidirectional, random, and tracks rotationally along the DNA molecule, 

which is consistent with the motion of other glycosylases along elongated DNA (Blainey et 

al., 2009; Blainey et al., 2006).

Upon examination of the trajectories of WT Fpg, Nei and Nth glycosylases on undamaged 

DNA, it was clear that during an individual trajectory, the enzymes transitioned from fast to 

slow diffusive behavior and vice versa giving a broad spectrum of diffusion constants (Dunn 

et al., 2011; Nelson et al., 2014). This led us to characterize glycosylase behavior not only 

by a single diffusion constant (trajectory-weighted) but also by a sliding window approach 

that allowed us to visualize a time-weighted distribution of diffusion constants (see Figure 

3). The latter method clearly showed that the wild type enzymes exhibited both slow and fast 

diffusive behavior, which may correspond to different search and transport modes along the 

DNA, begging the question of whether the slow form is related to the damage search.

To better understand how glycosylases distinguish between undamaged DNA bases and a 

lesion of interest, we sought to investigate structural features that would play a role in the 

glycosylase search. Interestingly, when our colleague, Dr. Doublié, solved the only structure 

thus far obtained of a free radical-damaged pyrimidine-specific DNA glycosylase with the 

lesion in the active site, there were relatively few specific interactions between the lesion and 

the enzyme (Figure 4) (Imamura et al., 2012). Tyr253 interacts via a water molecule with Tg 

(and anti-5-hydroxyuracil (5-OHU) not shown), Glu6 interacts with syn-5OHU (not shown), 

the main chain carbonyl of Leu84 via a water molecule interacts with both lesions and 

Tyr221 forms a direct hydrogen bond with both lesions (Imamura et al., 2012). However, 

mutants of Tyr253 and Glu6 showed no effect on the glycosylase or lyase activities on 

substrates containing 5-OHU and small effects with Tg-containing substrates. Also, when an 

undamaged thymine was modeled into the active site of MvNei1, it was found that the 

bonding contacts would be similar to those of Tg, for example a hydrogen bond was 

observed with Tyr221 (Imamura et al., 2012). These data suggest that if an undamaged 
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thymine base were in the active site, nothing would prevent its cleavage, and thymine 

cleavage is never observed. Taken together these findings provide strong evidence that the 

glycosylase identifies its substrate damage before it is everted into the active site pocket.

Furthermore, the crystal structures of Nth (Fromme and Verdine, 2003), Fpg (Gilboa et al., 

2002), and Nei (Zharkov et al., 2002) glycosylases in a Schiff base complex with DNA 

lesions show how each of the glycosylases insert three amino acids into the void left in the 

DNA duplex (Figures 4 and 5). One of these residues is able to “wedge” its way into the 

base stack opposite the former site of the damage and possibly act as a sensor for physical 

changes to the DNA that occur when damage is present. Moreover, crystal structures of 

Geobacter stearothermophilus Fpg glycosylase (Banerjee et al., 2006; Qi et al., 2012) 

covalently bound to undamaged DNA showed that this “wedge” residue is able to insert into 

the DNA base stack in the absence of base eversion possibly to probe for damaged bases.

Using our single molecule approach with undamaged λ DNA, we asked if the three 

glycosylases rely upon the “wedge residue” for the search process at a step before the 

damage has been found. We substituted alanine for the wedge residue in each of these 

glycosylases, and in each case, the variant enzyme scanned along undamaged DNA at a 

significantly faster rate than the wild-type enzyme (Figure 3). In further support of the 

amino acid wedge being responsible for the lesion search, (Kuznetsov et al., 2015b) recently 

showed, using stopped flow kinetics, that the first phase of nonspecific binding of Nth to a 

lesion may be insertion of Leu81, its wedge residue.

The Fpg Phe111Ala wedge variant loses enzymatic activity, which is consistent with its 

inability to locate damages as well as its inability to aid in base eversion that is necessary for 

catalysis. Kuznetsov and coworkers (Kuznetsov et al., 2015a) have recently shown, using a 

combination of molecular dynamics and stopped flow kinetics, that the Fpg wedge residue 

buckles the base pairs surrounding the damage, thus destabilizing the intrahelical base. Like 

Fpg, the analogous wedge variant of Nth, Leu81Ala, loses enzymatic activity. However, the 

wedge variant of Nei, Tyr72Ala, is enzymatically active. Nei differs from Fpg and Nth in 

that the other two members of the intercalation triad are in a structural position on the same 

loop. Since enzyme activities are measured on short damage-containing oligonucleotides 

where locating the lesion may not be rate-limiting, once the damage is found, the triad-

containing loop may still function to evert the lesion and enable catalysis. These findings led 

to further questions about how wild-type and wedge variant glycosylases behave in the 

presence of damages on DNA.

Glycosylases Locate DNA Damages

For Nth and Nei, thymine glycols were produced by osmium tetroxide-treatment of the 

DNA, while for Fpg, methylene blue plus visible light were used to generate damaged 

purines. The single molecule substrates were tailored to give two damage conditions for 

comparison with undamaged λ, low dose of approximately 100 lesions per λ molecule and 

high dose of approximately 280 lesions per λ. What we found was that all of the wild type 

enzymes diffuse more slowly (Figure 6A) and bind longer (Figure 6B) on DNA that contains 

the damages that they recognize and remove. In contrast, the mean diffusion constant for 
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Fpg glycosylase on thymine glycol damages present in OsO4-treated DNA was the same as 

that on undamaged DNA, confirming that glycosylases are able to diffuse past lesions that 

they do not specifically remove. The decrease in diffusion and increase in binding lifetime in 

the presence of specific lesions was proportional to the amount of damage present in the 

substrates. Using our assay, we were also able to observe that after stopping at a lesion, 

presumably catalyzing its removal, about a third of the Fpg glycosylases resume the damage 

search without dissociating from the DNA.

The behavior of the wedge variants on damaged DNA is a little more complex. On one hand, 

the variants show faster diffusion than the wild-type enzymes in the presence of specific 

damage (Figure 7), indicating that the wedge plays a critical role in lesion identification and 

processing. On the other hand, the wedge variants diffuse more slowly on damaged DNA 

than on undamaged DNA, suggesting that the enzymes still retain some level of damage 

recognition even without the wedge residue. Since we know that the Fpg and Nth wedge 

variants are catalytically inactive, we can postulate that the recognition step is independent 

of the downstream events. This conclusion is supported by the fact that the binding lifetimes 

of the Fpg and Nth wedge variants in the presence of damage remain short (not shown), 

which indicates that these variants skip the relatively long catalytic step during their scans. 

Accordingly, the ability of Nei to undergo catalysis in the absence of the wedge residue is 

reflected in its longer binding lifetimes on damaged substrates (not shown). Overall, 

however, although Fpg, Nei and Nth are members of two different structural families, they 

behave similarly in their diffusive search for damage.

Finally, using a simple chemomechanical simulation based our data and kinetic data from 

the Federova lab (Koval et al., 2010; Koval et al., 2004; Kuznetsov et al., 2007; Kuznetsov et 

al., 2012; Kuznetsov et al., 2009), we suggest that the wild-type glycosylases scan 

rotationally along the DNA backbone at a rate of 0.05 µm2/s, periodically stopping to insert 

the wedge at a rate of 2000 s−1 to interrogate for damage. The wedge is removed at a rate of 

500 s−1, unless the enzyme detects a damaged base in which case it remains bound to the 

lesion. Spot checking of undamaged DNA is highly redundant, which would allow for 

discovery of the few damage sites within the large number of undamaged bases. Based on 

our measured binding lifetimes and diffusion constants, we predict that 450–600 base pairs 

are scanned during each encounter, which agrees well with values measured in correlated 

cleavage experiments. Overall, our model predicts that at physiological concentrations and 

scanning rates, each of these glycosylases would be able to scan both strands of the entire 

Escherichia coli genome every 10 minutes.

Where We Are Going: Human DNA Glycosylases

In human cells, NTHL1 and OGG1 appear to be housekeeping glycosylases scanning the 

genome for free radical-damaged pyrimidines and purines, respectively, and then removing 

them. It had previously been established (Blainey et al., 2009; Blainey et al., 2006) that 

OGG1 scans DNA in a manner consistent with rotation around the helix, and our 

preliminary data (unpublished observations) on undamaged DNA suggest that like its 

functional bacterial homolog Fpg, and its structural relative Nth, OGG1 engages in very 

similar diffusive behavior with both fast and slow modes and employing a wedge residue to 
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scan DNA for damage. Also, like the other glycosylases, OGG1 stops upon encountering a 

lesion (unpublished observations). NTHL1 appears to be more complicated since it 

dimerizes at high concentrations (Liu et al., 2003; Liu and Roy, 2002) similar to the 

concentrations found in vivo but it is not clear if this dimer is the structure that searches the 

DNA for damage.

The human Nei homologs, NEIL1, NEIL2 and NEIL3, remove free radical-damaged 

pyrimidines, formamidopyrimidines and the further oxidation products of 8-oxoguanine, 

spiroiminodihydantoin and guanidinohydantoin (Bandaru et al., 2002; Hailer et al., 2005; 

Hazra et al., 2002; Krishnamurthy et al., 2008; Liu et al., 2010; Wallace et al., 2003; Zhao et 

al., 2010). Unlike NTHL1 and OGG1, the NEIL glycosylases remove lesions from single-

stranded DNA as well as duplex DNA; in fact, both NEIL2 and NEIL3 prefer lesions in 

single-stranded DNA (Dou et al., 2008; Liu et al., 2010). Importantly, the NEIL glycosylases 

appear to have evolved specialized roles in DNA repair. For example, NEIL1 appears to act 

as a cow-catcher removing lesions in front of the replication fork (Dou et al., 2008; Hegde et 

al., 2013; Hegde et al., 2008b; Theriot et al., 2010), NEIL2 has been linked to repair during 

transcription (Banerjee et al., 2011) and NEIL3 to repair of telomere DNA (Fleming et al., 

2015; Zhou et al., 2015; Zhou et al., 2013). Interestingly, NEIL3 is missing two out of three 

of the intercalation residues including the wedge residue (Liu et al., 2013). Taken together, 

the human Nei homologs portend to be very interesting targets for further single molecule 

studies.

We are planning to examine not only the human glycosylase search but also the interactions 

among the glycosylases and the downstream enzymes in the pathway (Figure 1). To 

accomplish this, we have constructed a plasmid engineered to introduce our lesion of choice 

and will use a strategy similar to the one described by Gorman et al. for mismatch repair 

(Gorman et al., 2010) and also used for NER (Ghodke et al., 2014).

Summary

Using single molecule biophysical approaches coupled to TIRF microscopy, we have made 

major inroads into our understanding of how DNA glycosylases search for damage, by 

inserting a wedge amino acid into the DNA helix to probe for alterations in base pairing, 

base stacking, and sugar puckers produced by the lesion. Sophisticated chemo-mechanical 

modeling has also allowed for novel ways to interpret the data. Although our initial studies 

focused on three bacterial glycosylases that recognize free radical-damaged DNA bases, the 

totality of the human BER enzymes engaged in short-patch repair of radiation-damaged 

DNA is our next goal.
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Highlights

• TIRF microscopy provides insight into the DNA damage search by DNA 

glycosylases

• Glycosylases rotationally slide along the DNA backbone with a broad 

spectrum of diffusion constants

• Glycosylases diffuse randomly along DNA inserting a wedge amino acid into 

the duplex to locate damage

• Glycosylases stop upon encountering their substrate damage

• Glycosylases from different structural families exhibit the same search 

behavior
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Figure 1. Mammalian short and long patch base excision repair pathways
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Figure 2. Single molecule sample configuration
(A) Image of a single Qdot-labeled glycosylase scanning along elongated λ-DNA. (B) λ-

DNA tightropes are elongated between polylysine-coated silica spheres on a PEG-coated 

microscope coverslip. (C) The 6-his tagged glycosylase is conjugated to a streptavidin Qdot 

through a biotinylated anti-his antibody.
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Figure 3. Time weighted histograms of the diffusive behavior of wild-type and wedge variant 
glycosylases scanning along undamaged λ DNA (left column)
The bar graphs to the right show the average trajectory-weighted diffusion constant for 

comparison. See (Nelson et al., 2014) for further details of experimental conditions.
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Figure 4. Structure of the catalytically inactive Mimivirus Nei (MvNei E3Q) in the presence of a 
Tg ligand
Tg is flipped out of the DNA duplex and makes only one direct hydrogen bond to Tyr221. 

Other bonds are bridged through water molecules to Tyr253 and Leu84. The three 

intercalation residues, Arg114, Phe116, and Leu84 are shown (Phe116 is the wedge residue).
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Figure 5. Intercalation of three Fpg WT amino acid residues into the DNA duplex after eversion 
of the damaged base
Phe111 is shown inserted between the two undamaged bases opposing the damage.
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Figure 6. Trajectory weighted diffusion constants (A) and binding lifetimes (B) for wild-type 
glycosylases scanning along damaged λ-DNA
Low dose damage is approximately 100 damages per λ molecule, while high-dose damage 

is approximately 300 lesions per λ. See (Nelson et al., 2014) for further details of 

experimental conditions.
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Figure 7. Time-weighted diffusive behavior of wild-type and wedge variant glycosylases scanning 
along damaged λ-DNA
Fpg WT and F111A and Nth WT and L81A data are shown at low doses of damage 

(approximately 100 damages per λ molecule). Nei WT and Y72A are shown at a high dose 

of damage (approximately 280 lesions per λ). See (Nelson et al., 2014) for further details of 

experimental conditions.

Lee and Wallace Page 18

Radiat Phys Chem Oxf Engl 1993. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	The Target Search on Undamaged DNA
	Glycosylases Locate DNA Damages
	Where We Are Going: Human DNA Glycosylases
	Summary
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

