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Abstract

Digital histopathological images provide detailed spatial information of the tissue at micrometer 

resolution. Among the available contents in the pathology images, meso-scale information, such as 

the gland morphology, texture, and distribution, are useful diagnostic features. In this work, 

focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based 

segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm 

learns the gland and non-gland textures from a set of training images in various scales through a 

sparse dictionary representation. After the learning step, the dictionaries are used collectively to 

perform the classification and segmentation for the new image.
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1. DESCRIPTION OF PURPOSE

Digital histopathological images provide detailed spatial information of the tissue at 

micrometer resolution.1 Among the available contents in the pathology images, meso-scale 

information, such as the gland morphology, texture, and distribution, are useful diagnostic 

features.

Researchers in2–6 design gland and nuclei segmentation algorithms that aid in determining 

the grading and/or sub-typing of the prostate, breast, and brain cancers. Gland morphology 

is studied in.7–9 In gland extraction, one common assumption is that the contours of the 

glands appear as conic curves in 2D imaging planes.10, 11 While this may be a satisfying 
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assumption for normal tissue, for the malignant tissue, however, such a morphological prior 

does not hold.

In this work, focusing on colon-rectal cancer tissue samples, we propose a multi-scale 

learning based segmentation scheme for the glands in the colon-rectal digital pathology 

slides. The algorithm learns the gland and non-gland textures from a set of training images 

in various scales through a sparse dictionary representation, regardless of the tissue type 

(benign vs malignant). After the learning step, the dictionaries are used collectively to 

perform the classification and segmentation for the new image.

2. METHOD

In,12 a sparse dictionary approach is employed for extracting texture features from the 

foreground and background, for the purpose of interactive segmentation. In digital pathology 

images, it is noted that certain images features can be captured in a multi-scale fashion. As a 

result, we extend the sparse dictionary representation based segmentation into a multi-scale 

framework.

Specifically, denote the training images as

(1)

Their corresponding ground truth segmentations are

(2)

where 1 indicates the gland region. Then, M0 image patches of the size m × m are sampled, 

with replacement and overlapping, from the training images.13 A 3-channel RGB patch is 

denoted as

(3)

where gi is from gland region and ti is non-gland. Such a sample-with-replacement strategy 

successfully enlarges the sample set and reduces the estimation variance. All the patches are 

grouped into two categories: gland and non-gland. Denote the patch list of the gland tissue 

as

(4)
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and the non-gland tissue has the list

(5)

Here, we slightly abuse the notation such that gi, ti ∈ ℝ3m2
 are vectors.

With the two lists of patches (vectors), the K-SVD algorithm is used to learn the underlining 

structure of the texture space as in Algorithm 114

Algorithm 1

K-SVD Dictionary Construction

1:

Initialize  (T0 resp.)

2: repeat

3:  Find sparse coefficients Γ (γi’s) using any pursuit algorithm.

4:

 for j = 1, …, d0, update fj, the j-th column of  (T0 resp.), by the following process do

5:   Find the group of vectors that use this atom: ζj:= {i : 1 ≤ i ≤ d0, γi(j) ≠ 0}

6:

  Compute  where  is the i-th row of Γ

7:

  Extract the i-th columns in Ej, where i ∈ ζj, to form 

8:

  Apply SVD to get 

9:   fj is updated with the first column of U

10:

  The non-zeros elements in  is updated with the first column of V × Δ(1, 1)

11:  end for

12: until Convergence criteria is met

The over-complete basis for G0 (T0 resp.) is denoted as

(6)

Such a dictionary construction is performed in the highest (native) resolution of the image. 

In order to better capture the texture information at various scales, wavelet decomposition is 

performed on the Ii’s, and the learning is performed at each decomposition level. More 

explicitly, let the original image be at level 0, then level i ≥ 1 is the 2i down-sampled version 

of the original image. In all the levels, the same patch size is used for learning. Equivalently, 

the same patch will cover bigger tissue region and therefore capture larger scale information 
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of the image texture. The dictionaries (gland and non-gland) in the i-th level are denoted as 

 and , with i ≥ 0.

After the gland and non-gland dictionaries at all levels have been constructed, we perform 

classification on the patches in the given image to be segmented. The classification is also 

performed in a multi-scale fashion, which is detailed as follows.

At the original resolution, given a new image patch g : ℝm×m → ℝ3, by slightly abuse of 

notation, we also consider g as a 3m2 dimensional vector. Then, we compute the sparse 

coefficient η of g, with respect to the dictionary .

(7)

where k is the sparsity constraint. The reconstruction error is defined as

(8)

This problem is solved by the Orthogonal Matching Pursuit (OMP) method.15 Similarly, the 

sparse coefficient ξ of g under the dictionary  is also computed as:

(9)

The reconstruction error is defined as:

(10)

Moreover, we define

(11)

It is noted that the errors  and  indicate how well (or how bad) the new image patch can 

be reconstructed from information learned from the gland and non-gland region. Hence, the 

higher the e0 is, the more this patch is considered as the non-gland region and vice versa. 

Furthermore, for each pixel (x, y) ∈ Ω, a patch p(x, y) is extracted as the sub-region of I 
defined on [x, x + m] × [y, y + m]. Following the procedure above, we compute the image 

e0(x, y) accordingly. A probability map P0(x, y) for the gland region is defined as
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(12)

Such procedure is performed for all the scales and a series of probability maps Pi(x, y) with i 
= 0, 1, …, L are constructed. Note that each Pi(x, y) is reconstructed to the original scale 

(with all detail coefficients set to 0) and is therefore of the same size as P0. Finally, define

(13)

as the maximum response along the scale dimension. The final probability is threshold at 0.5 

for the final mask of gland region.

3. EXPERIMENTS AND RESULTS

80 images are extracted from The Cancer Genome Atlas (TCGA) colon-rectal digital 

pathology diagnosis images. The resolution is 0.5μm/pixel. The image sizes are all 

1024×1024 pixels.

Three randomly picked results are shown in Figure 1. The top row shows the image with the 

shading indicating the manual segmentation. The corresponding panel below shows the 

proposed automatic segmentation results.

In addition to the benign tissue, the algorithm also performs consistently on malignant 

tissue, as shown in Figure 2. Here two cases are shown from left to the right: The first/third 

are the manual segmentation and the second/forth are the algorithm outputs.

Quantitatively, a leave-one-out scheme is performed for testing. Specifically, the 79 images 

and their manual segmentations are used for learning. The learned model is then applied on 

the left-out image. The Dice coefficient is measured for all the 80 cases and a mean of 0.81 

accuracy (0.056 standard deviation) is achieved. Moreover, the Hausdorff distance is 

measured and a mean of 70μm (10.0μm standard deviation) is achieved.

4. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this work, we propose a multi-scale learning based segmentation scheme for the glands in 

the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland 

textures from a set of training images in various scales through a sparse dictionary 

representation. After the learning, the dictionaries are used collectively to perform the 

classification and segmentation for the new image.

More recently, the deep neural network (DNN) framework is becoming more and more 

widely adopted, including for the task of gland segmentation.16, 17 The DNN framework has 

the advantage that minimal manually curated features are needed for the classification 
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process. The proposed framework utilizes the sparse dictionary for the learning and feature 

extraction. However, the signal sparse reconstruction based on dictionary is a linear 

combination. DNN harnesses the hierarchical nonlinear transformation and may result in 

better performance. The ongoing research include combining the manually designed features 

with the DNN based features, for a better overall performance.

The work has not been submitted for publication or presentation elsewhere.
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Figure 1. 
Segmentation on three benign tissues patches.
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Figure 2. 
Segmentation on two malignant tissues patches.
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