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Abstract

Clustering algorithms are used as data analysis tools in a wide variety of applications in Biology. 

Clustering has become especially important in protein structure prediction and virtual high 

throughput screening methods. In protein structure prediction, clustering is used to structure the 

conformational space of thousands of protein models. In virtual high throughput screening, 

databases with millions of drug-like molecules are organized by structural similarity, e.g. common 

scaffolds. The tree-like dendrogram structure obtained from hierarchical clustering can provide a 

qualitative overview of the results, which is important for focusing detailed analysis. However, in 

practice it is difficult to relate specific components of the dendrogram directly back to the objects 

of which it is comprised and to display all desired information within the two dimensions of the 

dendrogram. The current work presents a hierarchical agglomerative clustering method termed 

bcl::Cluster. bcl::Cluster utilizes the Pymol Molecular Graphics System to graphically depict 

dendrograms in three dimensions. This allows simultaneous display of relevant biological 

molecules as well as additional information about the clusters and the members comprising them.
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I. Introduction

Hierarchical clustering is the procedure of iteratively grouping similar objects together, and 

a cluster is constituted by this group of similar objects [1]. A distance measure is necessary 

to calculate the similarity between two objects. The purpose of clustering is to facilitate the 

identification of data patterns or classification of objects. Clustering methods are used in a 

wide variety of scientific applications and several different clustering algorithms can be 

applied to a dataset (for recent reviews of clustering methods see [2, 3]).

In particular, clustering is utilized in de novo protein structure prediction in order to aid in 

the selection of native-like models [4, 5]. Theoretically, the native protein structure resides in 

the global energy minimum and can be identified unambiguously as the point of lowest free 

energy in the conformational space. However, vastness of the conformational space requires 

evaluation of millions of protein models to generate some that are “native-like”, i.e. 

reasonably similar in structure to the native conformation; typically a root mean square 
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distance (RMSD) of backbone atoms smaller 7.5 Å. Such models have a score significantly 

higher than the native conformation. Further, the scoring functions used in protein structure 

prediction to estimate protein free energy are designed for fast evaluation of models. 

Stabilizing interactions within the protein model are not evaluated at atomic detail which 

reduces accuracy. In result, some non-native conformations will achieve scores similar to the 

native-like conformations.

Clustering is used to overcome this limitation [6]. Although the depth of the energy 

minimum in which the native conformation resides is reduced, the width of the energy 

funnel is less affected. Therefore, upon clustering predicted models according to structural 

similarity as measured by the RMSD, large clusters have an increased likelihood to contain 

native-like conformations. Global Distance Test (GDT) [7] and distance matrices [8] are 

alternative distance measures used in the process.

Clustering is also used in the analysis of libraries of small, often drug-like, molecules. Often 

millions of such molecules are included in (virtual) high-throughput screening or generated 

by structure generators [9–11]. Clustering structures the chemical space and identifies, for 

example, sets of similar compounds that share a common biological activity [12, 13]. 

Similarity measures compare the configuration of small molecules either based on the 

largest common substructure [14] or based on a vector of descriptors, so-called fingerprints 

[15–17]. The Tanimoto [18] coefficient is a popular similarity measure (for review see [19]).

The focus of the current work is to introduce a hierarchical agglomerative clustering method 

(bcl::Cluster). The goal of bcl::Cluster is to facilitate the clustering and analysis of 

biological molecules such as proteins and ligands by allowing visualization of the molecules 

within the context of the dendrogram. bcl::Cluster uses the Pymol Molecular Graphics 

System (Pymol) [20] to display the dendrogram and the biomolecules.

II. Methods

bcl::Cluster is implemented as a part of the BioChemical Library, an in-house developed, 

object oriented, C++ programming library. The code has been developed with flexibility and 

extensibility as a priority. Key aspects of the method are elaborated on below.

A. Input

bcl::Cluster relies upon pre-calculated pair-wise distances between objects in order to 

perform clustering. As input formats, bcl::Cluster reads data in the format of a distance 

matrix or a pair-wise list of distances, where the objects to be clustered are represented by an 

identifier. Both input formats are independent of the actual type of object that is being 

clustered. Therefore, although the graphical output of the method is tailored to biological 

molecules, bcl::Cluster is generally applicable. The separation of the calculation of distances 

between individual objects and the clustering algorithm allows bcl::Cluster the flexibility to 

work with any numerical distance measure for any type of object. The bcl library is used to 

compute a variety of similarity measures such as GDT [7], longest continuous segment [7], 

MaxSub [21], average distance matrix error [8], RMSD [22], RMSD100 [23], largest 

common substructure [24], and the Tanimoto coefficient [18].
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B. Distance measures

bcl::Cluster allows the use of similarity or dissimilarity distance measures for clustering. In 

the case of a similarity distance measure, objects with a greater distance value are more 

similar. An example of such a measure would be the Tanimoto coefficient frequently used to 

calculate the similarity of small molecules [18]. A dissimilarity distance measure is one 

where objects with a smaller distance value are more similar. The RMSD value between two 

proteins is an example of a dissimilarity distance measure [25].

C. Clustering Algorithm

bcl::Cluster uses a hierarchical agglomerative clustering algorithm [26]. Each individual 

object starts out in a cluster containing only that object. The method continues to iteratively 

combine the most similar cluster pairs until only a single cluster remains.

The similarity, or linkage, between two clusters can be calculated in several ways in 

bcl::Cluster. Average linkage between two clusters is calculated as the average pair-wise 

distance between all objects in two clusters. Single linkage between two clusters is 

calculated as the distance of the most similar pair of objects between the two clusters. 

Complete linkage between two clusters is calculated as value of the most dissimilar pair of 

objects between the two clusters. Lastly, total linkage is calculated similarly to average 

linkage but also considers pair-wise distances within the two clusters when calculating the 

average distance. This differs from average linkage which only considers pair-wise distances 

between clusters.

D. Clustering Cutoff

For practical applications, it is typically not necessary to compute the entire hierarchy of 

cluster agglomerations. For example, in the case of clustering protein models, clustering can 

be stopped once linkage values are reached where combining two clusters would produce a 

cluster encompassing proteins of different topology, i.e. at a RMSD of approximately 7.5 Å. 

By allowing the user to limit the extent of clustering, the time and memory requirements of 

bcl::Cluster can be reduced.

E. Pre-clustering

As mentioned in the description of the clustering algorithm, a hierarchy of clusters is 

obtained by iteratively combining pairs of clusters until only a single cluster remains that 

contains all previous clusters. Reducing the number of iterations that are needed until all 

clusters are combined will reduce the number of linkage values that need to be calculated 

and increase the speed of the clustering algorithm. To this end, bcl::Cluster offers the ability 

to perform a “pre-clustering” step before the hierarchical clustering takes place. The pre-

clustering step consists of a single pass through all objects where objects that are within a 

defined similarity are automatically combined to form a cluster. As the clusters are formed 

during the single iteration through all objects, an object will be added to a cluster if it is 

within the predefined similarity cutoff of any object within the cluster. In this manner, the 

pre-clustering step is using single linkage. After pre-clustering, agglomerative clustering 

proceeds as normal albeit some initial clusters will already contain multiple objects.
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F. Pymol Visualization

The Python programming language can be used to interface with Pymol in a scriptable 

manner. Python scripts can be written which perform calculations based on data extracted 

directly from Pymol and perform functions within Pymol. In addition, Pymol allows simple 

shapes such as spheres and cylinders as well as text to be generated. These generated objects 

are termed compiled graphics objects, CGOs. bcl::Cluster takes advantage of these features. 

After clustering is complete, bcl::Cluster generates a Python script which will create the 

dendrogram and load any molecules for display in Pymol.

III. Results

A set of protein models and a set of small molecules with distance matrices are used to 

demonstrate bcl::Cluster. Up to 1000 protein models are used, with an RMSD matrix 

containing values ranging from 0.0 Å to 18.8 Å. Five small molecules are used with a 

randomly filled distance matrix assumed to be a similarity measure. The values range from 

0.2 to 1.0.

A. Pymol Dendrogram Output

In Pymol, the dendrogram is displayed in conjunction with additional text information. The 

scale of linkages is shown on the right side of the dendrogram (Fig. 1(a)). In addition, 

information about each cluster can be displayed in front of the dendrogram (Fig. 1(b)). The 

information contains in order from top to bottom along the cluster (Fig. 1(c)): a.) the 

identifier for the object which is the center of the cluster, where the center object is 

calculated as the object with the smallest average distance to all other objects in the cluster; 

b.) a unique identification number for the cluster which can be used as a guide to find the 

cluster in text files created by bcl::Cluster; c.) the size of the cluster in terms of the number 

of objects that are contained within the cluster; d.) the linkage of the cluster.

B. Cluster Color Gradient

Visualization of the dendrogram in Pymol provides additional opportunities to aid in the 

analysis of clustering beyond directly viewing the biological molecules. Pymol allows the 

colors of CGOs to be specified. In bcl::Cluster, the individual clusters in the dendrogram can 

be colored according to a gradient indicative of some numerical descriptor. For example, the 

color of a cluster can indicate how similar the members of the cluster are to the native 

protein structure (Fig. 2(a)).

C. Cluster Radius

When defining the cylinder CGOs that comprise the dendrogram in Pymol, the desired 

radius is specified. bcl::Cluster can vary the radius of the cylinders according to the number 

of objects that are within the cluster corresponding to a cylinder (Fig. 2(b)). Scaling the 

visual size of a cluster with the number of members allows the user to quickly determine 

which clusters in the dendrogram contain the largest number of members.

Alexander et al. Page 4

IEEE Int Conf Comput Adv Bio Med Sci. Author manuscript; available in PMC 2016 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D. Pre-clustering Procedure

The pre-clustering procedure allows similar objects to be grouped into a cluster prior to 

hierarchical clustering (Fig. 3). Selecting an appropriate value for the distance threshold for 

combining objects allows pre-clustering to take place without affecting the upper regions of 

the dendrogram. In a test case using 1000 proteins with a pre-clustering threshold set so the 

effect is similar to that seen in Fig. 3, clustering is finished 20% faster.

E. Display of Biological Molecules

For every cluster, the biological molecule which is the center of the cluster is displayed as a 

representative of that cluster (Fig. 4(a) and Fig. 5). The additional cluster information 

previously described can be shown along with the biological molecules (Fig. 4(b)) but is 

easily hidden in the Pymol environment if desired. In Fig. 5, the small molecule distance 

measurement is assumed to be a similarity measure, so larger distance values indicate a 

higher similarity between objects. As a result, the dendrogram is inverted compared to when 

a similarity measurement is used, as in the case of the protein model dendrogram (Fig. 4).

F. Text Output

In addition to the Python script for displaying the dendrogram in Pymol, bcl::Cluster outputs 

information about the dendrogram in text format to facilitate quantitative analysis. Every 

member of every cluster is listed on a separate line with additional information (Fig. 6).

IV. Discussion

This work describes the bcl::Cluster clustering method which has been developed to allow 

straight forward analysis of clustering of biological molecules. Pymol provides the graphical 

interface which displays the dendrogram resulting from the hierarchical agglomerative 

algorithm of bcl::Cluster. Using Pymol allows other information to be displayed to the user 

in addition to the dendrogram such as the actual molecular structures of the objects being 

clustered, cluster sizes, and color coding according to some other numerical descriptor. The 

user can then quickly focus on the areas of interest in the dendrogram.

One of the advantages of using Pymol is that the display of the clustering results is dynamic. 

The user can perform any function of Pymol while viewing the results such as zooming, 

translating, and hiding certain objects. When looking at large, complex dendrograms, this 

functionality makes it easier to view the results as compared to if the dendrogram was 

displayed as a static picture. However, one limitation of bcl::Cluster is the computational 

power needed to display a complex dendrogram and many proteins or ligands in real time in 

Pymol. This limitation can be partially overcome by hiding objects within the Pymol 

environment, but with very large datasets the dendrogram alone will grow to be the limiting 

factor in what can be displayed. However, the bcl::Cluster text output provides the 

information needed to analyze clustering results for datasets too large to view in Pymol.

The object oriented nature of the bcl::Cluster code allows additional functionality to be 

easily added in the future. One extension would be to add other clustering algorithms. 

Additional formats for inputting distance values or outputting results can also be added. The 
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application is available from the bcl::Commons website (http://

bclcommons.vueinnovations.com/).
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Figure 1. 
Dendrograms and cluster information generated using Pymol from the output of bcl::Cluster. 

(a) Simple display of a dendrogram. The numbers at right denote linkage levels of clusters. 

(b) Clusters within dendrograms can be labeled with information about each cluster. 

Displaying the dendrogram in Pymol allows the user to dynamically adjust the view. (c) A 

zoomed-in view of a specific cluster with the information about the cluster labeled.
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Figure 2. 
The flexibility in generating dendrograms in Pymol allows the dendrogram itself to contain 

more information than just the cluster hierarchy. (a) Clusters of the dendrogram are color 

coded according to the average RMSD to an experimental structure of cluster members. The 

color scheme goes from red (very similar to experimental structure) to yellow to white (less 

similar to experimental strucdture). (b) Clusters in the dendrogram are scaled in size 

according to the number of members contained within the cluster. Clusters are scaled by 

3.0*sqrt(number of members - 1).
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Figure 3. 
Comparison of the clustering results (a) without pre-clustering and (b) with pre-clustering. 

In a set of 50 protein models, a pre-clustering threshold of 3.0

Å RMDS was used to create clusters of the most similar models before hierarchical 

clustering was performed. The dendrogram that is obtained with the added pre-clustering 

step shows several models were initially clustered together.

As hierarchical clustering progresses, the differences between (a) and (b) diminish. Pre-

clustering is performed in a single pass through all the objects being clustered, and it 
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therefore reduces the number of iterations that must take place during the hierarchical 

clustering step.
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Figure 4. 
Display of clustered proteins directly within the context of the dendrogram. The protein 

which is the center of the cluster is displayed as the representeative. (a) Simple view of the 

dendrogram with cluster center protein structures displayed. (b) Additional information 

about each cluster can also be displayed in conjunction with the protein structures. The 

cluster center id (see Fig. 1(c)) indicates the coordinate file from which the structure is 

created.
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Figure 5. 
Clustered small molecules displayed within the resulting dendrogram. Here the distances 

used were similarity measures such as the Tanimoto coefficient.
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Figure 6. 
Sample text output from a dendrogram created from three objects (a, b, and c). Each member 

of each cluster is listed on a separate line. The cluster identification and linkage is given for 

each member. Also, whether or not the node is at the base of the dendrogram (Leaf) is 

indicated by a boolean (one for true, zero for false). Linkages for clusters of only one 

member are undefined
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