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� Background and Aims The broomrapes, Orobanche sensu lato (Orobanchaceae), are common root parasites
found across Eurasia, Africa and the Americas. All species native to the western hemisphere, recognized as
Orobanche sections Gymnocaulis and Nothaphyllon, form a clade that has a centre of diversity in western North
America, but also includes four disjunct species in central and southern South America. The wide ecological distri-
bution coupled with moderate taxonomic diversity make this clade a valuable model system for studying the role, if
any, of host-switching in driving the diversification of plant parasites.
� Methods Two spacer regions of ribosomal nuclear DNA (ITS þ ETS), three plastid regions and one low-copy
nuclear gene were sampled from 163 exemplars of Orobanche from across the native geographic range in order to
infer a detailed phylogeny. Together with comprehensive data on the parasites’ native host ranges, associations be-
tween phylogenetic lineages and host specificity are tested.
� Key Results Within the two currently recognized species of O. sect. Gymnocaulis, seven strongly supported
clades were found. While commonly sympatric, members of these clades each had unique host associations. Strong
support for cryptic host-specific diversity was also found in sect. Nothaphyllon, while other taxonomic species were
well supported. We also find strong evidence for multiple amphitropical dispersals from central North America into
South America.
� Conclusions Host-switching is an important driver of diversification in western hemisphere broomrapes, where
host specificity has been grossly underestimated. More broadly, host specificity and host-switching probably play
fundamental roles in the speciation of parasitic plants.

Key words: Amphitropical disjunction, cryptic speciation, holoparasite, host-switching, Orobanche, Orobanchaceae,
parasite, phylogeny.

INTRODUCTION

Parasitism is a highly successful life strategy that has evolved
independently >60 times among animals, at least 12 times
among angiosperms, and repeatedly in protozoans and prokary-
otes (Poulin and Morand, 2000; Westwood et al., 2010). While
the evolutionary significance of host–parasite associations has
long been recognized (Kellogg, 1913), the main evolutionary
mechanisms involved in the generation and maintenance of
such ecological and phylogenetic diversity are still poorly un-
derstood, especially among parasitic flowering plants (de
Vienne et al., 2013; Joel et al., 2013).

The parasitic broomrapes, Orobanche sensu lato (s.l.) [alter-
natively circumscribed as the genera Aphyllon and Myzorrhiza
in the New World, and Boulardia, Orobanche sensu stricto
(s.s.) and Phelipanche in the Old World: Schneeweiss (2013)],
have attracted significant attention as an important system for
understanding the evolutionary consequences of parasitism.
This attention is in part a result of their extensive worldwide di-
versity (at least 170 species; Ulrich et al., 1995), a detailed and
well-supported understanding of their placement within the
family Orobanchaceae as well as the relationships among major

clades (Schneeweiss et al., 2004a; Park et al., 2008; McNeal
et al., 2013; Schneeweiss, 2013), and the significant economic
damage caused by several Eurasian species to major agricul-
tural systems worldwide (Joel et al., 2013).

Despite the interest in this group, relatively little is known
about the role of host specificity in broomrape diversification.
Understanding host specificity of parasites is predicated on a
comprehensive understanding of lineage boundaries in the host
(e.g. Labrousse et al., 2001; Timko et al., 2012) and, more im-
portantly for Orobanche, the parasite. That is, failure to recog-
nize evolutionary diversity in the parasite results in an
overestimation of host breadth and may limit the ability to un-
derstand the evolutionary processes responsible for speciation
in plant parasites (Refrégier et al., 2008). Therefore, it is impor-
tant to distinguish true host generalists from taxa that comprise
several cryptic lineages artificially united on the basis of super-
ficial similarity but distinguished genetically and ecologically.
Host specificity to the family or genus level has been cited as a
key factor in the differentiation and genetic isolation of three
subspecies of the European O. minor (Thorogood et al., 2008,
2009), but this has not been broadly tested across other
Orobanche lineages. Several recently described species of
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Orobanche in North America also have unique host preferences
in the Asteraceae: Orobanche riparia parasitizes Helianthieae
sub-tribe Ambrosiinae and O. arizonica parasitizes Gutierrezia
spp. However, neither these species concepts nor those of the
other American Orobanche species has ever been tested
phylogenetically.

Inclusion of western hemisphere Orobanche (sections
Gymnocaulis and Nothaphyllon) in phylogenetic studies has
been limited to several exemplars included in larger genus- or
family-level analyses. These studies, supported by karyological
and morphological evidence, have shown that these two sections
are sister groups and together are sister to an Old World clade
corresponding to Orobanche sect. Trionychon (Schneeweiss
et al., 2004a; Park et al., 2008), more recently treated as the ge-
nus Phelipanche (Schneeweiss, 2013). This larger clade is sup-
ported by a shared base chromosome base number of x¼ 12
(Heckard and Chuang, 1973; Schneeweiss et al., 2004b).

Ecologically, Orobanche sections Gymnocaulis and
Nothaphyllon parasitize a wide range of eudicot hosts, but most
commonly perennial Asteraceae. Taxonomic diversity is con-
centrated in the California Floristic Province; however, species
can be found across the Americas, as far north as the Alaska
Peninsula and the Yukon Territory, east to Newfoundland, and
south to central Mexico. Four poorly known species are found
in South America. Affinities between South American
Orobanche chilensis and North American O. ludoviciana have
long been recognized (Beck, 1890), but explicit biogeographic
hypotheses for this or other such relationships within the clade
have yet to be proposed.

The wide ecological and host diversity among western hemi-
sphere Orobanche, as well as its tractable taxonomic diversity,
make it a valuable model system for understanding the main
ecological and evolutionary processes affecting parasite diversi-
fication and speciation. Such investigations, however, are requi-
site for a robust understanding of evolutionary lineages, their
host breadths and their relationships. Specifically our goals
were to (1) reconstruct a well-resolved phylogeny of western
hemisphere Orobanche that could be used to develop a revised,
natural classification for the group; (2) evaluate the evolution-
ary significance of host-switching in Orobanche sect.
Gymnocaulis by comprehensively sampling across the geo-
graphic and host ranges of each taxon; (3) test the monophyly
of longstanding taxa as well as recently described segregates;
and (4) infer biogeographical relationships between North
American and South American Orobanche spp.

MATERIALS AND METHODS

Taxon and population sampling

163 Orobanche populations were sampled either from fresh col-
lected tissue or from herbarium collections: 57 from sect.
Gymnocaulis and 106 from sect. Nothaphyllon (voucher and host

information is provided in Supplementary Data Table S1). This
data set includes at least one exemplar of all taxa of Orobanche
recognized within the last 75 years except for O. weberbaueri, a
poorly known taxon from southern coastal Peru, perhaps known
only from the type. Denser population sampling across sect.
Gymnocaulis enabled more comprehensive geographic and host
range sampling in the two currently recognized species of this
section, O. fasciculata and O. uniflora (Fig. 1). Identifying the
host breadth for each taxon was challenging, as many collectors
note the nearest living plant as the host species without confirm-
ing a haustorial connection, resulting in a proliferation of dubi-
ous records. Our criteria for accepting a host was that a host
taxon must have been independently reported at several popula-
tions by more than one collector, or a haustorial connection to an
identifiable fragment of host must be present on the herbarium
voucher. Host associations for sampled populations are listed in
Table S1. For molecular phylogenetic analyses, one individual
each of O. gracilis and O. hederae were used as the outgroup
(Park et al., 2008; McNeal et al., 2013). Sequence data for the
waxy locus were not available for these outgroups, so instead
two more distantly related outgroup taxa were used, Castilleja
ambigua and Triphysaria versicolor.

DNA extraction, amplification and sequencing

DNA was extracted from dried floral tissue using a
DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA), or us-
ing a CTAB (cetyltrimethylammonium bromide) protocol
(Doyle and Doyle, 1987). A total of six regions from the nu-
clear and plastid genomes were used to estimate the phylog-
eny: internal and external transcribed spacers of nuclear
ribosomal DNA (ITS and ETS, respectively), introns 9–11 of
the nuclear low-copy gene waxy, as well as the plastid trnL-
trnF region (comprising the trnLUAA intron and the trnLUAA-
trnFGAA intergenic spacer) and the matK and rps2 genes.
ITS, matK, and rps2 were selected based on their prior use in
genus- and family-level phylogenetic studies of Orobanche
(Schneeweiss et al., 2004a; McNeal et al., 2013), and waxy
for its use in the related (hemi-)parasitic genus Castilleja
(Tank and Olmstead, 2008). The remaining two regions, ETS
and trnL-trnF, were selected to provide additional rapidly
evolving characters from the nuclear and plastid compart-
ments, respectively. Due to difficulty assessing homology
within some species of sect. Nothaphyllon, the waxy locus
was mainly used to assess monophyly of sect. Nothaphyllon
and to infer relationships within sect. Gymnocaulis.

Polymerase chain reaction (PCR) amplifications were per-
formed using AccuPower PCR PreMix kits (Bioneer, Alameda,
CA, USA) or by generating a master mix of 10 lL of 5�
Promega buffer, 4 lL of 25 mM MgCl2, 1�25 lL of 10 mM

dNTPs, 1 lL of 20 lM of each primer and 0�25 lL of Go-Taq
DNA Polymerase (Promega, Madison, WI, USA) diluted to
50 lL. Complete information about primers, cycling parameters

FIG. 1. Bayesian inference majority-rule consensus tree of 162 Orobanche populations inferred from nrDNA (ITS þ ETS). Tip labels include the collection number
followed by the herbarium accession number, if available. Posterior probabilities >0�9 are shown in bold for nodes with >70 % maximum likelihood bootstrap (BS)
support and in italics if BS support is< 70 %. The internal branches leading to section Gymnocaulis and section Nothaphyllon have been shortened by a factor of
1/2. Host associations are indicated in blue (Asteraceae) or green (other) to the genus or higher taxonomic level. Informally named clades are in purple. Outgroup
taxa are not shown. Photographs, from top to bottom: O. fasciculata parasitizing Eriodicyton sp. (Schneider 606); O. cooperi parasitizing Hymenoclea salsola

(Schneider 415); O. vallicola parasitizing Sambucus mexicana (Schneider 316); O. corymbosa parasitizing Artemisia tridentata (Colwell 14–26).
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and amplicon sizes are provided in Table 1. PCR products were
purified using ExoSAP (USB Products, Cleveland, OH, USA),
and both DNA strands were sequenced using an ABI 3730
DNA analyzer (Applied Biosystems, Foster City, CA, USA).
GenBank accession numbers can be found in Table S1.

Sequence alignment and phylogenetic reconstruction

Sequences were checked for base-calling errors and assem-
bled into contigs using Geneious v.6.1.7 (Biomatters, Auckland,
New Zealand). Sequence alignments were generated using the
MUSCLE plug-in with default settings. Maximum likelihood
(ML) and Bayesian inference (BI) analyses were conducted sep-
arately on the concatenated chloroplast DNA matrix (cpDNA),
the concatenated ribosomal spacers (nrDNA) and the waxy lo-
cus using the CIPRES Science Gateway (Miller et al., 2010).
The ML analyses were performed with RAxML-HPC2 v.8.2.6
(Stamatakis, 2014) using the GTRCAT model with 25 rate cate-
gories and 1000 rapid bootstrap (BS) replicates. The BI analyses
were performed using MrBayes v.3.2.6 (Ronquist et al., 2012).
We used an AIC (Akaike information criterion) comparison im-
plemented in jmodeltest2 (Darriba et al., 2012) to select a GTR
þ C substitution model (approximated using four rate catego-
ries). The estimated substitution rates for the nrDNA, cpDNA
and waxy alignments were then used as priors in the MrBayes
analysis. Default settings were used for other priors. Three inde-
pendent runs of four chains each (one cold, three heated) were
sampled every 1000 generations for 2 500 000 generations. The
first 20 % of samples were discarded as burn-in. Convergence
was assessed in several ways: the average standard deviation of
split frequencies was <0�01, the potential scale reduction factor
was close to 1�00 for all parameters, and the effective sample
sizes (ESS) were >800.

RESULTS

nrDNA

Strongly supported clades in the Bayesian ITS/ETS analysis
(Fig. 1) were consistent with those identified by ML (data not
shown). Orobanche sect. Gymnocaulis and sect. Nothaphyllon
were both resolved as monophyletic [posterior probability (PP)
¼ 1�0, BS¼ 100] and sister to each other. Within sect.
Gymnocaulis, seven major clades were resolved (PP¼ 1�0,
BS� 80). Under the current classification, three of these to-
gether correspond to a paraphyletic O. fasciculata. Plants from
each of these clades showed unique host preferences: plants in
two of these groups parasitize hosts of single genera, Artemisia
(Asteraceae) and Galium (Rubiaceae). The third group of plants
form a clade of generalists that parasitize numerous species
within Eriogonum (Polygonaceae), Eriophyllum (Asteraceae),
and Eriodictyon and Phacelia (Hydrophyllaceae). The remain-
ing four clades constituted a monophyletic O. uniflora
(PP¼ 1�0, BS¼ 100). Three of these clades include parasites
specific to hosts in the genera Antennaria and Senecio
(Asteraceae), on members of Saxifragaceae and Crassulaceae
(Saxifragales s.s.) and on Apioideae (Apiaceae), respectively.
These clades together are currently recognized as O. uniflora
subsp. occidentalis and were resolved sister to the fourth clade

corresponding to subsp. uniflora. Members of this clade parasit-
ize Rudbeckia and several genera of Astereae in the Asteroideae.

Populations of the remaining American Orobanche species,
representing sect. Nothaphyllon were generally resolved in one
of eight major clades (PP> 0�95, BS> 90): (1) a clade of popu-
lations from the western USA parasitic on Artemisia previously
determined as one of three taxa: O. parishii subsp. parishii,
O. ludoviciana or O. corymbosa; (2) a taxonomically and eco-
logically diverse clade, the O. californica complex, which in-
cluded O. californica and O. vallicola, as well as the remainder
of O. parishii and O. corymbosa populations; (3) O. pinorum;
(4) O. tarapacana; (5) the O. ludoviciana complex, including
O. multiflora, O riparia, O. chilensis, O. tacnaensis, O arizon-
ica, the remainder of O. ludoviciana and a collection from
Hidalgo, Mexico (Yatskievych 85-215) that does not match the
morphology of any described species; (6) O. valida; (7) O.
cooperi and O. dugesii; and (8) O. bulbosa. Clades 6–8, found
predominantly in south-western North America, constituted a
monophyletic group (PP¼ 0�95, BS¼ 77) that was sister to the
rest of the section (clades 1–5). Resolution at the subspecific
level of the paraphyletic O. californica was variable. For exam-
ple, populations of subsp. californica along the central
California coast parasitizing Grindelia stricta and those in far
northern California and Washington parasitizing Grindelia
integrifolia were resolved in separate strongly supported sub-
clades within the O. californica complex (clade 2, above).
Other subspecies, such as subsp. grandis and subsp. condensa,
formed a polytomy. The polyploid O. parishii subsp. brachy-
loba was nested within one of three separate clades of O. par-
ishii subsp. parishii.

cpDNA

Strongly supported clades from the Bayesian analysis of
three plastid regions (Fig. 2) were consistent with those identi-
fied by ML (data not shown). Orobanche sect. Gymnocaulis
was resolved as monophyletic (PP¼ 1�0, BS¼ 100). Within
sect. Gymnocaulis, six host-specific clades were resolved, con-
gruent with the nrDNA results. Three of these were sub-clades
of the monophyletic O. uniflora (PP¼ 0�99, BS¼ 97): a clade
of plants parasitizing Antennaria and Senecio (PP¼ 1�0,
BS¼ 93) and a less supported clade of plants parasitizing
Apioideae (Apiaceae), Saxifragaceae and Crassulaceae
(PP¼ 0�71, BS¼ 88), together corresponding to subsp. occi-
dentalis (PP¼ 1�0, BS¼ 100) and sister to a clade of plants that
parasitize several genera of Asteroideae corresponding to subsp.
uniflora (PP¼ 1, BS¼ 100). Orobanche fasciculata was found
to be paraphyletic: a strongly supported clade parasitizing
Artemisia (PP¼ 1�0, BS¼ 100) was resolved sister to O. uni-
flora. The remaining two clades of O. fasciculata were resolved
as sister groups, one strongly supported and parasitizing
Galium spp. in California and Oregon (PP¼ 1�0, BS¼ 100),
and the other weakly supported and parasitizing a variety of dis-
tantly related core eudicot genera (PP¼ 0�65, BS< 50).

Deep relationships within Orobanche sect. Nothaphyllon
were generally well resolved, albeit with variable support at
the species and subspecies level. Populations of O. bulbosa
formed a clade (PP¼ 1�0, BS¼ 96) that was sister to the re-
mainder of the section, which in turn comprised two well-
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supported sub-clades (PP¼ 1�0, BS> 95). The first included
strongly supported clades corresponding to single taxa that di-
verged from the remainder of the sub-clade in succession: O.
valida (PP¼ 1�0, BS¼ 100), O. parishii (PP¼ 1�0, BS¼ 100)
and finally O. tarapacana (PP¼ 0�94, BS¼ 72), which was
sister to a clade of O. cooperi, O. dugesii and one accession
of O. corymbosa (PP¼ 0�98, BS¼ 68). The second well-
supported sub-clade included the only sampled population of
O. pinorum sister to the O. californica and O. ludoviciana
complexes. Relationships within this sub-clade were poorly
resolved, except for strong support of O. riparia þ O. arizon-
ica, O. vallicola, a clade of O. californica subsp. californica
parasitic on Eriophyllum staechadifolium, and O. chilensis þ
several populations from central North America (PP¼ 1�0,
BS> 97).

waxy

Orobanche sect. Gymnocaulis and sect. Nothaphyllon were
each resolved as monophyletic (PP¼ 0�99, BS> 75). Within
sect. Gymnocaulis, five host-specific clades were resolved
with strong support (PP> 0�92, BS> 73), congruent with
both nrDNA and cpDNA results. These included a clade of
plants parasitizing several genera in the Asteroideae corre-
sponding to O. uniflora subsp. uniflora, as well as two clades
together corresponding to O. uniflora subsp. occidentalis –
the first, which was comprised of plants parasitizing
Saxifragaceae and Crassulaceae (Saxifragales s.s), and

another that included a sub-clade of parasites on Antennaria
and Senecio (Asteraceae) united in a moderately supported
polytomy with several populations that parasitize Apioideae
(PP¼ 0�89, BS¼ 0�74). The remaining two strongly supported
clades include plants currently recognized as O. fasciculata:
one was sister to O. uniflora and parasitizes Artemisia; the
other parasitizes Galium and was sister to the remaining popu-
lations of O. fasciculata, which formed a third, weakly sup-
ported clade (PP¼ 0�74, BS¼ 67) including parasites on a
variety of core eudicot hosts. In contrast to Orobanche sect.
Gymnocaulis, infraspecific sampling density and phylogenetic
resolution within O. sect. Nothaphyllon was limited, although
conspecific populations of O. valida, O. californica subsp.
californica and O. cooperi, as well as O. chilensis þ O. multi-
flora were each resolved as monophyletic (PP> 0�94,
BS> 90). Tree files were uploaded to Open Tree of Life
(http://www.opentreeoflife.org), study ID ot_732.

DISCUSSION

Host specificity and speciation

Among extant western hemisphere Orobanche, we report many
previously unrecognized, host-specific lineages in both sect.
Gymnocaulis and sect. Nothaphyllon that are strongly supported
by both plastid and nuclear DNA sequences (Figs 1–3). This
cryptic diversity has two complementary implications – one
evolutionary, the other ecological. First, biodiversity within

TABLE 1. Molecular regions used in the phylogenetic analyses of Orobanche sections Gymnocaulis and Nothaphyllon, approximate
lengths of complete ingroup sequences, PCR primers (50–30) and thermocycling parameters

Gene region Approximate
amplicon length

Primer sequences Reference Thermocycling parameters

ITS 590 bp AB_101: TGG TCC CGT GAA GTG TTC G Schneeweiss et al. (2004a) 94 �C, 4 min; 35� (95 �C, 1 min;
48 �C, 1 min; 72 �C, 1 min);
72 �C, 10 min.

AB_102: CCG GTT CGC TG CCG TAA C Schneeweiss et al. (2004a)
ETS 430 bp ETS_B: ATA GAG CGC GTG AGT GGT G Beardsley and Olmstead,

2002)
96 �C, 2 min; 35� (94 �C, 30 s;

56 �C, 30 s; 72 �C, 45 s); 72 �C,
3 min.

ETS_seq: (C) TGG CAG GAT CAA CCA GGT A This study
waxy

(introns 9–11)
585–630 bp waxy_9F-ORO: GAT GCT AAG CCW TTG TTG A This study 92 �C, 5 min; 40� (94 �C, 45 s;

53�5 �C, 45 s; 72 �C, 1 min);
72 �C, 5 min.

waxy_11R: CCA TRT GGA ASC CAG TRT A Tank and Olmstead (2009)
matK 30 intron 680–760 bp matK 8: CTT CGA CTT TCT TGT GCT Steele and Vilgalys (1994) 94 �C, 5 min; 40� (92 �C, 1 min;

51 �C, 40 s; 72 �C, 1 min);
72 �C, 10 min.

matK_psbA50R: AAC CAT CCA ATG TAA
AGA CGG TTT

Shaw et al. (2005)

rps2 675 bp rps2_2F: AAA TGG AAT CCT AAA ATG GC This study 94 �C, 2 min 30 s; 35� (94 �C,
1 min; 50 �C, 1 min; 72 �C,
1 min); 72 �C, 7 min.

rps2_18F: GGR KAR AAA TGA CAA GAA GAT
ATT GG

dePamphilis et al. (1997)

rps2_661R: ACC CTC ACA AAT GCG AAT ACC AA dePamphilis et al. (1997)
trnL-trnF spacer 710–810 bp trL ‘c’: CGA AAT CGG TAG ACG CTA CG Taberlet et al. (1991) 94 �C, 5 min; 40� (92 �C, 1 min;

51�5 �C, 1 min; 72 �C, 1 min);
72 �C, 5 min.

trnF ‘f’: ATT TGA ACT GGT GAC ACG AG Taberlet et al. (1991)

Two different forward primers for rps2 were used.
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western hemisphere Orobanche is substantially richer than rec-
ognized by current taxonomy, perhaps because extensive reduc-
tion of structural characters in these parasites has limited the
potential for morphological diagnosis of recently diverged evo-
lutionary lineages. Secondly, the host breadth of each evolu-
tionary lineage is narrower than previously assumed, although
some lineages with wide host ranges are still present (e.g. O.
fasciculata p.p.). Host specificity in plant parasites has been
correlated to various life history and other host traits such as
weediness or perenniality (Schneweeis, 2007). Host-switching
has been cited as a driver of speciation of numerous parasites
across the tree of life (Ricklefs et al., 2004; de Vienne et al.,
2013), including other lineages of parasitic plants (Norton and
Carpenter, 1998; Norton and Lange, 1999; Bolin et al., 2011),
as well as within the genus Orobanche (Thorogood et al.,
2009). Our evidence strongly supports this hypothesis. The
abundance of host-specific clades found here suggests that
host-switching may be an even more important driver of evolu-
tionary divergence in parasitic plants than previously
recognized.

Although some Orobanche taxa are specific to a single
host species, most parasitize several closely related species
that are unique and sometimes phylogenetically distant from
the hosts of their nearest relatives. In many ways, Orobanche
spp. occupy an ecological middle-ground between species
such as Epifagus virginiana (Orobanchaceae), which can
only grow on Fagus grandifolia, and true generalists such as
dodders (Cuscuta spp., Convolvulaceae) in which a single in-
dividual may parasitize numerous distantly related hosts
(Press and Graves, 1995). Therefore, it is unlikely that host–
parasite co-speciation plays an appreciable role in driving di-
versification in western hemisphere Orobanche in contrast to
some plant–animal, animal–animal or prokaryote–animal
host–parasite systems (de Vienne et al., 2013). Instead, we
argue that the more common mode – host-switching followed
by physiological specialization and divergence – is dominant
in this system.

Specialization and evolutionary divergence (cladogenesis) fol-
lowing host-switching is an expected outcome given the complex
challenges of host detection, host invasion and evasion or

O. bulbosa Schneider 936 JEPS122909
O. chilensis Garcia 3877 SGO154435
O. chilensis Long 2240 UC2046156
O. chilensis Rosas 3327 CONC169912

O. cooperi Colwell 01-01 WTU344743
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higher taxonomic level; for sect. Nothaphyllon see Fig. 1 or Table S1. Outgroups are not shown.
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neutralization of host defences, which may occur pre- or post-
attachment. Pre-attachment host defences may include reduced
germination stimulants (i.e. strigolactones, Cameron et al., 2006;
Xie et al., 2010), increased germination inhibitory compounds
(Fern�andez-Aparicio et al., 2011), chemical inhibition of hausto-
rial development (Pérez-de-Luque et al., 2005a, b) or structural
fortifications to serve as a mechanical barrier to invasion.
Potential hosts can repel parasitic plants following attachment
using a variety of mechanisms that disrupt the flow of nutrients
or block vessel elements (Goldwasser et al., 1999, 2000; Pérez-
de-Luque et al., 2005a), initiate programmed cell death (Gurney
et al., 2006), increase lignification and suberization of cell walls
(Labrousse et al., 2001; Pérez-de-Luque et al., 2008) or elicit
chemical defence through increased peroxidases or the transfer
of toxins from the host to the parasite (Gurney et al., 2003).
These multiple layers of incompatibility must be overcome for a
successful invasion of the host, and provide the physiological ba-
sis for host specificity in parasitic Orobanchaceae (Yoder, 1997;
Yoshida and Shirasu, 2009; Thorogood and Hiscock, 2010).
Consequently, distantly related hosts with more divergent physi-
ologies probably require different invasion strategies. Various
suites of host-specific traits may therefore represent different
adaptive peaks for an Orobanche lineage.

Drès and Mallet (2002) cite a number of insect–plant systems
to show how the formation of host-specific races may eventually
lead to sympatric speciation of parasites through outbreeding de-
pression, even in the presence of gene flow. The generalist clade
of O. fasciculata shows poorly supported phylogenetic sub-
structure and may provide the opportunity to explore this hy-
pothesis in a plant–parasite system. Among the other host-
specific clades of O. sect. Gymnocaulis, sympatric speciation
following this model may already have occurred. The strong
support for these clades by all three loci (nrDNA, cpDNA and
waxy) suggest minimal, if any, continued gene flow among
these lineages, even between geographically neighbouring popu-
lations. Isolation by host may also be reinforced by autogamy or
apomixis, which is common in New World Orobanche species
in contrast to more variable mating systems among species of
Eurasian Orobanche and predominance of outcrossing among
other lineages of parasitic angiosperms (Musselman et al., 1982;
Jones, 1989; Bellot and Renner, 2013). Autogamy has been
identified as the predominant mating system in O. pinorum,
with occasional outcrossing by bees (Ellis et al., 1999), is com-
mon among O. fasciculata parasitizing Artemisia (Reuter,
1986), and has been anecdotally reported in O. uniflora subsp.
occidentalis and Orobanche bulbosa (K. L. Chambers 2952,
OSC198410; Butterwick 5434 & Parfitt, ASU, JEPS; Schneider
1032, JEPS (Parfitt and Butterwick, 1981)). Some populations
of Orobanche uniflora subsp. uniflora are obligatorily partheno-
genic, while other populations show a ‘wholly different. . .repro-
ductive process’ (Jenson, 1951). As discussed previously, gene
flow between different host races is expected to be detrimental
if parent taxa are adapted to separate hosts, since a hybrid may
be adapted to neither of them.

Geographic differentiation may play a subordinate role in lin-
eage diversification, and may be restricted to cases where sister
clades parasitize closely related hosts, such as between the sub-
species of O. valida, which both parasitize Garrya. Much more
commonly, ranges are at least partially overlapping, and closely
related parasite lineages differing in their hosts can co-occur on

a regional or even a local scale. This is particularly well pro-
nounced in sect. Gymnocaulis, discussed in detail below.

Cryptic diversity in section Gymnocaulis

Cryptic lineages are found in both sections of New World
Orobanche [e.g. a polyphyletic O. parishii subsp. parishii
(Fig. 1)], but most extensively in O. sect. Gymnocaulis, in
which we identified over twice as many host-specific clades as
exist commonly recognized taxa. Moreover, these clades are of-
ten subtended by long stem branches relative to clades that rep-
resent different recognized species in sect. Nothaphyllon. This
disparity, which is robust to the gene region(s) used (Figs 1–3),
may be due to more extensive reduction of morphological and
thus diagnostic features in sect. Gymnocaulis, as well as more
limited systematic and taxonomic study of this section (Achey,
1933; Watson, 1975) relative to sect. Nothaphyllon (Munz,
1930; Collins, 1973; Heckard, 1973; Heckard and Chuang,
1975; Collins and Yatskievich, 2015). Similar levels of cryptic
diversity may be found in other holoparasitic lineages, particu-
lar endoparasites such as Cytinus (Cytinaceae) that show even
more extensive morphological reduction than Orobanche and a
more intimate host–parasite relationship (De Vega et al., 2008).

Each clade of Orobanche sect. Gymnocaulis shows at least
partial range overlap with its sister group, with generally in-
creasing overlap with decreasing phylogenetic distance (Fig. 4).
The clade of O. fasciculata parasitic on Galium is entirely in-
cluded within the range of its sister group, which is a generalist
clade parasitic on various eudicot hosts. The clade of O. fasci-
culata parasitic on Artemisia grows coarsely sympatrically (i.e.
sympatric at regional scales) with both subspecies of its sister
group, O. uniflora. These subspecies, O. subsp. uniflora and O.
subsp. occidentalis, once thought to be allopatric, are now
known to co-occur based on a recent floristic discovery in
southern British Columbia and subsequent reinterpretation of
historic herbarium records (A. C. Schneider, unpubl. data).
Most strikingly, the three closely related clades resolved within
O. uniflora subsp. occidentalis, which parasitize species in the
Asteraceae, Apiaceae, and Saxifragaceae plus Crassulaceae, re-
spectively, share nearly entirely overlapping ranges at both
coarse continental and local scales. For example, populations of
all three clades can be found in Yosemite National Park and the
adjacent Sierra National Forest.

Relationships in section Nothaphyllon

In sect. Nothaphyllon, we also find strong support for host-
specific species, including the recently described O. arizonica,
O. riparia and a clade currently recognized as O. californica
subsp. californica that parasitzes Eriophyllum stachaedifolium
on the central California coast, which is currently being de-
scribed by the second author and George Yatskievych. Most
other clades have distinct host associations, generally with pe-
rennial Asteraceae, but usually not specific to the species level
(Fig. 1).

Most of the taxonomic diversity in O. sect. Nothaphyllon is
concentrated in a large clade supported by nrDNA and
cpDNA, which is comprised of two sub-clades supported by
nrDNA (Fig. 1) and morphological analysis (Collins 1973;
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Heckard, 1973). The first sub-clade corresponds to the O. cali-
fornica complex, which includes O. californica and its sub-
species, O. parishii, O. corymbosa and O. vallicola. The
second clade represents the O. ludoviciana complex, which
includes O. ludoviciana (except for populations parasitizing
Artemisia), O. multiflora, the recently described O. arizonica,
O. riparia, the disjunct South American species O. chilensis
and O. tacnaensis, and a collection from Hidalgo, Mexico that
does not fit the description of any described taxon
(Yatskievych 85-215; ARIZ).

Several earlier diverging lineages native to western North
America are also strongly supported as monophyletic by both
nrDNA and cpDNA, including O. valida, O. bulbosa and the re-
cently revised O. cooperi þ O. dugesii complex (Figs 1 and 2;
Collins and Yatskievych, 2015). However, relationships among
these lineages are unclear: O. bulbosa is resolved either as sister
to the rest of the section (nrDNA, Fig. 1) or as a grade with O.
bulbosa diverging earliest (cpDNA, Fig. 2). The conflict among
gene partitions is in most cases probably explained by incom-
plete lineage sorting, but in other cases may be a result of retic-
ulate evolution. For example, based on its phylogenetic
placement in two separate clades (Fig. 1), and morphological

and host affinities (Artemisia, especially A. tridentata), O. cor-
ymbosa may represent a hybrid between O. californica and O.
ludoviciana, both of which in part also parasitize Artemisia. In
certain other cases, polyploidy may be a driver of speciation.
Heckard and Chuang (1975) published detailed chromosome
counts for most species of North American Orobanche. The oc-
toploid O. parishii subsp. brachyloba forms a clade nested
within O. parishii subsp. parishii (Fig. 1), its likely tetraploid
progenitor (ploidy assignment based on a chromosome base
number of x¼ 12; for a more detailed discussion, see
Schneeweiss et al., 2004b), or, if an allopolyploid, one of two
parental lineages. Octoploid lineages have also been reported in
O. cooperi and O. corymbosa subsp. corymbosa (but not O.
ludoviciana). A full discussion of the systematics and taxonomy
of these and other individual species is needed, but is beyond
the scope of this paper.

Repeated dispersal to South America

Based on the nrDNA phylogeny, we find support for the
longstanding hypothesis that O. chilensis is closely related to O.

Artemisia
Eriogonum, Eriophyllum or
Hydrophyllaceae 
Galium

Apioidiae
Asteraceae
Saxifragales

Asteraceae
O. uniflora subsp. uniflora

O. uniflora subsp. occidentalis

O. fasciculata
Orobanche clades (by host)

 30°

 180°           160°  140°  120°  100°  60°  40°  50° 
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50° 

40° 

FIG. 4. Range map of host-specific clades of Orobanche sect. Gymnocaulis. Coloured circles represent individuals sampled in the phylogeny (Figs 1–3). Coloured
lines show the approximate range of each clade. Further study is needed to determine the range of each of the three host-specific lineages of O. uniflora subsp. occi-
dentalis, which in this figure are treated as one unit. Range maps should be considered tentative, particularly in northern Canada and west-central USA, pending a

thorough taxonomic and phytogeographical study.
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ludoviciana and O. multiflora (Beck, 1890), thereby contribu-
ting to the broadly recognized pattern of amphitropical disjunc-
tion between the Great Plains of North America and northern
Chile/southern Peru (Wen and Ickert-Bond, 2009). Of the two
other sampled Orobanche species from South America, O. tac-
naensis, was resolved with O. chilensis, but the two samples of
O. tarapacana Phil. formed a separate, earlier diverging lineage
resulting from north to south dispersal. Phylogenetic placement
of O. tarapacana is uncertain due to conflict between the
nrDNA and cpDNA trees; O. tarapacana is sister to either the
O. ludoviciana complex, the O. cooperi complex or perhaps a
hybrid between the two (Figs 1 and 2).

Conclusions and future directions

Parasitic Orobanchaceae is becoming a model system for un-
derstanding plant parasitism at various levels of biological or-
ganization and scale (Joel et al., 2013; McNeal et al., 2013;
Wicke et al., 2013; Yang et al., 2015). Our results emphasize
the importance of host specificity and host-switching as a driver
of evolutionary divergence in obligate plant parasites. We find
evidence for twice as many host-specific lineages in O. sect.
Gymnocaulis as recognized taxa, and denser sampling in other
clades such as O. sect. Nothaphyllon is likely to uncover more.
This robust understanding of fine-scale evolutionary relation-
ships provides the necessary phylogenetic framework to de-
velop a more natural classification for this group, and
understand genetic, ecological, functional and life-history con-
sequences of host–parasite associations more broadly.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxfordjour
nals.org and consist of Table S1: vouchers, host associations
and GenBank accession numbers for 163 Orobanche popula-
tions and outgroup taxa.
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mechanisms are involved in resistance of Helianthus to Orobanche cunana
Wallr. Annals of Botany 88: 859–868.

McNeal JR, Bennett JR, Wolfe AD, Mathews S. 2013. Phylogeny and origins
of holoparasitism in Orobanchaceae. American Journal of Botany 100:
971–983.

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science
Gateway for inference of large phylogenetic trees. In: Proceedings of the

1110 Schneider et al. — Evolution of New World Orobanche

http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcw158/-/DC1
http://www.aob.oxfordjournals.org
http://www.aob.oxfordjournals.org


Gateway Computing Environments Workshop (GCE). 14 November 2010,
New Orleans, Louisiana, USA.

Munz PA. 1930. The North American species of Orobanche section Myzorrhiza.
Bulletin of the Torrey Botanical Club 57: 611–624.

Musselman LJ, Parker C, Dixon N. 1982. Notes on autogamy and flower struc-
ture in agronomically important species of Striga (Scrophulariaceae) and
Orobanche (Orobanchaceae). Beitr€age zur Biologie der Pflanzen 5:
329–343

Norton DA, Carpenter MA. 1998. Mistletoes as parasites: host specificity and
speciation. Trends in Ecology and Evolution 13: 101–104.

Norton DA, De Lange PJ. 1999. Host specificity in parasitic mistletoes
(Loranthaceae) in New Zealand. Functional Ecology 13: 552–559.

Parfitt BD, Butterwick M. 1981. Noteworthy collections: Orobanche uniflora
L. subsp. occidentalis. Madro~no 28: 37–38.

Park J-M, Manen J-F, Colwell AE, Schneeweiss GM. 2008. A plastid gene
phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae)
and related genera. Journal of Plant Research 121: 365–376.
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