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The application of structure-based in silico methods to drug dis-
covery is still considered a major challenge, especially when the
x-ray structure of the target protein is unknown. Such is the case
with human G protein-coupled receptors (GPCRs), one of the most
important families of drug targets, where in the absence of x-ray
structures, one has to rely on in silico 3D models. We report
repeated success in using ab initio in silico GPCR models, generated
by the PREDICT method, for blind in silico screening when applied to
a set of five different GPCR drug targets. More than 100,000
compounds were typically screened in silico for each target, lead-
ing to a selection of <100 ‘‘virtual hit’’ compounds to be tested in
the lab. In vitro binding assays of the selected compounds confirm
high hit rates, of 12–21% (full dose–response curves, Ki < 5 �M).
In most cases, the best hit was a novel compound (New Chemical
Entity) in the 1- to 100-nM range, with very promising pharmaco-
logical properties, as measured by a variety of in vitro and in vivo
assays. These assays validated the quality of the hits as lead
compounds for drug discovery. The results demonstrate the use-
fulness and robustness of ab initio in silico 3D models and of in silico
screening for GPCR drug discovery.

modeling � in silico screening � structure-based

G protein-coupled receptors (GPCRs) are membrane-
embedded proteins, responsible for communication between

the cell and its environment (1). As a consequence, many major
diseases, such as hypertension, cardiac dysfunction, depression,
anxiety, obesity, inflammation, and pain, involve malfunction of
these receptors (2), making them among the most important drug
targets for pharmacological intervention (3–5). Thus, whereas
GPCRs are only a small subset of the human genome, they are the
targets for �50% of all recently launched drugs (6). As targets of
paramount importance, it is expected that drug discovery for
GPCRs would benefit from the introduction of computational
methodologies (7), especially as these methods can be used in
conjunction with such experimental methods as high-throughput
screening (8, 9), NMR, and crystallography (10).

Unfortunately, GPCRs, like other membrane-embedded pro-
teins, have characteristics that make their 3D structure extremely
difficult to determine experimentally. To date, the only GPCR for
which a 3D structure was determined by x-ray crystallography is
bovine rhodopsin (11), which is unique among GPCRs in that its
ligand, retinal, is covalently bound and that it responds to light
rather than to ligand binding. Hence, in the case of GPCRs, the
limited availability of structural data has forced the computational
design of ligands to heavily rely on ligand-based techniques. Indeed,
for many GPCRs, the natural ligand can provide a good starting
point, leading to useful pharmacophore models that can be used for
identifying lead structures with novel scaffolds (6). These methods
have been successfully applied for the discovery of peptide agonists
to the somatostatin receptor (12) and for the discovery of nonpep-
tidic antagonists to the urotensin II receptor (13).

Nonetheless, structure-based drug discovery remains highly de-
sirable for GPCRs. It is known that all GPCRs structurally consist
of seven transmembrane (TM) helices joined together by three
extracellular and three intracellular loops. Of particular interest to

small-molecule drug discovery is the TM region of the protein.
Site-directed mutagenesis studies have shown that small organic
compounds (i.e., most drug compounds) bind primarily in a cleft
formed by the portions of the TM domains of the protein facing the
extracellular milieu. The loops and N-terminal domains are in-
volved in binding of physiological peptide and protein ligands, but
play only a minor role in the binding of drugs (14). As a conse-
quence, modeling of the 3D structure of GPCRs has focused on the
TM domain of these receptors, employing in most cases homology
modeling based on 2.8-Å resolution structure of bovine rhodopsin
(11) or on the 1.55- to 2.5-Å resolution x-ray structures of bacte-
riorhodopsin, a non-GPCR 7TM membrane protein (15, 16). These
modeling efforts have been described in a recent review (14). Some
of these models have been successful in screening for known ligands
embedded in random libraries (17), as well as for discovery of novel
dopamine D3 ligands when used in conjunction with a pharma-
cophore-based method (18).

Recently, we have reported a de novo GPCR modeling approach
called PREDICT, which does not rely on the rhodopsin structure and
can be applied to any GPCR (14, 19–21). In the present paper, we
report the successful application of PREDICT GPCR models in blind
high-throughput in silico screening for the discovery of new chem-
ical entities that bind to five different GPCRs. These protein targets
include three biogenic amine receptors [5-hydroxytryptamine (5-
HT)1A, 5-HT4, and dopamine D2], a peptide receptor (NK1), and
a chemokine receptor (CCR3). We show here that this approach
has led to confirmed high hit rates and to the discovery of several
very promising lead compounds.

Methods
In Silico Modeling. The PREDICT algorithm and methodology were
recently reported elsewhere (14, 21). Here, we shall give only a brief
overview of the method. PREDICT is a de novo GPCR modeling
methodology that combines the properties of the protein sequence
with those of its membrane environment, without relying on the
rhodopsin (or bacteriorhodopsin) x-ray structure. The PREDICT
algorithm searches through the receptors’ conformation space for
the most stable 3D structure(s) of the TM domain of the GPCR
protein within the membrane environment. To ensure that the final
model represents the most stable conformation, the method simul-
taneously optimizes several thousand alternative conformations of
the receptor (denoted as ‘‘decoys’’). The final model is accepted
only if it is significantly more stable than the majority of the decoys.

The algorithm solves this complex search and optimization task
efficiently by using a reduced representation of the protein-
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membrane system, which balances computational efficiency and
accuracy. In this representation, each side chain is represented by
two to four virtual atoms (22), allowing for an efficient search
through rotamer space (23) while retaining a low dimensional
representation of the system. The reduced representation is ex-
panded to an all-atom model toward the end of the modeling
process. The algorithm also takes into account, in a simplified way,
the presence of the membrane environment and the different
character of the membrane lipophilic core and the polar head group
region. These components, as well as various protein–protein
interactions, are introduced into the modeling procedure by means
of the energy function (see below).

Following are the main steps in the PREDICT algorithm (details
in refs. 14 and 21). First, an extended sequence around the TM
domain (but longer than it) is identified by using known methods,
such as a combination of hydrophobicity and sequence conserva-
tion patterns (24). A 2D grid is used to construct thousands of
alternative packing geometries that cover the protein’s conforma-
tion space. Hydrophobic moments are used to rotate the helices so
that the bundle presents a hydrophobic surface toward the mem-
brane. Each decoy then undergoes a series of optimization steps,
including optimization of helix orientation, helix vertical alignment
(relative to the other helices and relative to the membrane�water
boundary), helix position, and helical tilt angles. Each change in any
of these factors is followed by stochastic simulated annealing
optimization of the side-chain rotamers in the vicinity of the change.
Optimization of the tilt angles is attempted along all possible three-
and four-helical arches. Finally, the optimized models are ranked
according to their PREDICT energy score. Models with energy scores
significantly lower than other decoys are considered solutions.
Similarity clustering is then used to reduce the number of solutions.
The lowest energy representative of the largest cluster is the final
model. This model, still in a reduced representation, is then
expanded to an all-atom model maintaining the specific side-chain
rotamers that were optimized by PREDICT.

The energy function used for optimizing the 3D conformations
and for scoring the models includes two terms, an intraprotein
residue–residue interaction term, and a single-residue term, re-
flecting its interaction with the membrane,

E � �
i, j

Eint�Resi, Resj� � �
i

Emembrane�Resi, Zi�, [1]

where Resi and Resj are the two interacting residues, and their
interaction energy Eint(Resi, Resj) is defined as

Eint�Resi, Resj� � �ij��arom��cat��polar�fij, [2]

where �ij are the Miyazawa and Jernigan (25) contact energies
between residue i and j, fij is a distance function with the general
shape of a ‘‘soft’’ Lennard–Jones potential (a 6–4 potential in
agreement with the multiatomic nature of the virtual “atoms” used
in this representation, unlike the atomistic 12–6 Lennard–Jones
function), �arom is an aromatic-clustering factor highlighting aro-
matic–aromatic interactions, �cat is a cation–� interaction factor
reflecting what is recognized as an important noncovalent binding
interaction in �-helical peptides (26), and �polar is a polar–polar
interaction factor that emphasizes their contribution in agreement
with studies that point to specific polar interactions implicated in
driving TM helix association (27, 28), especially in the hydrophilic
core of GPCRs. The protein–membrane interaction term Emem-
brane(Resi, Zi) is a function of the chemical character of Resi and its
position Zi in the direction normal to the membrane plane. The
value of Zi determines whether the residue is interacting with the
lipid core or with the polar head groups, adjusting the interaction
accordingly.

The PREDICT optimization algorithm is used as part of a four-step
modeling process: (i) coarse modeling. PREDICT searches through

the entire protein conformation space, evenly covered by �1,500
decoys, to identify regions of stability; (ii) fine modeling. PREDICT
is used a second time to comb the neighborhood of the most stable
‘‘coarse’’ models, optimizing �5,000 decoy structures in the vicinity
of each model. This step allows the algorithm to rapidly focus on
regions of stability in the protein’s energy landscape and to effi-
ciently identify the most stable ‘‘fine’’ model; (iii) molecular dy-
namics refinement. The resulting all-atom model is minimized and
then subjected to up to 300-ps molecular dynamics simulations with
CHARMM (29) and the CHARMM22 force field (30). Multiple con-
straints are applied during the simulations to ensure that the model
does not deviate significantly from the PREDICT model. These
refinement dynamics introduce helical kinks and relax the side-
chain conformations; and (iv) virtual protein–ligand complex. A
protein–ligand complex is carefully constructed through molecular
dynamics, mimicking the experimental cocrystallization process,
which locks the target in a ligand-bound conformation.

Model Validation. The absence of x-ray structures of GPCRs makes
direct evaluation of the PREDICT models difficult. The structure
prediction algorithm was first validated against the bovine rhodop-
sin structure, which is currently the only GPCR for which the crystal
structure is available (at a resolution of 2.8 Å; ref. 11). As reported
elsewhere (21), the resulting PREDICT rhodopsin model was in good
agreement with the x-ray structure. The C� rms distance (rmsd)
between the 11-cis-retinal-bound PREDICT rhodopsin model and the
TM region of rhodopsin crystal structure (PDB ID code 1F88) was
2.9 Å. The heavy-atom rmsd between 11-cis retinal in the model and
its conformation in the crystal structure is 0.9 Å. The location and
side-chain orientation of most key residues known to be involved in
retinal binding, including Glu-113, Leu-125, Met-207, Phe-208,
His-211, Phe-212, and Lys-296 (31), are nicely reproduced in the
model, adopting conformations similar to those in the x-ray struc-
ture. This C� rms value is comparable with the rms obtained by
Vaidehi et al. (32) when modeling rhodopsin based on the rhodop-
sin x-ray structure. PREDICT also modeled correctly the unusual
helical kinks observed in the x-ray structure of rhodopsin (21). Both
the degree of the helical kinks and the twist angles were successfully
reproduced in the PREDICT rhodopsin model, including the inward-
bent Pro kink in TM1 and the Thr-Gly kink in TM2 (33). This
agreement is not trivial because the degree of twist associated with
helical kinks is highly variable (34).

Additional validation for PREDICT models comes from the suc-
cess of these models in virtual screening, as evaluated by ‘‘enrich-
ment factors.’’ The rate at which an in silico screening procedure
identifies known binders from a background of random com-
pounds, relative to simple random picking (no enrichment), is
denoted as the enrichment factor. In this case, enrichment factors
were obtained by virtually screening a random 10,000 drug-like
compound library to which a small number of known ligands were
added. The results consistently show, for a range of GPCRs,
including biogenic amine, peptide, and chemokine receptors, that
the PREDICT 3D models yield enrichment factors ranging from 10-
to 350-fold better than random (14, 21). These enrichment factors
are similar to, and sometimes even better than, enrichment factors
reported for in silico screening by using high-resolution crystal
structures for non-GPCR targets (17, 35–37).

Screening Library. The screening library consists of virtual 2D
representations of �1,600,000 drug-like compounds, obtained from
electronic catalogs of �20 vendors worldwide. The library is
updated quarterly, so that at any given time, it represents com-
pounds that can be purchased on short notice. The multiple sources
of the library ensure its diversity, allowing us to explore broad
chemical spaces.

Library Preparation. The virtual compound library is processed
before docking. This step includes 2D to 3D conversion by us-
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ing CONCORD (Tripos, St. Louis), Version 4.04, assignment of
Gasteiger atom types [SYBYL (Tripos), Version 6.8], assignment of
atomic charges, identification of multiple anchors for docking (by
using HYPERION software from Predix), generating multiple con-
formations for these anchors by using CONFORT (Tripos), Version
4.1, and more. Approximately 10% of the full library (on the order
of 150,000 compounds) is selected for screening, according to the
character of the binding site (charges, polar, or hydrophobic), and
to the desired range of molecular weights, compound diversity,
drug-like properties, etc.

Docking. The screening library is docked into the binding site by
using the DOCK4.0 (Molecular Design Institute, University of Cal-
ifornia, San Francisco and ref. 38) anchor-and-grow procedure.
Docking for each compound (often represented by five or more
different anchor conformations) is repeated 10 times. The specific
docking parameters are fine tuned for each target separately, by
optimizing the docking of a small set of known binders (if available)
relative to a large drug-like random compound library. Fig. 1 shows
a sample enrichment graph (for the NK1 receptor).

Scoring and Selection. A sequential application of several scoring
tools and selection criteria is used, until a list of fewer than 100
virtual hits is reached (Y.M., O.M.B., S.S., B.I., A.H., M.F., O.K.,
S.B.-H., D.W., and S.N., unpublished work). First, an automated
binding-mode analysis (by using the Predix program BMA) is
performed on all docked conformations to ensure proper dock-
ing. Ten additional 3D scores are calculated for the top 10% of
the library with the best DOCK scores that pass BMA [by using
DOCK4.0, CSCORE (Tripos), and CHARMM (29)]. Specific score
cutoff values or combination cutoff values are used to further
narrow the list of virtual hits. The remaining compounds are
further filtered by using a 3D-based principle component anal-
ysis (PCA) procedure, which is based on 3D properties of the
docked compounds. The coordinates for the covariance matrix,
which is diagonalized in this procedure, include the above 10 3D
docking-scores, several 3D descriptors characterizing the com-
pounds’ docked conformations, and a few 2D descriptors (a total
of 5–50 descriptors, depending on the target protein). The

3D-based PCA projection is first generated for a set of known
compounds, binders, and nonbinders to the specific target alike.
The remaining virtual hits are then projected onto this 3D-based
PCA map, and the hit list is further narrowed to include only
those compounds that fall within the same region of the PCA
map as the known active compounds. This step typically reduces
the size of the hit list by �50%. Finally, the remaining com-

Fig. 2. Buspirone (a) and sunepitron (b), two 5-HT1A partial-agonist drugs,
docked in the 5-HT1A receptor-binding pocket (transparent surface). The
compounds are shown in space-fill-form to highlight their binding mode. Key
protein residues responsible for ligand binding are shown. Also shown are the
chemical structures of the two drugs.

Fig. 1. Enrichment graph for in silico screening of 26 known NK1 antagonists
embedded in the 6,200-compound random drug-like library with similar
physiochemical properties after docking into the PREDICT 3D model of the NK1
receptor. Library compounds are ranked along the x axis, according to their
docking score (best scorers on the left, worst scorers near the 100% mark). The
curve shows the relative ranking of the known antagonists. Enrichment at
50% is 20-fold better than with random screening (dashed line).

11306 � www.pnas.org�cgi�doi�10.1073�pnas.0401862101 Becker et al.



pounds in the hit list are clustered, with only the best-scored
representative of the similarity cluster maintained.

In Vitro Binding Assay. Compounds selected as virtual hits from in
silico screening against GPCR targets were sent to the appropriate
experimental binding assays (radioligand displacement). Com-
pounds were initially tested at a 10-�M concentration in duplicate.
Hits showing �50% inhibition at 10 �M are validated by a
full-concentration dose–response curve, measured between 10�10

and 10�4 M. Compounds with experimentally validated binding
affinities �5 �M are defined as actual hits (for CCR3, better than
20 �M). Specifically, for human NK1 receptor (U-373MG cells),
the radioligand was [Sar-9,Met(O2)11]-SP (0.15 nM, Kd � 0.12 nM).
For human recombinant CCR3 receptor (K562 cells), the radioli-
gand was [125I]eotaxin (0.1 nM, Kd � 0.7 nM). For human recom-
binant 5-HT1A receptor (human embryonic kidney-293 cells), the
radioligand was [3H]8-hydroxy-N,N-dipropylaminotetralin (0.5 nM,
Kd � 0.5 nM). For human recombinant 5-HT4e receptor [Chinese
hamster ovary (CHO) cells], the radioligand was [3H]GR-13808
(0.2 nM, Kd � 0.15 nM). For human recombinant D2 receptor
(CHO cells) the radioligand was [3H]spiperone (0.3 nM, Kd �
0.17 nM).

Other in Vitro and in Vivo Assays. Lead compounds, chosen from the
preliminary in vitro binding assays, were evaluated in additional in
vitro and in vivo assays. These studies were carried out at external
contract research organizations, and include cell-based functional
assays for agonist or antagonist activity, a complete selectivity
profile (in vitro binding assays for up to 60 targets, including
GPCRs, ion channels, transporters, and enzymes), and human liver
microsome stability assay. In some cases, the pharmacokinetic
properties of the compound were measured in vivo in rats, focusing
on oral bioavailability (%F) and serum half-life.

Results and Discussions
Using in silico methods for drug discovery requires the careful
integration of several computational tools into a single streamlined
process. In this case, the first step was PREDICT modeling of the
target GPCR. The model was then used for 3D screening of large
virtual compound libraries, followed by a scoring and selection
process that led to a small number of virtual hits. The virtual hits
were subsequently purchased and tested in experimental binding
assays to verify their activity. In this section, we present the results
of this process as applied to five human GPCR drug targets:
5-HT1A, 5-HT4, Dopamine D2, NK1, and CCR3, representing
biogenic amine, peptide, and chemokine receptors.

Serotonin 5-HT1A Receptor. 5-HT1A is one of 14 serotonin (5-HT)
receptor subtypes. Agonist binding to 5-HT1A receptors leads to
inhibition of adenylyl cyclase activity, the reduction of cAMP levels,
increase in potassium (K�) conductance by regulating K� channels,
and decreasing the opening of voltage-gated calcium (Ca2�) chan-
nels (39). The 5-HT1A receptors are expressed in the CNS and have
been implicated in anxiety and depression disorders. In vivo elec-

trophysiological experiments have postulated that 5-HT1A partial
agonists mediate antidepressant effects through a net increase in
serotonergic neurotransmission. Although the exact mechanism of
action is not fully understood, there is evidence that the physiolog-
ical and behavioral responses are achieved after desensitization of
5-HT1A receptor-mediated response (40). Only one 5-HT1A ag-
onist, buspirone (Buspar), is approved for generalized anxiety
disorder, with a few other agonists of a class called azapirones, in
late-stage development (e.g., gepirone ER, Variza, developed for
depression, or sunepitron).

A PREDICT 3D model of the 5-HT1A receptor was generated
from its amino acid sequence, from which a receptor–ligand
complex was simulated (using serotonin as the ligand). A binding
pocket was easily identified on the extracellular side of the struc-
ture, allowing the 5-HT amine moiety to interact with Asp-116 in
TM3 and its hydroxyl moiety to interact with Ser-199 in TM5; both
in good agreement with experimental data (41, 42). Fig. 2 shows the
binding mode of buspirone and of sunepitron in the 5-HT1A-
binding pocket. In both cases, Asp-116 is interacting with the
piperazine amine and Ser-199 interacts with the azapirones’ imide
moiety. In addition, the model shows that residue Phe-362 from
TM6 stacks against the compounds’ pyrimidine rings and that
residue Asn-386 from TM7 also contributes to this interaction, in
agreement with experimental data (31). Docking of a set of 24
known 5-HT1A ligands embedded in a random 10,000 drug-like
compound library, with average properties similar to those of the
5-HT1A ligands (21), yielded an enrichment factor 20-fold better
than random when ranked by the initial DOCK score (at the point
where 50% of the compounds were identified). Furthermore, 88%
of these known ligands were ranked among the top 10% of the
DOCK-score ranked library (14). This study was used both for
validating the model and for calibrating the docking protocol.

Docking and scoring of a 40,000-compound screening library led
to the selection of 78 virtual hits (Table 1). Experimental in vitro
binding assays confirmed 16 hits with a Ki � 5 �M, reflecting a 21%
hit rate, with the best hit being a novel 1.0-nM compound (PRX-
93009). Furthermore, the 16 hits represented five distinct chemical
scaffolds and 87% of them (14 of 16 compounds) were found to be
novel chemical entities, not covered by any patent or publication
(other than the suppliers’ catalog).

To address whether these hits represent real leads for drug
discovery, the best 5-HT1A hit, compound PRX-93009, was sub-
jected to additional in vitro and in vivo assays (Table 2). It was found
that in addition to its 1-nM binding affinity, PRX-93009 also tested
as a partial agonist in a cell-based assay, showing 65% activity
relative to 5-HT with EC50 � 21 nM. The compound also showed
good pharmacokinetic properties in rats, with a 2-h serum half-life
p.o. and 5% oral bioavailability. These properties compare favor-
ably with buspirone, the only 5-HT1A agonist approved as a drug,
which has Ki � 20 nM, is a partial agonist with 50% activity relative
to 5-HT with EC50 � 80 nM in a cell-based assay, has a 1-h serum
half-life p.o. in rats, and as little as 1% oral bioavailability. The main
downside of PRX-93009 was its selectivity profile, showing high
affinity to the �1 adrenergic receptor (Ki � 6.6 nM) as well as to

Table 1. Summary of 3D structure-based in silico screening for GPCR targets

Target

Compounds
screened
in silico

Compounds
tested
in vitro Hits �5 �M Hit rate, %

Best hit,
nM

Percent
novel Best novel hit, nM

5-HT1A 40,000 78 16 21 1.0 87 1.0 (PRX-93009)
NK1 150,000 53 8 15 56 100 56 (PRX-96026)
5-HT4 150,000 93 19 21 1.6 42 21 (PRX-93046)
D2 120,000 42 7 17 58 30 58 (PRX-92026)
CCR3 120,000 43 5* 12 12,000 60 12,000 (PRX-94042)

*Hit is defined as Ki � 20 �M.
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several other receptors. As such, this selectivity issue was the focus
of a lead optimization process that started from this lead compound
and was able to quickly convert it into a very selective compound.

Tachykinin NK1 Receptor. The NK1 receptor is one of three tachy-
kinin receptor subtypes, whose endogenous ligand is the Substance
P peptide. The NK1 receptor is distributed in the central and
peripheral nervous system and is implicated in depression, asthma,
emesis, anxiety, and pain (43). There is only one marketed drug that
targets this receptor, aprepitant (Emend), which is approved for
emesis.

The PREDICT 3D model of the NK1 receptor was generated from
sequence and a receptor–ligand complex was simulated with
aprepitant (Ki � 0.9 nM). This model was discussed in detail in ref.
21. A binding pocket was easily identified on the extracellular side
of the model, located between helices 4, 5, and 6. Docking a set of
26 known NK1 small-molecule ligands embedded in a 6,200 random
compound library with similar physicochemical properties yielded
an enrichment factor 20-fold better than random (for 50% of the
known identified, all of which were ranked within the top 2.5% of
the ranked library). Eighty percent of the ligands were identified
within the top 10% of the ranked library (Fig. 1).

Docking of a 150,000-compound library led to the selection of 53
virtual hits. An in vitro binding assay confirmed eight hits with Ki �
5 �M, reflecting a 15% hit rate, with the best hit being a novel
56-nM compound (PRX-96026). These eight hits fell into five
distinct chemical scaffolds and all (100%) of them were found to be
novel (Table 1).

Additional studies confirmed the drug-like quality of this lead
compound (Table 2). PRX-96026 tested as an antagonist in a
cell-based functionality assay, with EC50 � 950 nM. The compound
was selective relative to the other two neurokinin receptors, with a
Ki of 1,700 nM to NK2 and �10,000 nM to NK3, reflecting a
selectivity ratio of 1:30:180. In a selectivity panel of 27 targets
(mostly GPCRs), PRX-96026 showed an excellent selectivity pro-
file, with affinities in the 500–1,000 nM range to only two other
targets.

Serotonin 5-HT4 Receptor. One of the 14 serotonin receptor sub-
types, 5-HT4 is expressed in many organs, including the gastroin-
testinal tract and CNS (44). These receptors are positively coupled
to adenylate cyclase and are known to exert such neurochemical
responses as serotonin, acetylcholine, and dopamine release. Po-
tential indications for this target include irritable bowel syndrome
(IBS) and Alzheimer’s disease (agonist). The 5-HT4 agonist tega-
serod (Zelnorm) is a marketed drug for IBS. Another 5-HT4
agonist, prucalopride (Resolor), may undergo phase III clinical
trials. A well known 5-HT4 agonist drug that was withdrawn from
the market due to the QT interval prolongation is cisapride
(Propulsid).

The PREDICT model of the 5-HT4 receptor was virtually com-
plexed with GR-113808 (Kd � 0.15 nM). A binding pocket was
easily identified on the extracellular side of the model, located

between helices 3, 5, 6, and 7, in agreement with mutation data (45).
Fig. 3 shows the binding mode of GR-113808 in the receptor’s
binding pocket. Docking a set of 19 known 5-HT4 ligands embed-
ded in a 10,000-random compound library with similar physico-
chemical properties gave an enrichment factor 50-fold better than
random (at the point where 50% of the compounds were identi-
fied), identifying 95% of these known ligands within the top 10%
of the DOCK score-ranked library.

A 150,000-compound library was docked and 93 virtual hits
selected. In vitro binding assay confirmed the binding of 19 com-
pounds with Ki � 5 �M (21% hit rate). These hits reflect four
distinct chemical scaffolds and 42% of them were found to be novel
(Table 1). The best hit was a known 1.6-nM binder; however, the
best novel hit was not far behind with Ki � 21 nM (PRX-93046).

Table 2. In vitro and in vivo assay results for lead compounds discovered by in silico screening on the PREDICT 3D models

Target GPCR Lead compound Ki, nM Agonist�antagonist Selectivity Other assays

5-HT1A PRX-93009 1 EC50 � 21 nM 60-target panel: �1 � 7 nM, Rat PK: 2-h t1�2 p.o.
65% partial agonist 10–100 nM: four targets 5% oral bioavailability

100–500 nM: two targets
NK1 PRX-96026 56 EC50 � 950 nM NK2 � 1,700 nM

antagonist NK3 � 10,000 nM
27-target panel:
500–1,000 nM: two targets

5-HT4 PRX-93046 21 EC50 � 200 nM 50-receptor panel: 46 min in human liver microsomes
18% partial agonist 500–2,000 nM: one target

Fig. 3. GR-113808, a potent 5-HT4 ligand, docked in the receptor 3D model.
The compound’s amine group is 4.1 Å from Asp-100 (TM3), and the ester
interacts with Ser-197 (TM5, 3.9 Å); Phe-297 (TM7) and Asn-279 (TM6) interact
with the indole group of the ligand, and Tyr-302 (TM7) is within 5 Å from the
sulfonamide. Also shown is the chemical structure of the compound.
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Additional studies confirmed the drug-like quality of PRX-
93046. It tested as a partial agonist in a cell-based assay, showing
18% of 5-HT activity with EC50 � 200 nM. In a 50-target selectivity
assay, the compound showed affinity in the 500- to 2,000-nM range
to only one additional target. The compound also has excellent
metabolic stability, with a 46-min half-life in human liver micro-
somes (Table 2).

Dopamine D2 Receptor. Dopamine is the predominant catechol-
amine neurotransmitter in mammalian brains, where it affects
locomotor activity, cognition, emotion, and other functions (46).
The PREDICT 3D model of the 5-HT4 receptor was generated
from sequence and a receptor–ligand complex was simulated
with D2 antagonist f luphenazine (Ki � 0.32–4 nM, details
reported in ref. 21). Docking a set of 43 known D2 agonists and
antagonists embedded in a 10,000-random compound library
yielded an enrichment factor 17- and 9-fold better than random,
respectively (at the point where 50% of the compounds were
identified), identifying 85% of the antagonists and 70% of the
agonists within the top 10% of the DOCK score-ranked library.

Docking a 120,000-compound library into the 3D model resulted
in 42 virtual hits. In vitro binding assays confirmed the binding of
seven compounds with Ki � 5 �M, reflecting a 17% hit rate (Table
1). The best hit was a novel 58-nM compound (PRX-92026). No
additional studies were performed on this compound.

Chemokine CCR3 Receptor. The chemokine CCR3 receptor is in-
volved in the inflammatory response. Although the binding of
chemokines, which are small proteins, involves the N terminus and
extracellular loops, studies have shown that small-molecule antag-
onists bind within the TM domain of the receptor (47). As discussed

elsewhere (21), the PREDICT model of the CCR3 receptor shows a
binding pocket between TMs 1, 2, 3, and 7, in agreement with
experimental data. The receptor–ligand complex of CCR3 was
generated by using the potent CCR3 small-molecule antagonist (Ki
� 5 nM, compound d36 in ref. 48).

Docking a set of 22 known compounds embedded in a 10,000-
random compound library yielded an enrichment factor 45-fold
better than random (at the 50% mark), identifying 86% of these
known ligands (19 of 22 compounds) within the top 15% of the
DOCK score-ranked library. Subsequently, a 120,000-compound
library was docked into the 3D model, leading to a selection of 43
virtual hits. In vitro binding assays confirmed five hits with Ki � 20
�M, reflecting a 12% hit rate. The best hit was a novel 12-�M
compound (PRX-94042). While less potent than in previous stud-
ies, this hit is acceptable for chemokine receptor screening. No
additional studies were performed on this compound.

Summary
We have reported herein the repeated successful use of PREDICT 3D
GPCR models for actual blinded structure-based in silico screening.
For five GPCR drug targets; biogenic amine, peptide, and chemo-
kine receptor, this methodology was successful in identifying high-
quality hits, including promising lead compounds for multiple drug
discovery programs. As will be reported elsewhere, some of these
lead compounds were later successfully optimized by using the 3D
structure of the target GPCR as a guideline. This work paves the
way to a broader application of 3D models in GPCR drug discovery,
compensating for the limited number of x-ray structures available
in this important field.

We thank Adam Muzikant for assistance.
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